Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83329
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝松蒼zh_TW
dc.contributor.advisorSung-Tsang Hsiehen
dc.contributor.author王憶嘉zh_TW
dc.contributor.authorYi-Chia Wangen
dc.date.accessioned2023-03-14T17:02:08Z-
dc.date.available2023-11-10-
dc.date.copyright2023-06-01-
dc.date.issued2022-
dc.date.submitted2022-11-17-
dc.identifier.citation1. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Primers 5 (1):70. doi:10.1038/s41572-019-0118-8
2. Matei N, Camara J, Zhang JH (2020) The Next Step in the Treatment of Stroke. Front Neurol 11:582605. doi:10.3389/fneur.2020.582605
3. Dobson GP, Letson HL (2016) Adenosine, lidocaine, and Mg2+ (ALM): From cardiac surgery to combat casualty care--Teaching old drugs new tricks. J Trauma Acute Care Surg 80 (1):135-145. doi:10.1097/TA.0000000000000881
4. Santa-Maria AR, Walter FR, Valkai S, Bras AR, Meszaros M, Kincses A, Klepe A, Gaspar D, Castanho M, Zimanyi L, Der A, Deli MA (2019) Lidocaine turns the surface charge of biological membranes more positive and changes the permeability of blood-brain barrier culture models. Biochim Biophys Acta Biomembr 1861 (9):1579-1591. doi:10.1016/j.bbamem.2019.07.008
5. Bynoe MS, Viret C, Yan A, Kim DG (2015) Adenosine receptor signaling: a key to opening the blood-brain door. Fluids Barriers CNS 12:20. doi:10.1186/s12987-015-0017-7
6. Vinten-Johansen J (2013) Adenosine-lidocaine-magnesium non-depolarizing cardioplegia: moving forward from bench to bedside. Int J Cardiol 166 (2):537-538. doi:10.1016/j.ijcard.2012.09.193
7. Owen CM, Asopa S, Smart NA, King N (2020) Microplegia in cardiac surgery: Systematic review and meta-analysis. J Card Surg 35 (10):2737-2746. doi:10.1111/jocs.14895
8. Francica A, Vaccarin A, Dobson GP, Rossetti C, Gardellini J, Faggian G, Onorati F (2021) Short-term outcome of adenosine-lidocaine-magnesium polarizing cardioplegia in humans. Eur J Cardiothorac Surg. doi:10.1093/ejcts/ezab466
9. Granfeldt A, Letson HL, Dobson GP, Shi W, Vinten-Johansen J, Tonnesen E (2014) Adenosine, lidocaine and Mg2+ improves cardiac and pulmonary function, induces reversible hypotension and exerts anti-inflammatory effects in an endotoxemic porcine model. Crit Care 18 (6):682. doi:10.1186/s13054-014-0682-y
10. Griffin MJ, Letson HL, Dobson GP (2014) Adenosine, lidocaine and Mg2+ (ALM) induces a reversible hypotensive state, reduces lung edema and prevents coagulopathy in the rat model of polymicrobial sepsis. J Trauma Acute Care Surg 77 (3):471-478. doi:10.1097/TA.0000000000000361
11. Conner J, Lammers D, Holtestaul T, Jones I, Kuckelman J, Letson H, Dobson G, Eckert M, Bingham J (2021) Combatting ischemia reperfusion injury from resuscitative endovascular balloon occlusion of the aorta using adenosine, lidocaine and magnesium: A pilot study. J Trauma Acute Care Surg 91 (6):995-1001. doi:10.1097/TA.0000000000003388
12. Letson HL, Dobson GP (2018) Adenosine, lidocaine, and Mg2+ (ALM) resuscitation fluid protects against experimental traumatic brain injury. J Trauma Acute Care Surg 84 (6):908-916. doi:10.1097/TA.0000000000001874
13. Mathew JP, Mackensen GB, Phillips-Bute B, Grocott HP, Glower DD, Laskowitz DT, Blumenthal JA, Newman MF; Neurologic Outcome Research Group (NORG) of the Duke Heart Center. Randomized, double-blinded, placebo controlled study of neuroprotection with lidocaine in cardiac surgery. Stroke. 2009 Mar;40(3):880-7.
14. Bartels K, McDonagh DL, Newman MF, Mathew JP. Neurocognitive outcomes after cardiac surgery. Curr Opin Anaesthesiol. 2013 Feb;26(1):91-7.
