請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83330
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉坤輝 | zh_TW |
dc.contributor.advisor | Kun-Huei Yeh | en |
dc.contributor.author | 陳國興 | zh_TW |
dc.contributor.author | Kuo-Hsing Chen | en |
dc.date.accessioned | 2023-03-15T17:01:17Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-06-01 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-02-07 | - |
dc.identifier.citation | 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: Cancer J Clin 2021; 71(3): 209-249; doi https://doi.org/10.3322/caac.21660.
2. Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA et al. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020; 159(1): 335-349.e315; doi:10.1053/j.gastro.2020.02.068. 3. Chen KH, Lin LI, Yuan CT, Tseng LH, Chao YL, Liang YH et al. Association between risk factors, molecular features and CpG island methylator phenotype colorectal cancer among different age groups in a Taiwanese cohort. Br J Cancer 2021; 125(1): 48-54; doi 10.1038/s41416-021-01300-5. 4. Health Promotion Administration, Ministry of Health Welfare. Taiwan Cancer Registry Statistical Service (1980-2019). Available at: https://twcr.tw/?page_id=1657. Accessed on 8 Nov. 2022. 5. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 2014; 383(9927): 1490-1502; doi 10.1016/s0140-6736(13)61649-9. 6. Taylor DP, Burt RW, Williams MS, Haug PJ, Cannon-Albright LA. Population-based family history-specific risks for colorectal cancer: a constellation approach. Gastroenterology 2010; 138(3): 877-885; doi 10.1053/j.gastro.2009.11.044. 7. Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol 2012; 10(6): 639-645; e-pub ahead of print 2012/02/01; doi 10.1016/j.cgh.2012.01.010. 8. Bollati V, Baccarelli A. Environmental epigenetics. Heredity (Edinb) 2010; 105(1): 105-112; e-pub ahead of print 2010/02/25; doi 10.1038/hdy.2010.2. 9. Hughes LA, van den Brandt PA, Goldbohm RA, de Goeij AF, de Bruine AP, van Engeland M et al. Childhood and adolescent energy restriction and subsequent colorectal cancer risk: results from the Netherlands Cohort Study. Int J Epidemiol 2010; 39(5): 1333-1344; doi 10.1093/ije/dyq062. 10. Hughes LA, van den Brandt PA, de Bruine AP, Wouters KA, Hulsmans S, Spiertz A et al. Early life exposure to famine and colorectal cancer risk: a role for epigenetic mechanisms. PloS one 2009; 4(11): e7951; e-pub ahead of print 2009/12/04; doi 10.1371/journal.pone.0007951. 11. Lea AJ, Altmann J, Alberts SC, Tung J. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus). Molecular Ecology 2016; 25(8): 1681-1696; doi 10.1111/mec.13436. 12. Chen KH, Lai LC, Lin LI, Chang HF, Chao YL, Lin BR et al. Abstract 4382: Epigenetic deregulation in glycolysis genes for colorectal cancer. Cancer Res 2019; 79(13_Supplement): 4382-4382; doi 10.1158/1538-7445.Am2019-4382. 13. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 2007; 1773(8): 1263-1284; doi 10.1016/j.bbamcr.2006.10.001. 14. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16(1): 103-119; doi 10.1517/14728222.2011.645805. 15. Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013; 369(11): 1023-1034; doi 10.1056/NEJMoa1305275. 16. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15(10): 1065-1075; doi 10.1016/s1470-2045(14)70330-4. 17. Van Cutsem E, Lenz H-J, Köhne C-H, Heinemann V, Tejpar S, Melezínek I et al. Fluorouracil, Leucovorin, and Irinotecan Plus Cetuximab Treatment and RAS Mutations in Colorectal Cancer. J Clin Oncol 2015; 33(7): 692-700; doi 10.1200/JCO.2014.59.4812. 18. Cremolini C, Loupakis F, Antoniotti C, Lupi C, Sensi E, Lonardi S et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol 2015; 16(13): 1306-1315; doi 10.1016/s1470-2045(15)00122-9. 19. Modest DP, Ricard I, Heinemann V, Hegewisch-Becker S, Schmiegel W, Porschen R et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann Oncol 2016; 27(9): 1746-1753; doi 10.1093/annonc/mdw261. 20. Schirripa M, Cremolini C, Loupakis F, Morvillo M, Bergamo F, Zoratto F et al. Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer. Int J Cancer 2015; 136(1): 83-90; doi 10.1002/ijc.28955. 21. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417(6892): 949-954; doi 10.1038/nature00766. 22. Tran B, Kopetz S, Tie J, Gibbs P, Jiang ZQ, Lieu CH et al. Impact of BRAF Mutation and Microsatellite Instability on the Pattern of Metastatic Spread and Prognosis in Metastatic Colorectal Cancer. Cancer 2011; 117(20): 4623-4632; doi 10.1002/cncr.26086. 23. Tol J, Nagtegaal ID, Punt CJ. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009; 361(1): 98-99; doi 10.1056/NEJMc0904160. 24. De Roock W, Claes B Fau - Bernasconi D, Bernasconi D Fau - De Schutter J, De Schutter J Fau - Biesmans B, Biesmans B Fau - Fountzilas G, Fountzilas G Fau - Kalogeras KT et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11(8).753-762 25. Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY et al. (Non-V600) BRAF Mutations Define a Clinically Distinct Molecular Subtype of Metastatic Colorectal Cancer. J Clin Oncol 2017; 35(23): 2624-2630; doi 10.1200/jco.2016.71.4394. 26. Tsai JH, Liau JY, Lin YL, Tseng LH, Lin LI, Yeh KH et al. Frequent BRAF mutation in early-onset colorectal cancer in Taiwan: association with distinct clinicopathological and molecular features and poor clinical outcome. J Clin Pathol 2016; 69(4): 319-325; doi 10.1136/jclinpath-2015-203335. 27. Chen KH, Lin YL, Liau JY, Tsai JH, Tseng LH, Lin LI et al. BRAF mutation may have different prognostic implications in early- and late-stage colorectal cancer. Med Oncol 2016; 33(5): 39; doi 10.1007/s12032-016-0756-6. 28. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol 2010; 7(3): 153-162; doi 10.1038/nrclinonc.2009.237. 29. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487(7407): 330-337; doi 10.1038/nature11252. 30. Parsons R, Li GM, Longley MJ, Fang WH, Papadopoulos N, Jen J et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 1993; 75(6): 1227-1236 31. Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000; 342(2): 69-77; doi 10.1056/nejm200001133420201. 32. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005; 23(3): 609-618; doi 10.1200/jco.2005.01.086. 33. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 2015; 5(1): 43-51; doi 10.1158/2159-8290.CD-14-0863. 34. Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP et al. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 2008; 134(4): 988-997; doi 10.1053/j.gastro.2008.01.015. 35. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015; 372(26): 2509-2520; doi 10.1056/NEJMoa1500596. 36. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; doi 10.1126/science.aan6733. 37. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncology 2017; 18(9): 1182-1191. 38. FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. 39. Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med; 383(23): 2207-2218; doi 10.1056/NEJMoa2017699. 40. Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 2019; 364(6439): 485-491; doi 10.1126/science.aau0447. 41. Lu C, Guan J, Lu S, Jin Q, Rousseau B, Lu T et al. DNA Sensing in Mismatch Repair-Deficient Tumor Cells Is Essential for Anti-tumor Immunity. Cancer Cell 2021; 39(1): 96-108.e106; doi 10.1016/j.ccell.2020.11.006. 42. Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M et al. PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer. N Engl J Med 386(25): 2363-2376; doi 10.1056/NEJMoa2201445. 43. M. Chalabi1 YLV, J. van den Berg3, K. Sikorska4, G. Beets5, A.V. Lent6, M.C. Grootscholten2, A. Aalbers5, N. Buller7, H. Marsman8, E. Hendriks9, P.W.A. Burger10, T. Aukema11, S. Oosterling12, R. Beets-Tan13, T.N. Schumacher14, M. van Leerda. LBA7 - Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: The NICHE-2 study. Ann Oncol 2022; 33 (suppl_7): S808-S869 101016/annonc/annonc1089 2022. 44. Jung G, Hernandez-Illan E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 2020; 17(2): 111-130; doi 10.1038/s41575-019-0230-y. 45. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. PNAS 1999; 96(15): 8681-8686; 46. Toyota M, Ohe-Toyota M, Ahuja N, Issa JP. Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. PNAS 2000; 97(2): 710-715; 47. Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, Murtaugh MA et al. Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 2005; 129(3): 837-845; doi 10.1053/j.gastro.2005.06.020. 48. Ogino S, Cantor M, Kawasaki T, Brahmandam M, Kirkner GJ, Weisenberger DJ et al. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies. Gut 2006; 55(7): 1000-1006; doi 10.1136/gut.2005.082933. 49. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat genet 2006; 38(7): 787-793; doi 10.1038/ng1834. 50. Hughes LA, Khalid-de Bakker CA, Smits KM, van den Brandt PA, Jonkers D, Ahuja N et al. The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochimica et Biophysica Acta 2012; 1825(1): 77-85; e-pub ahead of print 2011/11/08; doi 10.1016/j.bbcan.2011.10.005. 51. Juo YY, Johnston FM, Zhang DY, Juo HH, Wang H, Pappou EP et al. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis. Ann Oncol 2014; 25(12): 2314-2327; doi 10.1093/annonc/mdu149. 52. Gallois C, Laurent-Puig P, Taieb J. Methylator phenotype in colorectal cancer: A prognostic factor or not? Crit Rev Oncol/Hematol 2016; 99: 74-80; doi 10.1016/j.critrevonc.2015.11.001. 53. Chen KH, Lin LI, Tseng LH, Lin YL, Liau JY, Tsai JH et al. CpG Island Methylator Phenotype May Predict Poor Overall Survival of Patients with Stage IV Colorectal Cancer. Oncology 2019; 96(3): 156-163; doi 10.1159/000493387. 54. Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 2020; 20(11): 662-680; doi 10.1038/s41568-020-0285-7. 55. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12(4): 298-306; doi 10.1038/nrc3245. 56. Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R et al. Effector Memory T Cells, Early Metastasis, and Survival in Colorectal Cancer. N Engl J Med 2005; 353(25): 2654-2666; doi 10.1056/NEJMoa051424. 57. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313(5795): 1960-1964; doi 10.1126/science.1129139. 58. Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 2011; 29(6): 610-618; doi 10.1200/jco.2010.30.5425. 59. Pagès F, Mlecnik B, Marliot F, Bindea G, Ou FS, Bifulco C et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 2018; 391(10135): 2128-2139; doi 10.1016/s0140-6736(18)30789-x. 60. Marliot F, Chen X, Kirilovsky A, Sbarrato T, El Sissy C, Batista L et al. Analytical validation of the Immunoscore and its associated prognostic value in patients with colon cancer. J Immunother Cancer 2020; 8(1); doi 10.1136/jitc-2019-000272. 61. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39(4): 782-795; doi 10.1016/j.immuni.2013.10.003. 62. Melero I, Rouzaut A, Motz GT, Coukos G. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov 2014; 4(5): 522-526; doi 10.1158/2159-8290.Cd-13-0985. 63. Vayrynen JP, Haruki K, Lau MC, Vayrynen SA, Zhong R, Dias Costa A et al. The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunol Res 2021; 9(1): 8-19; doi 10.1158/2326-6066.CIR-20-0527. 64. Weisenberger DJ, Levine AJ, Long TI, Buchanan DD, Walters R, Clendenning M et al. Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol, Biomarkers & Pre 2015; 24(3): 512-519; doi 10.1158/1055-9965.epi-14-1161. 65. Alegria-Torres JA, Baccarelli A, Bollati V. Epigenetics and lifestyle. Epigenomics 2011; 3(3): 267-277; doi 10.2217/epi.11.22. 66. consultations We. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004; 363(9403): 157-163; doi 10.1016/s0140-6736(03)15268-3. 67. Liu J, Tang L, Yi J, Li G, Lu Y, Xu Y et al. Unique characteristics of CpG island methylator phenotype (CIMP) in a Chinese population with colorectal cancer. BMC Gastroenterology 2019; 19(1): 173; doi 10.1186/s12876-019-1086-x. 68. Lee S, Cho NY, Yoo EJ, Kim JH, Kang GH. CpG island methylator phenotype in colorectal cancers: comparison of the new and classic CpG island methylator phenotype marker panels. Arch Pathol Lab Med 2008; 132(10): 1657-1665; doi 10.1043/1543-2165(2008)132[1657:cimpic]2.0.co;2. 