15. Gubskiy IL, Namestnikova DD, Cherkashova EA, Chekhonin VP, Baklaushev VP, Gubsky LV, Yarygin KN (2018) MRI Guiding of the Middle Cerebral Artery Occlusion in Rats Aimed to Improve Stroke Modeling. Transl Stroke Res 9 (4):417-425. doi:10.1007/s12975-017-0590-y
16. Xu L, Ding L, Su Y, Shao R, Liu J, Huang Y (2019) Neuroprotective effects of curcumin against rats with focal cerebral ischemia-reperfusion injury. Int J Mol Med 43 (4):1879-1887. doi:10.3892/ijmm.2019.4094
17. Valentim AM, Guedes SR, Pereira AM, Antunes LM (2016) Euthanasia using gaseous agents in laboratory rodents. Lab Anim 50 (4):241-253. doi:10.1177/0023677215618618
18. Shahjouei S, Cai PY, Ansari S, Sharififar S, Azari H, Ganji S, Zand R (2016) Middle Cerebral Artery Occlusion Model of Stroke in Rodents: A Step-by-Step Approach. J Vasc Interv Neurol 8 (5):1-8
19. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9 (7):671-675
20. Toung TJ, Hurn PD, Traystman RJ, Bhardwaj A. Global brain water increases after experimental focal cerebral ischemia: effect of hypertonic saline. Crit Care Med 2002;30:644-9.
21. Yoo SY, Yoo JY, Kim HB, Baik TK, Lee JH, Woo RS (2019) Neuregulin-1 Protects Neuronal Cells Against Damage due to CoCl2-Induced Hypoxia by Suppressing Hypoxia-Inducible Factor-1alpha and P53 in SH-SY5Y Cells. Int Neurourol J 23 (Suppl 2):S111-118. doi:10.5213/inj.1938190.095
22. Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20 (10):795-820. doi:10.1016/S1474-4422(21)00252-0
23. Herpich F, Rincon F (2020) Management of Acute Ischemic Stroke. Crit Care Med 48 (11):1654-1663. doi:10.1097/CCM.0000000000004597
24. Vitt JR, Trillanes M, Hemphill JC, 3rd (2019) Management of Blood Pressure During and After Recanalization Therapy for Acute Ischemic Stroke. Front Neurol 10:138. doi:10.3389/fneur.2019.00138
25. Kuczynski AM, Marzoughi S, Al Sultan AS, Colbourne F, Menon BK, van Es A, Berez AL, Goyal M, Demchuk AM, Almekhlafi MA (2020) Therapeutic Hypothermia in Acute Ischemic Stroke-a Systematic Review and Meta-Analysis. Curr Neurol Neurosci Rep 20 (5):13. doi:10.1007/s11910-020-01029-3
26. Kuczynski AM, Ospel JM, Demchuk AM, Goyal M, Mitha AP, Almekhlafi MA (2020) Therapeutic Hypothermia in Patients with Malignant Ischemic Stroke and Hemicraniectomy-A Systematic Review and Meta-analysis. World Neurosurg 141:e677-e685. doi:10.1016/j.wneu.2020.05.277
27. Ma J, Ma Y, Shuaib A, Winship IR (2020) Improved collateral flow and reduced damage after remote ischemic perconditioning during distal middle cerebral artery occlusion in aged rats. Sci Rep 10 (1):12392. doi:10.1038/s41598-020-69122-8
28. Yao Y, Zhang Y, Liao X, Yang R, Lei Y, Luo J (2020) Potential Therapies for Cerebral Edema After Ischemic Stroke: A Mini Review. Front Aging Neurosci 12:618819. doi:10.3389/fnagi.2020.618819
29. Howell JA, Bidwell GL, 3rd (2020) Targeting the NF-kappaB pathway for therapy of ischemic stroke. Ther Deliv 11 (2):113-123. doi:10.4155/tde-2019-0075
30. Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97. doi:10.1186/1479-5876-7-97
31. Francica A, Tonelli F, Rossetti C, Tropea I, Luciani GB, Faggian G, Dobson GP, Onorati F (2021) Cardioplegia between Evolution and Revolution: From Depolarized to Polarized Cardiac Arrest in Adult Cardiac Surgery. J Clin Med 10 (19). doi:10.3390/jcm10194485
32. Caltana L, Merelli A, Lazarowski A, Brusco A (2009) Neuronal and glial alterations due to focal cortical hypoxia induced by direct cobalt chloride (CoCl2) brain injection. Neurotox Res 15 (4):348-358. doi:10.1007/s12640-009-9038-9
33. Jones SM, Novak AE, Elliott JP (2013) The role of HIF in cobalt-induced ischemic tolerance. Neuroscience 252:420-430. doi:10.1016/j.neuroscience.2013.07.060
34. Tripathi VK, Subramaniyan SA, Hwang I (2019) Molecular and Cellular Response of Co-cultured Cells toward Cobalt Chloride (CoCl2)-Induced Hypoxia. ACS Omega 4 (25):20882-20893. doi:10.1021/acsomega.9b01474
35. Lopez MS, Vemuganti R (2018) Modeling Transient Focal Ischemic Stroke in Rodents by Intraluminal Filament Method of Middle Cerebral Artery Occlusion. Methods Mol Biol 1717:101-113. doi:10.1007/978-1-4939-7526-6_9
36. Larpthaveesarp A, Gonzalez FF (2017) Transient Middle Cerebral Artery Occlusion Model of Neonatal Stroke in P10 Rats. J Vis Exp (122). doi:10.3791/54830
37. Liu F, McCullough LD (2014) The middle cerebral artery occlusion model of transient focal cerebral ischemia. Methods Mol Biol 1135:81-93. doi:10.1007/978-1-4939-0320-7_7
38. Komatsu T, Ohta H, Motegi H, Hata J, Terawaki K, Koizumi M, Muta K, Okano HJ, Iguchi Y (2021) A novel model of ischemia in rats with middle cerebral artery occlusion using a microcatheter and zirconia ball under fluoroscopy. Sci Rep 11 (1):12806. doi:10.1038/s41598-021-92321-w
39. Liu F, McCullough LD (2011) Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J Biomed Biotechnol 2011:464701. doi:10.1155/2011/464701
40. Selvamani A, Sohrabji F (2010) The neurotoxic effects of estrogen on ischemic stroke in older female rats is associated with age-dependent loss of insulin-like growth factor-1. J Neurosci 30 (20):6852-6861. doi:10.1523/JNEUROSCI.0761-10.2010
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83329-
dc.description.abstract心臟保護液在心臟手術中是常見的藥物。其中Adenosine, lidocaine以及鎂離子(ALM)是非去極化心臟保護液體的其中一種配方。目前雖然知道ALM對心臟有保護的作用、但這樣的配方是否在神經系統也有保護作用則還沒有定論。因此這一研究探討低劑量的ALM是否能在神經系統缺血的時候達到神經保護的效果。我們使用細胞模式以及動物模式來驗證。在細胞模式中我們使用氯化鈷(CoCl2)來製造缺氧的環境,並以SH-SY5Y 細胞株來建立低糖低氧的模式。我們用不同濃度的ALM溶液 (1.0 mM adenosine, 2.0 mM lidocaine, and5 mM MgSO4)測試,並發現在. 2.5%, ALM 這個濃度下細胞因為缺氧而死亡的情形有顯著的改善。這個保護效果即使在缺氧持續1小時候才開始給予ALM也仍有保護的效果。在動物實驗上我們使用暫時性的腦缺血模式(transient middle cerebral artery occlusion),來探討ALM保護液在生物體上的反應。我們用大鼠建立缺血性中風的模型,並隨機分派大鼠到實驗組 (ALM)和控制組(生理食鹽水),並在腦部灌流停止的狀態下給予藥物。實驗結果顯示腦部缺血壞死的區域在實驗組(ALM)組有明顯的下降(5.0% ± 2.0% vs. 23.5% ± 5.5%, p=0.013)。神經學檢查也顯示和控制組相比實驗組的臨床表現較嚴重 (modified Longa score: 0 [0-1] vs.2 [1-2], p=0.047)。這些保護的效果也反映在血清中的神經細胞損傷標記,實驗組的濃度較低。這些結果提供ALM在缺血性中風的治療上可能有治療的潛力。zh_TW
dc.description.abstractAdenosine, lidocaine, and magnesium (ALM) are cardioplegic solutions, which arrested heart contraction in high concentration. Whether low-dose ALM infusion was beneficial to ischemic brain has not been thoroughly investigated. In our study, we examined this issue in cell and animal models. We used cobalt chloride (CoCl2)-treated SH-SY5Y cells to mimic oxygen-glucose deprivation conditions in our cell model. SH-SY5Y cells were incubated with different dilutions of ALM authentic solution (1.0 mM adenosine, 2.0 mM lidocaine, and5 mM MgSO4 in Earle's balanced salt solution). ALM significantly reduced CoCl2-induced cell loss at a concentration of 2.5%. This protective effect persisted even when ALM was administered 1 h after the insult. As for animal model, we chose