69. Samowitz WS, Albertsen H, Sweeney C, Herrick J, Caan BJ, Anderson KE et al. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J Natl Cancer Inst 2006; 98(23): 1731-1738; doi 10.1093/jnci/djj468. 70. Hughes LA, Simons CC, van den Brandt PA, Goldbohm RA, de Goeij AF, de Bruine AP et al. Body size, physical activity and risk of colorectal cancer with or without the CpG island methylator phenotype (CIMP). PloS one 2011; 6(4): e18571; doi 10.1371/journal.pone.0018571. 71. Maegawa S, Lu Y, Tahara T, Lee JT, Madzo J, Liang S et al. Caloric restriction delays age-related methylation drift. Nat Commun 2017; 8(1): 539; doi 10.1038/s41467-017-00607-3. 72. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14(10): R115-R115; doi 10.1186/gb-2013-14-10-r115. 73. Wang T, Maden SK, Luebeck GE, Li CI, Newcomb PA, Ulrich CM et al. Dysfunctional epigenetic aging of the normal colon and colorectal cancer risk. Clin Epigenetics 2020; 12(1): 5; doi 10.1186/s13148-019-0801-3. 74. de Toro-Martín J, Guénard F, Tchernof A, Hould F-S, Lebel S, Julien F et al. Body mass index is associated with epigenetic age acceleration in the visceral adipose tissue of subjects with severe obesity. Clin Epigenetics 2019; 11(1): 172-172; doi 10.1186/s13148-019-0754-6. 75. Nevalainen T, Kananen L, Marttila S, Jylhava J, Mononen N, Kahonen M et al. Obesity accelerates epigenetic aging in middle-aged but not in elderly individuals. Clin Epigenetics 2017; 9: 20; doi 10.1186/s13148-016-0301-7. 76. Amitay EL, Carr PR, Jansen L, Roth W, Alwers E, Herpel E et al. Smoking, alcohol consumption and colorectal cancer risk by molecular pathological subtypes and pathways. Br J Cancer 2020; 122(11): 1604-1610; doi 10.1038/s41416-020-0803-0. 77. Clarke CN, Kopetz ES. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: clinical characteristics, clinical behavior, and response to targeted therapies. J Gastrointest Oncol 2015; 6(6):660-667. doi: 10.3978/j.issn.2078-6891.2015.077. 78. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C et al. The consensus molecular subtypes of colorectal cancer. Nat Med 2015; 21(11): 1350-1356; doi 10.1038/nm.3967. 79. Barras D, Missiaglia E, Wirapati P, Sieber OM, Jorissen RN, Love C et al. BRAF V600E Mutant Colorectal Cancer Subtypes Based on Gene Expression. Clin Can.Res 2017; 23(1): 104-115; doi 10.1158/1078-0432.ccr-16-0140. 80. Kopetz S, Murphy DA, Pu J, Ciardiello F, Desai J, Grothey A et al. Molecular correlates of clinical benefit in previously treated patients (pts) with BRAF V600E-mutant metastatic colorectal cancer (mCRC) from the BEACON study. J Clin Oncol 2021; 39(15_suppl): 3513-3513; doi 10.1200/JCO.2021.39.15_suppl.3513. 81. Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011; 29(15): 2011-2019; doi 10.1200/jco.2010.33.5091. 82. Richman SD, Seymour MT, Chambers P, Elliott F, Daly CL, Meade AM et al. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J Clin Oncol 2009; 27(35): 5931-5937; doi 10.1200/jco.2009.22.4295. 83. Cohen R, Liu H, Fiskum J, Adams R, Chibaudel B, Maughan TS et al. BRAFV600E Mutation in First-line Metastatic Colorectal Cancer: an Analysis of Individual Patient Data from the ARCAD Database. J Natl Cancer Inst 2021; doi 10.1093/jnci/djab042. 84. Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commu 2020; 11(1): 3801; doi 10.1038/s41467-020-17670-y. 85. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med 2017; 377(25): 2500-2501; doi 10.1056/NEJMc1713444. 86. André T, Shiu K-K, Kim TW, Jensen BV, Jensen LH, Punt C et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N Engl J Med 2020; 383(23): 2207-2218; doi 10.1056/NEJMoa2017699. 87. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz H-J, Morse MA et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncology 2017; 18(9): 1182-1191; doi 10.1016/S1470-2045(17)30422-9. 88. Morris VK, Parseghian CM, Escano M, Johnson B, Raghav KPS, Dasari A et al. Phase I/II trial of encorafenib, cetuximab, and nivolumab in patients with microsatellite stable, BRAFV600E metastatic colorectal cancer. J Clin Oncol 2022; 40(4_suppl): 12-12; doi 10.1200/JCO.2022.40.4_suppl.012. 89. Tabernero J, Ros J, Elez E. The Evolving Treatment Landscape in BRAF-V600E-Mutated Metastatic Colorectal Cancer. Am Soc Clin Oncol Educ Book 2022; 42: 1-10; doi 10.1200/EDBK_349561. 90. Hsu CL, Ou DL, Bai LY, Chen CW, Lin L, Huang SF et al. Exploring Markers of Exhausted CD8 T Cells to Predict Response to Immune Checkpoint Inhibitor Therapy for Hepatocellular Carcinoma. Liver Cancer 2021; doi 10.1159/000515305. 91. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139-140; doi 10.1093/bioinformatics/btp616. 92. Roumenina LT, Daugan MV, Petitprez F, Sautes-Fridman C, Fridman WH. Context-dependent roles of complement in cancer. Nat Rev Cancer 2019; 19(12): 698-715; doi 10.1038/s41568-019-0210-0. 93. Danaher P, Warren S, Dennis L, D’Amico L, White A, Disis ML et al. Gene expression markers of Tumor Infiltrating Leukocytes. J ImmunoTher Cancer 2017; 5(1): 18; doi 10.1186/s40425-017-0215-8. 94. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015; 12(5): 453-457; doi 10.1038/nmeth.3337. 95. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell 2018; 174(5): 1293-1308.e1236; doi https://doi.org/10.1016/j.cell.2018.05.060. 96. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018; 173(2): 400-416.e411; doi 10.1016/j.cell.2018.02.052. 97. Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016; 22(11): 1342-1350; doi 10.1038/nm.4191. 98. Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L et al. Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value. PLOS Med 2013; 10(5): e1001453; doi 10.1371/journal.pmed.1001453. 99. Murata K, Baldwin WM. Mechanisms of complement activation, C4d deposition, and their contribution to the pathogenesis of antibody-mediated rejection. Transplant Rev 2009; 23(3): 139-150; doi https://doi.org/10.1016/j.trre.2009.02.005. 100. Kolev M, Le Friec G, Kemper C. Complement--tapping into new sites and effector systems. Nat Rev Immunol 2014; 14(12): 811-820; doi 10.1038/nri3761. 101. Kemper C, Köhl J. Back to the future - non-canonical functions of complement. Semin Immunol 2018; 37: 1-3; e-pub ahead of print 2018/06/03; doi 10.1016/j.smim.2018.05.002. 102. Medler TR, Murugan D, Horton W, Kumar S, Cotechini T, Forsyth AM et al. Complement C5a Fosters Squamous Carcinogenesis and Limits T Cell Response to Chemotherapy. Cancer Cell 2018; 34(4): 561-578.e566; doi 10.1016/j.ccell.2018.09.003. 103. Nitta H, Murakami Y, Wada Y, Eto M, Baba H, Imamura T. Cancer cells release anaphylatoxin C5a from C5 by serine protease to enhance invasiveness. Oncol Rep 2014; 32(4): 1715-1719; doi 10.3892/or.2014.3341. 104. Ajona D, Ortiz-Espinosa S, Pio R, Lecanda F. Complement in Metastasis: A Comp in the Camp. Front Immunol 2019; 10(669); doi 10.3389/fimmu.2019.00669. 105. Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A, Gerard C et al. Modulation of the antitumor immune response by complement. Nat Immunol 2008; 9(11): 1225-1235; doi 10.1038/ni.1655. 106. Bonavita E, Gentile S, Rubino M, Maina V, Papait R, Kunderfranco P et al. PTX3 Is an Extrinsic Oncosuppressor Regulating Complement-Dependent Inflammation in Cancer. Cell 2015; 160(4): 700-714; doi 10.1016/j.cell.2015.01.004. 107. Nabizadeh JA, Manthey HD, Steyn FJ, Chen W, Widiapradja A, Md Akhir FN et al. The Complement C3a Receptor Contributes to Melanoma Tumorigenesis by Inhibiting Neutrophil and CD4<sup>+</sup> T Cell Responses. J Immunol 2016: 1600210; doi 10.4049/jimmunol.1600210. 108. Cohen D, Colvin Rb Fau - Daha MR, Daha Mr Fau - Drachenberg CB, Drachenberg Cb Fau - Haas M, Haas M Fau - Nickeleit V, Nickeleit V Fau - Salmon JE et al. Pros and cons for C4d as a biomarker. Kidney int 2012;81 (7): 628-639 109. Ajona D, Pajares MJ, Corrales L, Perez-Gracia JL, Agorreta J, Lozano MD et al. Investigation of complement activation product c4d as a diagnostic and prognostic biomarker for lung cancer. J Natl Cancer Inst 2013; 105(18): 1385-1393; doi 10.1093/jnci/djt205. 110. Daugan MV, Revel M, Russick J, Dragon-Durey M-A, Gaboriaud C, Robe-Rybkine T et al. Complement C1s and C4d as Prognostic Biomarkers in Renal Cancer: Emergence of Noncanonical Functions of C1s. Cancer Immunol Res 2021; 9(8): 891; doi 10.1158/2326-6066.CIR-20-0532. 111. Roumenina LT, Daugan MV, Noe R, Petitprez F, Vano YA, Sanchez-Salas R et al. Tumor Cells Hijack Macrophage-Produced Complement C1q to Promote Tumor Growth. Cancer Immunol Res 2019; 7(7): 1091-1105; doi 10.1158/2326-6066.CIR-18-0891. 112. Edin S, Wikberg ML, Dahlin AM, Rutegard J, Oberg A, Oldenborg PA et al. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 2012; 7(10): e47045; doi 10.1371/journal.pone.0047045. 113. Ajona D, Ortiz-Espinosa S, Moreno H, Lozano T, Pajares MJ, Agorreta J et al. A Combined PD-1/C5a Blockade Synergistically Protects against Lung Cancer Growth and Metastasis. Cancer Discov 2017; 7(7): 694-703; doi 10.1158/2159-8290.CD-16-1184. 114. Pyonteck SM, Akkari L Fau - Schuhmacher AJ, Schuhmacher Aj Fau - Bowman RL, Bowman Rl Fau - Sevenich L, Sevenich L Fau - Quail DF, Quail Df Fau - Olson OC et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013;19(10):1264-1272. doi: 10.1038/nm.3337. 115. Razak AR, Cleary JM, Moreno V, Boyer M, Calvo Aller E, Edenfield W et al. Safety and efficacy of AMG 820, an anti-colony-stimulating factor 1 receptor antibody, in combination with pembrolizumab in adults with advanced solid tumors. J Immunother Cancer 2020; 8(2); doi 10.1136/jitc-2020-001006. 116. Sung H, Siegel RL, Rosenberg PS, Jemal A. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health 2019; 4(3): e137-e147; doi 10.1016/s2468-2667(18)30267-6. 117. Bailey CE, Hu C-Y, You YN, Bednarski BK, Rodriguez-Bigas MA, Skibber JM et al. Increasing Disparities in the Age-Related Incidences of Colon and Rectal Cancers in the United States, 1975-2010. JAMA Surgery 2015; 150(1): 17-22; doi 10.1001/jamasurg.2014.1756. 118. Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K et al. Prevalence and Spectrum of Germline Cancer Susceptibility Gene Mutations Among Patients With Early-Onset Colorectal Cancer. JAMA Oncol 2017; 3(4): 464-471; doi 10.1001/jamaoncol.2016.5194. 119. Garrett WS. The gut microbiota and colon cancer. Science 2019; 364(6446): 1133-1135; doi 10.1126/science.aaw2367. 120. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 2012; 10(8): 575-582; doi 10.1038/nrmicro2819. 121. Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism? Trends Microbiol 2020; 28(5): 401-423; doi 10.1016/j.tim.2020.01.001. 122. Yang Y, Du L, Shi D, Kong C, Liu J, Liu G et al. Dysbiosis of human gut microbiome in young-onset colorectal cancer. Nat Commun 2021; 12(1): 6757; doi 10.1038/s41467-021-27112-y. 123. Walker SP, Tangney M, Claesson MJ. Sequence-Based Characterization of Intratumoral Bacteria—A Guide to Best Practice. Front Oncol 2020; 10; doi 10.3389/fonc.2020.00179. 124. Chen K-H, Hsu C-L, Su Y-L, Yuan C-T, Lin L-I, Tsai J-H et al. Novel prognostic implications of complement activation in the tumour microenvironment for de novo metastatic BRAF V600E mutant colorectal cancer. Br J Cancer 2022; doi 10.1038/s41416-022-02010-2. 125. Frade R, Rodrigues-Lima F, Huang S, Xie K, Guillaume N, Bar-Eli M. Procathepsin-L, a Proteinase that Cleaves Human C3 (the Third Component of Complement), Confers High Tumorigenic and Metastatic Properties to Human Melanoma Cells1. Cancer Res 1998; 58(13): 2733-2736. 126. Reddel CJ, Tan CW, Chen VM. Thrombin Generation and Cancer: Contributors and Consequences. Cancers (Basel) 2019; 11(1); doi 10.3390/cancers11010100. 127. Zha H, Han X, Zhu Y, Yang F, Li Y, Li Q et al. Blocking C5aR signaling promotes the anti-tumor efficacy of PD-1/PD-L1 blockade. Oncoimmunology 2017; 6(10): e1349587; doi 10.1080/2162402X.2017.1349587. 128. Risitano AM, Peffault de Latour R, Marano L, Frieri C. Discovering C3 targeting therapies for paroxysmal nocturnal hemoglobinuria: Achievements and pitfalls. Semin Immunol 2022: 101618; doi 10.1016/j.smim.2022.101618. 129. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013; 503(7477): 548-551; doi 10.1038/nature12796. 130. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. N Engl J Med 2020; 383(13): 1207-1217; doi 10.1056/NEJMoa1917239. 131. Fakih MG, Kopetz S, Kuboki Y, Kim TW, Munster PN, Krauss JC et al. Sotorasib for previously treated colorectal cancers with KRAS(G12C) mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial. Lancet Oncol 2022; 23(1): 115-124; doi 10.1016/S1470-2045(21)00605-7. 132. Health Promotion Administration, Ministry of Health Welfare. Taiwan Cancer Registry Statistical Service (1980-2017). Available at: http://tcr.cph.ntu.edu.tw/main.php?Page=A5B2(Chinese). Accessed on 20 Aug. 2020. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83330 | - |
dc.description.abstract | CpG島甲基化表現型(CpG island methylator phenotype) 大腸直腸癌是一種在DNA啟動子許多CpG島有廣泛性高度甲基化的一種亞型,和許多臨床病理特徵有高度相關,例如:老年、女性、右側大腸癌、BRAF V600E突變和偶發性錯配修復缺陷大腸直腸癌。CpG島甲基化表現型的預後角色仍存有爭議。為了探究CpG島甲基化表現型的預後角色,我們先前針對450位大腸直腸癌病人的檢體分析CpG島甲基化表現型等生物標記。結果顯示CpG島甲基化表現型在早期癌並不是預後因子,但是在第四期的轉移性癌症中,則病人顯著地有較短的存活期。我們也發現在「年輕型」大腸直腸癌(小於50歲診斷癌症)中,CpG島甲基化表現型大腸直腸癌的比率達14.3%,明顯較西方族群的比例(約5%)高。
為了進一步驗證CpG島甲基化表現型在台灣「年輕型」大腸直腸癌的高發生率,以及探究大腸直腸癌危險因子與台灣CpG島甲基化表現型大腸直腸癌的相關性,我們於2016-2019年間「前瞻性」收集大腸直腸癌病人的腫瘤檢體、臨床病理資料和大腸直腸癌危險因子。研究結果顯示,小於50歲和大於等於50歲的病人中各有15.7% (14/89)和15.2% (31/204)是CpG島甲基化表現型大腸直腸癌。另外,我們也發現CpG島甲基化表現型大腸直腸癌在小於50歲的病人中,與較多的第四期診斷、BRAF V600E突變、和高身體質量指數 (≥ 27.5 kg/m2)有相關。在多變相分析中,只有高身體質量指數 (≥ 27.5 kg/m2)這個危險因子和CpG島甲基化表現型在小於50歲的大腸直腸癌病人有顯著相關。這結果驗證了在台灣年輕型大腸直腸癌有高比例是CpG島甲基化表現型,而且這些腫瘤與高身體質量指數 (≥ 27.5 kg/m2)有顯著相關。 許多研究指出BRAF V600E突變型在轉移癌與較差的預後有關。我們團隊之前的研究也發現雖同屬腫瘤細胞基因型BRAF V600E突變型,在「晚期大腸直腸癌」與存活期較短相關,但在「早期大腸直腸癌」則與預後無關。有鑑於腫瘤微環境中的免疫組成也可以是大腸直腸癌的預後因子,我們假設BRAF V600E突變的大腸直腸癌腫瘤內免疫組成有預後影響。因為轉移性BRAF V600E突變大腸直腸癌的免疫組成很少被研究,我們納入54個第四期未接受過治療BRAF V600E突變的轉移性大腸直腸癌的病人,收集他們的檢體和臨床資料。這些檢體的RNA被萃取出來後利用PanCancer Immune Panel (nanoString)進行免疫基因表現分析。我們的研究結果顯示,許多腫瘤內補體基因的表現與病人預後有關。我們也發展出「補體分數」這個工具。「補體分數」高的腫瘤相較於「補體分數」低的腫瘤有較短的疾病無惡化存活期和總存活期。我們發現「補體分數」也與C4d (一個補體路徑活化的生物標記)染色的強度有顯著正相關,驗證了RNA分析的結果。最後,我們發現,「補體分數」與腫瘤微環境中的M2型巨噬細胞所代表的基因表現也是有顯著相關性。因為M2型巨噬細胞被認為有促進腫瘤生長的作用。這也許是「補體分數」高的腫瘤有比較差的預後的可能原因之一。 綜合以上,我們的研究首次點出東西方大腸直腸癌在CpG島甲基化高表現型大腸直腸癌有不同的發生率,也提醒國人適當身體質量指數(< 27.5 kg/m2)對大腸癌預防的重要性。我們的研究結果亦將有助於未來對於BRAF V600E突變大腸直腸癌發展新的治療策略。 | zh_TW |
dc.description.abstract | The CpG island methylator phenotype-high (CIMP-high) subtype of colorectal cancer (CRC) is characterized by widespread hypermethylation in the CpG islands of DNA promoters. Our previous study demonstrated that CIMP-high was not associated with poor prognosis in early-stage CRC but an independent prognostic factor in Stage 4 CRC in a multivariate analysis model. Among patients with early-onset CRC (EOCRC) diagnosed before 50 years old (y/o), the frequency of CIMP-high was 14.3%, significantly higher than that in the Western population (5%). Thus, we collected specimens from patients with CRC and analyzed the clinicopathologic characteristics and CRC risk factors of patients during 2016-2019. We analyzed the tumor’s KRAS/NRAS mutations, BRAF V600E mutation, microsatellite instability (MSI), and CIMP. The results revealed that CIMP-high tumors represented 15.7% (14/89) in EOCRC and 15.2% (31/204) in late-onset CRC (LOCRC, diagnosed at 50 y/o or older), respectively. In addition, we observed that in a multivariate analysis, a high body mass index (BMI) of ≥ 27.5 kg/m2 was significantly correlated with CIMP-high CRC in those younger than 50 yrs. These findings validated that the frequency of CIMP-high CRC in EOCRC is high in Taiwan and demonstrated the significant association between these tumors and a high BMI.
We previously demonstrated the significant prognostic role in late-stage BRAF V600E mutant CRC but not in early-stage tumors. We hypothesized that immune contextures in the tumor microenvironment of BRAF V600E mutant CRC have prognostic implications in CRC. We enrolled 54 patients with untreated, metastatic microsatellite-stable BRAF V600E-mutated CRC and analyzed the expression of immune-related genes in these tumors. The results showed that many complement genes were associated with patient’s survival outcomes. We developed a complement score and observed that BRAF V600E-mutated CRC with a high complement score was associated with shorter progression-free survival and overall survival compared to that with a low complement score. Finally, we identified that complement scores were significantly associated with M2 macrophage signatures. This may contribute to the phenomenon that tumors with a high complement score are associated with poor survival. Therefore, our study indicates different incidences of CIMP-high CRC in Eastern and Western populations, and reminds the importance of a proper BMI (<27.5 kg/m2) for Taiwanese population. The findings in our study could provide insight into developing novel treatments for BRAF V600E mutant CRC. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-15T17:01:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-03-15T17:01:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Oral examination Committee Approval……………………………………………….…i
Acknowledgements (誌謝)…………………….………………….………....………….….ii Thesis Abstract in Chinese (論文摘要)………………………………………………...iii Thesis Abstract……………………………………………………..………...…......…....….v Table of Contents……………………………………………………………………...........viii List of Figures……………………………………………………………………………...........x List of Tables………………………………………………………………………….............xii List of Abbreviations………………………………………………………….….…….......xiv Chapter I. Background…………………………………………..………..……………........1 1.1 The Epidemiology and Carcinogenesis of Colorectal Cancer………….………1 1.1.1 Carcinogenesis and Epigenetics in Colorectal Cancer………………….2 1.2 The Prognostics of Colorectal Cancer: Tumor Cells…………………………...4 1.3 The Prognostics of Colorectal Cancer: Epigenetics………….…………….......9 1.4 The Prognostics of Colorectal Cancer: Tumor Microenvironment…………...11 Chapter II. The Epigenetics of Colorectal Cancer-From Prognostics to Carcinogenesis………………………………………….………….………….14 2. 1 Introduction…………………..…………………………………………….....14 2.2 Methods……………………………………………………………………….15 2.3 Results………………………………………………………………………...20 2.4 Discussion…………………………………………………………………….22 Chapter III. The Study of Tumor Microenvironment in Metastatic BRAF V600E mutant Colorectal Cancer……………………………………………………………..27 3.1 Introduction…………………………………………………………………...27 3.2 Methods…………………………………………………………………...…..29 3.3 Results………………………………………………………………….……..36 3.4 Discussion…………………………………………………………………….41 Chapter IV. Conclusion and Future Perspectives…………………………………..…..46 4.1 Prognostics, Carcinogenesis, Epigenetics and Microbiome…………………..46 4.2 Prognostics, Tumor Microenvironment, and Complement Activation…….....47 4.3 Prognostics: Open the Door to Future Colorectal Cancer Researches………..50 Chapter V. Figures…………………………………………………………………..….54 Chapter VI. Tables……. ……………………………………………………..………...69 References…………………………………………………………………...…………86 Appendix……………………………………………………………………………...103 | - |
dc.language.iso | en | - |
dc.title | 大腸直腸癌預後學之研究- 著重表觀遺傳學和腫瘤微環境之解析 | zh_TW |
dc.title | Studies on the Prognostics of Colorectal Cancer-with Emphasis on Epigenetics and Tumor Microenvironment | en |
dc.title.alternative | Studies on the Prognostics of Colorectal Cancer-with Emphasis on Epigenetics and Tumor Microenvironment | - |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 陳立宗;趙毅;莊曜宇;林亮音;徐志宏 | zh_TW |
dc.contributor.oralexamcommittee | Li-Tzong Chen;Yee Chao;Eric Y. Chuan;Liang-In Lin;Chih-Hung Hsu | en |
dc.subject.keyword | 大腸直腸癌,預後,CpG島甲基化表現型,身體質量指數,BRAF V600E突變,補體,腫瘤微環境, | zh_TW |
dc.subject.keyword | Colorectal cancer,prognosis,CpG island methylator phenotype,body mass index,BRAF V600E mutation,complement,tumor microenvironment, | en |
dc.relation.page | 104 | - |
dc.identifier.doi | 10.6342/NTU202300311 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-02-08 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 腫瘤醫學研究所 | - |
顯示於系所單位: | 腫瘤醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf | 3.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。