middle cerebral artery occlusion (MCAO) to mimic ischemic stroke status. We randomly assigned the rats into two groups—the experimental (ALM) and control (saline) groups—and infusion was administered during the ischemia: one hour in transient model and 6 hours in permanent model. In transient MCAO model, the infarction area was significantly reduced in the ALM group compared with the control group (5.0% ± 2.0% vs. 23.5%±5.5%, p=0.013). Neurological deficits were reduced in the ALM group compared with the control group (modified Longa score: 0 [0-1] vs.2 [1-2], p=0.047). This neuroprotective effect was substantiated by a reduction in the levels of various neuronal injury markers in plasma. In permanent MCAO model, ALM group had longer survival (hazard ratio was 9.95; 95% confidence interval: 1.61 to 61.9), but the infarction size was not reduced when compared to control group. The survival benefits might come from less brain edema. These results demonstrate the neuroprotective effects of ALM and may provide a new therapeutic strategy for ischemic stroke.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-14T17:02:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-03-14T17:02:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement  i
中文摘要      ii
Abstract      iv
Chapter 1. Introduction      2
Chapter 2. Material and Methods  6
Chapter 3. Results         15
Chapter 4. Discussion       21
Reference              25
Figure 1 Middle cerebral artery occlusion model   32
Figure 2 Modified Longa score             34
Figure 3. Effects of cobalt chloride (CoCl2) on survival of SH-SY5Y cells  35
Figure 4. HIF1α protein expression in cobalt chloride-treated SH-SY5Y cells 37
Figure 5. Cytotoxic profiles of ALM    38
Figure 6. Effect of ALM-pretreatment on cell viability  40
Figure 7 Effect of ALM post-treatment on cell viability 42
Figure 8 MRI image of brain after permanent middle cerebral artery occlusion 43
Figure 9 Effect of ALM on transient middle cerebral artery occlusion (MCAO) 45
Figure 10 Effect of ALM on permanent middle cerebral artery occlusion (MCAO) 46
-
dc.language.isoen-
dc.subject缺血性腦中風模式zh_TW
dc.subject中風zh_TW
dc.subject鎂離子zh_TW
dc.subject腺苷zh_TW
dc.subject利多卡因zh_TW
dc.subject氧化鈷zh_TW
dc.subjectstrokeen
dc.subjectadenosineen
dc.subjectlidocaineen
dc.subjectmagnesiumen
dc.subjectcobalt chlorideen
dc.subjectmiddle cerebral artery occlusionen
dc.title心臟保護液在缺血性中風模式中的神經保護作用zh_TW
dc.titleNeuroprotective effects of a cardioplegic combination (adenosine, lidocaine, and magnesium) in an ischemic stroke modelen
dc.title.alternativeNeuroprotective effects of a cardioplegic combination (adenosine, lidocaine, and magnesium) in an ischemic stroke model-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee甘祐瑜;江皓郁;趙啟超;曾拓榮;呂俊宏;鄭雅蓉zh_TW
dc.contributor.oralexamcommitteeHung-Wei Kan;Hou-Yu Chiang ;Chi-Chao Chao;To-Jung Tseng;June-Horng Lue;Ya-Jung Chengen
dc.subject.keyword腺苷,利多卡因,鎂離子,氧化鈷,缺血性腦中風模式,中風,zh_TW
dc.subject.keywordadenosine,lidocaine,magnesium,cobalt chloride,middle cerebral artery occlusion,stroke,en
dc.relation.page47-
dc.identifier.doi10.6342/NTU202210057-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-11-18-
dc.contributor.author-college醫學院-
dc.contributor.author-dept解剖學暨細胞生物學研究所-
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf3.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved