Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83311
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝松蒼zh_TW
dc.contributor.advisorSung-Tsang Hsiehen
dc.contributor.author程郁文zh_TW
dc.contributor.authorYu-Wen Chengen
dc.date.accessioned2023-03-08T17:03:42Z-
dc.date.available2023-11-09-
dc.date.copyright2023-03-03-
dc.date.issued2022-
dc.date.submitted2023-01-11-
dc.identifier.citationAkoudad, S., Wolters, F. J., Viswanathan, A., de Bruijn, R. F., van der Lugt, A., Hofman, A., Koudstaal, P. J., Ikram, M. A., & Vernooij, M. W. (2016). Association of Cerebral Microbleeds With Cognitive Decline and Dementia. JAMA Neurol, 73(8), 934-943. https://doi.org/10.1001/jamaneurol.2016.1017
Atherton, D. D., Facer, P., Roberts, K. M., Misra, V. P., Chizh, B. A., Bountra, C., & Anand, P. (2007). Use of the novel contact heat evoked potential stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol, 7. https://doi.org/10.1186/1471-2377-7-21
Axelsson, M., Malmestrom, C., Nilsson, S., Haghighi, S., Rosengren, L., & Lycke, J. (2011). Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J Neurol, 258(5), 882-888. https://doi.org/10.1007/s00415-010-5863-2
Baudrimont, M., Dubas, F., Joutel, A., Tournier-Lasserve, E., & Bousser, M. G. (1993). Autosomal dominant leukoencephalopathy and subcortical ischemic stroke. A clinicopathological study. Stroke, 24(1), 122-125.
Belin de Chantemele, E. J., Retailleau, K., Pinaud, F., Vessieres, E., Bocquet, A., Guihot, A. L., Lemaire, B., Domenga, V., Baufreton, C., Loufrani, L., Joutel, A., & Henrion, D. (2008). Notch3 is a major regulator of vascular tone in cerebral and tail resistance arteries. Arterioscler Thromb Vasc Biol, 28(12), 2216-2224. https://doi.org/10.1161/ATVBAHA.108.171751
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false discovery rate in behavior genetics research. Behav Brain Res, 125(1-2), 279-284. https://doi.org/10.1016/s0166-4328(01)00297-2
Buffon, F., Porcher, R., Hernandez, K., Kurtz, A., Pointeau, S., Vahedi, K., Bousser, M. G., & Chabriat, H. (2006). Cognitive profile in CADASIL. J Neurol Neurosurg Psychiatry, 77(2), 175-180. https://doi.org/10.1136/jnnp.2005.068726
Cannistraro, R. J., Badi, M., Eidelman, B. H., Dickson, D. W., Middlebrooks, E. H., & Meschia, J. F. (2019). CNS small vessel disease: A clinical review. Neurology, 92(24), 1146-1156. https://doi.org/10.1212/WNL.0000000000007654
Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E., & Bousser, M.-G. (2009). CADASIL. The Lancet Neurology, 8(7), 643-653. https://doi.org/https://doi.org/10.1016/S1474-4422(09)70127-9
Chan, A. C., & Wilder-Smith, E. P. (2016). Small fiber neuropathy: Getting bigger! Muscle Nerve, 53(5), 671-682. https://doi.org/10.1002/mus.25082
Chao, C. C., Tseng, M. T., Lin, Y. J., Yang, W. S., Hsieh, S. C., Lin, Y. H., Chiu, M. J., Chang, Y. C., & Hsieh, S. T. (2010). Pathophysiology of neuropathic pain in type 2 diabetes: skin denervation and contact heat-evoked potentials. Diabetes Care, 33(12), 2654-2659. https://doi.org/10.2337/dc10-1135
Chen, C. H., Cheng, Y. W., Chen, Y. F., Tang, S. C., & Jeng, J. S. (2020). Plasma neurofilament light chain and glial fibrillary acidic protein predict stroke in CADASIL. J Neuroinflammation, 17(1), 124. https://doi.org/10.1186/s12974-020-01813-5
Chen, S., Ni, W., Yin, X. Z., Liu, H. Q., Lu, C., Zheng, Q. J., Zhao, G. X., Xu, Y. F., Wu, L., Zhang, L., Wang, N., Li, H. F., & Wu, Z. Y. (2017). Clinical features and mutation spectrum in Chinese patients with CADASIL: A multicenter retrospective study. CNS Neurosci Ther, 23(9), 707-716. https://doi.org/10.1111/cns.12719
Chen, X., Wang, J., Shan, Y., Cai, W., Liu, S., Hu, M., Liao, S., Huang, X., Zhang, B., Wang, Y., & Lu, Z. (2019). Cerebral small vessel disease: neuroimaging markers and clinical implication. J Neurol, 266(10), 2347-2362. https://doi.org/10.1007/s00415-018-9077-3
Chien, H. F., Tseng, T. J., Lin, W. M., Yang, C. C., Chang, Y. C., Chen, R. C., & Hsieh, S. T. (2001). Quantitative pathology of cutaneous nerve terminal degeneration in the human skin. Acta Neuropathol, 102(5), 455-461. https://doi.org/10.1007/s004010100397
Chien, Y. L., Chao, C. C., Wu, S. W., Hsueh, H. W., Chiu, Y. N., Tsai, W. C., Gau, S. S., & Hsieh, S. T. (2020). Small fiber pathology in autism and clinical implications. Neurology. https://doi.org/10.1212/WNL.0000000000010932
Cho, B. P. H., Nannoni, S., Harshfield, E. L., Tozer, D., Graf, S., Bell, S., & Markus, H. S. (2021). NOTCH3 variants are more common than expected in the general population and associated with stroke and vascular dementia: an analysis of 200 000 participants. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2020-325838
Cognat, E., Baron-Menguy, C., Domenga-Denier, V., Cleophax, S., Fouillade, C., Monet-Lepretre, M., Dewerchin, M., & Joutel, A. (2014). Archetypal Arg169Cys mutation in NOTCH3 does not drive the pathogenesis in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy via a loss-of-function mechanism. Stroke, 45(3), 842-849. https://doi.org/10.1161/STROKEAHA.113.003339
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968-980. https://doi.org/10.1016/j.neuroimage.2006.01.021
Di Donato, I., Bianchi, S., De Stefano, N., Dichgans, M., Dotti, M. T., Duering, M., Jouvent, E., Korczyn, A. D., Lesnik-Oberstein, S. A. J., Malandrini, A., Markus, H. S., Pantoni, L., Penco, S., Rufa, A., Sinanović, O., Stojanov, D., & Federico, A. (2017). Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects [journal article]. BMC Med, 15(1), 41. https://doi.org/10.1186/s12916-017-0778-8
Dichgans, M. (2009). Cognition in CADASIL. Stroke, 40(3 Suppl), S45-47. https://doi.org/10.1161/STROKEAHA.108.534412
Domenga, V., Fardoux, P., Lacombe, P., Monet, M., Maciazek, J., Krebs, L. T., Klonjkowski, B., Berrou, E., Mericskay, M., Li, Z., Tournier-Lasserve, E., Gridley, T., & Joutel, A. (2004). Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev, 18(22), 2730-2735. https://doi.org/10.1101/gad.308904
Duering, M., Karpinska, A., Rosner, S., Hopfner, F., Zechmeister, M., Peters, N., Kremmer, E., Haffner, C., Giese, A., Dichgans, M., & Opherk, C. (2011). Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet, 20(16), 3256-3265. https://doi.org/10.1093/hmg/ddr237
Elahi, F. M., Casaletto, K. B., La Joie, R., Walters, S. M., Harvey, D., Wolf, A., Edwards, L., Rivera-Contreras, W., Karydas, A., Cobigo, Y., Rosen, H. J., DeCarli, C., Miller, B. L., Rabinovici, G. D., & Kramer, J. H. (2020). Plasma biomarkers of astrocytic and neuronal dysfunction in early- and late-onset Alzheimer's disease. Alzheimers Dement, 16(4), 681-695. https://doi.org/10.1016/j.jalz.2019.09.004
European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. (2010). J Peripher Nerv Syst, 15(2), 79-92. https://doi.org/10.1111/j.1529-8027.2010.00269.x
Gaetani, L., Blennow, K., Calabresi, P., Di Filippo, M., Parnetti, L., & Zetterberg, H. (2019). Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry, 90(8), 870-881. https://doi.org/10.1136/jnnp-2018-320106
Gravesteijn, G., Hack, R. J., Mulder, A. A., Cerfontaine, M. N., van Doorn, R., Hegeman, I. M., Jost, C. R., Rutten, J. W., & Lesnik Oberstein, S. A. J. (2021). NOTCH3 variant position is associated with NOTCH3 aggregation load in CADASIL vasculature. Neuropathol Appl Neurobiol. https://doi.org/10.1111/nan.12751
Gravesteijn, G., Rutten, J. W., Verberk, I. M. W., Bohringer, S., Liem, M. K., van der Grond, J., Aartsma-Rus, A., Teunissen, C. E., & Lesnik Oberstein, S. A. J. (2019). Serum Neurofilament light correlates with CADASIL disease severity and survival. Ann Clin Transl Neurol, 6(1), 46-56. https://doi.org/10.1002/acn3.678
Gregoire, S. M., Chaudhary, U. J., Brown, M. M., Yousry, T. A., Kallis, C., Jager, H. R., & Werring, D. J. (2009). The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology, 73(21), 1759-1766. https://doi.org/10.1212/WNL.0b013e3181c34a7d
Haritunians, T., Chow, T., De Lange, R. P., Nichols, J. T., Ghavimi, D., Dorrani, N., St Clair, D. M., Weinmaster, G., & Schanen, C. (2005). Functional analysis of a recurrent missense mutation in Notch3 in CADASIL. J Neurol Neurosurg Psychiatry, 76(9), 1242-1248. https://doi.org/10.1136/jnnp.2004.051854
Hayashi, T., Nukui, T., Piao, J. L., Sugimoto, T., Anada, R., Matsuda, N., Yamamoto, M., Konishi, H., Dougu, N., & Nakatsuji, Y. (2021). Serum neurofilament light chain in chronic inflammatory demyelinating polyneuropathy. Brain Behav, 11(5), e02084. https://doi.org/10.1002/brb3.2084
Hilal, S., Mok, V., Youn, Y. C., Wong, A., Ikram, M. K., & Chen, C. L. (2017). Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J Neurol Neurosurg Psychiatry, 88(8), 669-674. https://doi.org/10.1136/jnnp-2016-315324
Hol, E. M., & Pekny, M. (2015). Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol, 32, 121-130. https://doi.org/10.1016/j.ceb.2015.02.004
Hsieh, S.-T., Chiang, H.-Y., & Lin, W.-M. (2000). Pathology of Nerve Terminal Degeneration in the Skin. Journal of Neuropathology & Experimental Neurology, 59(4), 297-307. https://doi.org/10.1093/jnen/59.4.297
Joutel, A. (2015). The NOTCH3ECDcascade hypothesis of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy disease. Neurology and Clinical Neuroscience, 3(1), 1-6. https://doi.org/10.1111/ncn3.135
Joutel, A., Andreux, F., Gaulis, S., Domenga, V., Cecillon, M., Battail, N., Piga, N., Chapon, F., Godfrain, C., & Tournier-Lasserve, E. (2000). The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest, 105(5), 597-605. https://doi.org/10.1172/jci8047
Joutel, A., Corpechot, C., Ducros, A., Vahedi, K., Chabriat, H., Mouton, P., Alamowitch, S., Domenga, V., Cecillion, M., Marechal, E., Maciazek, J., Vayssiere, C., Cruaud, C., Cabanis, E. A., Ruchoux, M. M., Weissenbach, J., Bach, J. F., Bousser, M. G., & Tournier-Lasserve, E. (1996). Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature, 383(6602), 707-710. https://doi.org/10.1038/383707a0
Joutel, A., Favrole, P., Labauge, P., Chabriat, H., Lescoat, C., Andreux, F., Domenga, V., Cecillon, M., Vahedi, K., Ducros, A., Cave-Riant, F., Bousser, M. G., & Tournier-Lasserve, E. (2001). Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet, 358(9298), 2049-2051. https://doi.org/10.1016/s0140-6736(01)07142-2
Joutel, A., Monet, M., Domenga, V., Riant, F., & Tournier-Lasserve, E. (2004). Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling Pathway. Am J Hum Genet, 74(2), 338-347. https://doi.org/10.1086/381506
Joutel, A., Vahedi, K., Corpechot, C., Troesch, A., Chabriat, H., Vayssière, C., Cruaud, C., Maciazek, J., Weissenbach, J., Bousser, M.-G., Bach, J.-F., & Tournier-Lasserve, E. (1997). Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. The Lancet, 350(9090), 1511-1515. https://doi.org/https://doi.org/10.1016/S0140-6736(97)08083-5
Kamran, S., Khan, A., Salam, A., Akhtar, N., Petropoulos, I., Ponirakis, G., Babu, B., George, P., Shuaib, A., & Malik, R. A. (2020). Cornea: A Window to White Matter Changes in Stroke; Corneal Confocal Microscopy a Surrogate Marker for the Presence and Severity of White Matter Hyperintensities in Ischemic Stroke. J Stroke Cerebrovasc Dis, 29(3), 104543. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104543
Kang, S. Y., Oh, J. H., Kang, J. H., Choi, J. C., & Lee, J. S. (2009). Nerve conduction studies in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Neurol, 256(10), 1724-1727. https://doi.org/10.1007/s00415-009-5191-6
Katsanos, A. H., Makris, K., Stefani, D., Koniari, K., Gialouri, E., Lelekis, M., Chondrogianni, M., Zompola, C., Dardiotis, E., Rizos, I., Parissis, J., Boutati, E., Voumvourakis, K., & Tsivgoulis, G. (2017). Plasma Glial Fibrillary Acidic Protein in the Differential Diagnosis of Intracerebral Hemorrhage. Stroke, 48(9), 2586-2588. https://doi.org/10.1161/STROKEAHA.117.018409
Khan, A., Akhtar, N., Kamran, S., Almuhannadi, H., Ponirakis, G., Petropoulos, I. N., Babu, B., Jose, N. R., Ibrahim, R. G., Gad, H., Bourke, P., Saqqur, M., Shuaib, A., & Malik, R. A. (2020). Corneal confocal microscopy identifies greater corneal nerve damage in patients with a recurrent compared to first ischemic stroke. PLoS One, 15(4), e0231987. https://doi.org/10.1371/journal.pone.0231987
Khan, U., Porteous, L., Hassan, A., & Markus, H. S. (2007). Risk factor profile of cerebral small vessel disease and its subtypes. J Neurol Neurosurg Psychiatry, 78(7), 702-706. https://doi.org/10.1136/jnnp.2006.103549
Kopan, R., & Ilagan, M. X. (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 137(2), 216-233. https://doi.org/10.1016/j.cell.2009.03.045
Lee, Y.-C., Chung, C.-P., Chang, M.-H., Wang, S.-J., & Liao, Y.-C. (2020). <em>NOTCH3</em> cysteine-altering variant is an important risk factor for stroke in the Taiwanese population. Neurology, 94(1), e87-e96. https://doi.org/10.1212/wnl.0000000000008700
Lee, Y. C., Chung, C. P., Chang, M. H., Wang, S. J., & Liao, Y. C. (2019). NOTCH3 cysteine-altering variant is an important risk factor for stroke in the Taiwanese population. Neurology. https://doi.org/10.1212/wnl.0000000000008700
Liao, Y. C., Hsiao, C. T., Fuh, J. L., Chern, C. M., Lee, W. J., Guo, Y. C., Wang, S. J., Lee, I. H., Liu, Y. T., Wang, Y. F., Chang, F. C., Chang, M. H., Soong, B. W., & Lee, Y. C. (2015). Characterization of CADASIL among the Han Chinese in Taiwan: Distinct Genotypic and Phenotypic Profiles. PLoS One, 10(8), e0136501. https://doi.org/10.1371/journal.pone.0136501
Liem, M. K., van der Grond, J., Haan, J., van den Boom, R., Ferrari, M. D., Knaap, Y. M., Breuning, M. H., van Buchem, M. A., Middelkoop, H. A., & Lesnik Oberstein, S. A. (2007). Lacunar infarcts are the main correlate with cognitive dysfunction in CADASIL. Stroke, 38(3), 923-928. https://doi.org/10.1161/01.STR.0000257968.24015.bf
Locatelli, M., Padovani, A., & Pezzini, A. (2020). Pathophysiological Mechanisms and Potential Therapeutic Targets in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL). Front Pharmacol, 11, 321. https://doi.org/10.3389/fphar.2020.00321
Manini, A., & Pantoni, L. (2021). CADASIL from Bench to Bedside: Disease Models and Novel Therapeutic Approaches. Mol Neurobiol, 58(6), 2558-2573. https://doi.org/10.1007/s12035-021-02282-4
Marini, S., Anderson, C. D., & Rosand, J. (2020). Genetics of Cerebral Small Vessel Disease. Stroke, 51(1), 12-20. https://doi.org/10.1161/STROKEAHA.119.024151
Mariotto, S., Farinazzo, A., Magliozzi, R., Alberti, D., Monaco, S., & Ferrari, S. (2018). Serum and cerebrospinal neurofilament light chain levels in patients with acquired peripheral neuropathies. J Peripher Nerv Syst, 23(3), 174-177. https://doi.org/10.1111/jns.12279
Monet-Lepretre, M., Bardot, B., Lemaire, B., Domenga, V., Godin, O., Dichgans, M., Tournier-Lasserve, E., Cohen-Tannoudji, M., Chabriat, H., & Joutel, A. (2009). Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain, 132(Pt 6), 1601-1612. https://doi.org/10.1093/brain/awp049
Monet-Lepretre, M., Haddad, I., Baron-Menguy, C., Fouillot-Panchal, M., Riani, M., Domenga-Denier, V., Dussaule, C., Cognat, E., Vinh, J., & Joutel, A. (2013). Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain, 136(Pt 6), 1830-1845. https://doi.org/10.1093/brain/awt092
Muller, K., Courtois, G., Ursini, M. V., & Schwaninger, M. (2017). New Insight Into the Pathogenesis of Cerebral Small-Vessel Diseases. Stroke, 48(2), 520-527. https://doi.org/10.1161/strokeaha.116.012888
Nannucci, S., Rinnoci, V., Pracucci, G., MacKinnon, A. D., Pescini, F., Adib-Samii, P., Bianchi, S., Dotti, M. T., Federico, A., Inzitari, D., Markus, H. S., & Pantoni, L. (2018). Location, number and factors associated with cerebral microbleeds in an Italian-British cohort of CADASIL patients. PLoS One, 13(1), e0190878. https://doi.org/10.1371/journal.pone.0190878
Nolano, M., Provitera, V., Donadio, V., Caporaso, G., Stancanelli, A., Califano, F., Pianese, L., Liguori, R., Santoro, L., & Ragno, M. (2016). Cutaneous sensory and autonomic denervation in CADASIL. Neurology, 86(11), 1039-1044. https://doi.org/10.1212/wnl.0000000000002468
O'Brien, J. T., Erkinjuntti, T., Reisberg, B., Roman, G., Sawada, T., Pantoni, L., Bowler, J. V., Ballard, C., DeCarli, C., Gorelick, P. B., Rockwood, K., Burns, A., Gauthier, S., & DeKosky, S. T. (2003). Vascular cognitive impairment. The Lancet Neurology, 2(2), 89-98. https://doi.org/10.1016/s1474-4422(03)00305-3
O'Sullivan, M., Ngo, E., Viswanathan, A., Jouvent, E., Gschwendtner, A., Saemann, P. G., Duering, M., Pachai, C., Bousser, M. G., Chabriat, H., & Dichgans, M. (2009). Hippocampal volume is an independent predictor of cognitive performance in CADASIL. Neurobiol Aging, 30(6), 890-897. https://doi.org/10.1016/j.neurobiolaging.2007.09.002
Oaklander, A. L., & Nolano, M. (2019). Scientific Advances in and Clinical Approaches to Small-Fiber Polyneuropathy: A Review. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2019.2917
Pantoni, L. (2010). Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol, 9(7), 689-701. https://doi.org/10.1016/s1474-4422(10)70104-6
Parry, G. J., & Brown, M. J. (1982). Selective fiber vulnerability in acute ischemic neuropathy. Ann Neurol, 11(2), 147-154. https://doi.org/https://doi.org/10.1002/ana.410110207
Peters, N., Opherk, C., Danek, A., Ballard, C., Herzog, J., & Dichgans, M. (2005). The pattern of cognitive performance in CADASIL: a monogenic condition leading to subcortical ischemic vascular dementia. Am J Psychiatry, 162(11), 2078-2085. https://doi.org/10.1176/appi.ajp.162.11.2078
Peters, N., Opherk, C., Zacherle, S., Capell, A., Gempel, P., & Dichgans, M. (2004). CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk. Exp Cell Res, 299(2), 454-464. https://doi.org/10.1016/j.yexcr.2004.06.004
Polydefkis, M., Hauer, P., Sheth, S., Sirdofsky, M., Griffin, J. W., & McArthur, J. C. (2004). The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain, 127(Pt 7), 1606-1615. https://doi.org/10.1093/brain/awh175
Román, G. C., Tatemichi, T. K., Erkinjuntti, T., Cummings, J. L., Masdeu, J. C., Garcia, J. H., Amaducci, L., Orgogozo, J. M., Brun, A., Hofman, A., & et al. (1993). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology, 43(2), 250-260. https://doi.org/10.1212/wnl.43.2.250
Rutten, J. W., Dauwerse, H. G., Gravesteijn, G., van Belzen, M. J., van der Grond, J., Polke, J. M., Bernal-Quiros, M., & Lesnik Oberstein, S. A. (2016). Archetypal NOTCH3 mutations frequent in public exome: implications for CADASIL. Ann Clin Transl Neurol, 3(11), 844-853. https://doi.org/10.1002/acn3.344
Rutten, J. W., Van Eijsden, B. J., Duering, M., Jouvent, E., Opherk, C., Pantoni, L., Federico, A., Dichgans, M., Markus, H. S., Chabriat, H., & Lesnik Oberstein, S. A. J. (2019). The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1-6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7-34 pathogenic variant. Genet Med, 21(3), 676-682. https://doi.org/10.1038/s41436-018-0088-3
Sandelius, A., Zetterberg, H., Blennow, K., Adiutori, R., Malaspina, A., Laura, M., Reilly, M. M., & Rossor, A. M. (2018). Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology, 90(6), e518-e524. https://doi.org/10.1212/WNL.0000000000004932
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089
Schneider, J. A., Arvanitakis, Z., Leurgans, S. E., & Bennett, D. A. (2009). The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol, 66(2), 200-208. https://doi.org/10.1002/ana.21706
Schroder, J. M., Zuchner, S., Dichgans, M., Nagy, Z., & Molnar, M. J. (2005). Peripheral nerve and skeletal muscle involvement in CADASIL. Acta Neuropathol, 110(6), 587-599. https://doi.org/10.1007/s00401-005-1082-9
Shahim, P., Gren, M., Liman, V., Andreasson, U., Norgren, N., Tegner, Y., Mattsson, N., Andreasen, N., Ost, M., Zetterberg, H., Nellgard, B., & Blennow, K. (2016). Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci Rep, 6, 36791. https://doi.org/10.1038/srep36791
Shi, Y., Li, S., Li, W., Zhang, C., Guo, L., Pan, Y., Zhou, X., Wang, X., Niu, S., Yu, X., Tang, H., Chen, B., & Zhang, Z. (2018). MRI Lesion Load of Cerebral Small Vessel Disease and Cognitive Impairment in Patients With CADASIL. Front Neurol, 9, 862. https://doi.org/10.3389/fneur.2018.00862
Shun, C. T., Chang, Y. C., Wu, H. P., Hsieh, S. C., Lin, W. M., Lin, Y. H., Tai, T. Y., & Hsieh, S. T. (2004). Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain, 127(Pt 7), 1593-1605. https://doi.org/10.1093/brain/awh180
Sicurelli, F., Dotti, M. T., De Stefano, N., Malandrini, A., Mondelli, M., Bianchi, S., & Federico, A. (2005). Peripheral neuropathy in CADASIL. J Neurol, 252(10), 1206-1209. https://doi.org/10.1007/s00415-005-0837-5
Skrobot, O. A., Black, S. E., Chen, C., DeCarli, C., Erkinjuntti, T., Ford, G. A., Kalaria, R. N., O'Brien, J., Pantoni, L., Pasquier, F., Roman, G. C., Wallin, A., Sachdev, P., Skoog, I., group, V., Ben-Shlomo, Y., Passmore, A. P., Love, S., & Kehoe, P. G. (2018). Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimers Dement, 14(3), 280-292. https://doi.org/10.1016/j.jalz.2017.09.007
Sletten, D. M., Suarez, G. A., Low, P. A., Mandrekar, J., & Singer, W. (2012). COMPASS 31: a refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin Proc, 87(12), 1196-1201. https://doi.org/10.1016/j.mayocp.2012.10.013
Taillia, H., Chabriat, H., Kurtz, A., Verin, M., Levy, C., Vahedi, K., Tournier-Lasserve, E., & Bousser, M. G. (1998). Cognitive alterations in non-demented CADASIL patients. Cerebrovasc Dis, 8(2), 97-101. https://doi.org/10.1159/000015825
Takahashi, K., Adachi, K., Yoshizaki, K., Kunimoto, S., Kalaria, R. N., & Watanabe, A. (2010). Mutations in NOTCH3 cause the formation and retention of aggregates in the endoplasmic reticulum, leading to impaired cell proliferation. Hum Mol Genet, 19(1), 79-89. https://doi.org/10.1093/hmg/ddp468
Tan, R., Traylor, M., Rutten-Jacobs, L., & Markus, H. (2017). New insights into mechanisms of small vessel disease stroke from genetics. Clin Sci (Lond), 131(7), 515-531. https://doi.org/10.1042/cs20160825
Tang, S. C., Chen, Y. R., Chi, N. F., Chen, C. H., Cheng, Y. W., Hsieh, F. I., Hsieh, Y. C., Yeh, H. L., Sung, P. S., Hu, C. J., Chern, C. M., Lin, H. J., Lien, L. M., Peng, G. S., Chiou, H. Y., & Jeng, J. S. (2019). Prevalence and clinical characteristics of stroke patients with p.R544C NOTCH3 mutation in Taiwan. Ann Clin Transl Neurol, 6(1), 121-128. https://doi.org/10.1002/acn3.690
Ticau, S., Sridharan, G. V., Tsour, S., Cantley, W. L., Chan, A., Gilbert, J. A., Erbe, D., Aldinc, E., Reilly, M. M., Adams, D., Polydefkis, M., Fitzgerald, K., Vaishnaw, A., & Nioi, P. (2021). Neurofilament Light Chain as a Biomarker of Hereditary Transthyretin-Mediated Amyloidosis. Neurology, 96(3), e412-e422. https://doi.org/10.1212/WNL.0000000000011090
Tikka, S., Mykkanen, K., Ruchoux, M. M., Bergholm, R., Junna, M., Poyhonen, M., Yki-Jarvinen, H., Joutel, A., Viitanen, M., Baumann, M., & Kalimo, H. (2009). Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain, 132(Pt 4), 933-939. https://doi.org/10.1093/brain/awn364
Üçeyler, N., Zeller, D., Kahn, A. K., Kewenig, S., Kittel-Schneider, S., Schmid, A., Casanova-Molla, J., Reiners, K., & Sommer, C. (2013). Small fibre pathology in patients with fibromyalgia syndrome. Brain, 136(Pt 6), 1857-1867. https://doi.org/10.1093/brain/awt053
van der Flier, W. M., Skoog, I., Schneider, J. A., Pantoni, L., Mok, V., Chen, C. L. H., & Scheltens, P. (2018). Vascular cognitive impairment. Nat Rev Dis Primers, 4, 18003. https://doi.org/10.1038/nrdp.2018.3
Viswanathan, A., Godin, O., Jouvent, E., O'Sullivan, M., Gschwendtner, A., Peters, N., Duering, M., Guichard, J. P., Holtmannspötter, M., Dufouil, C., Pachai, C., Bousser, M. G., Dichgans, M., & Chabriat, H. (2010). Impact of MRI markers in subcortical vascular dementia: a multi-modal analysis in CADASIL. Neurobiol Aging, 31(9), 1629-1636. https://doi.org/10.1016/j.neurobiolaging.2008.09.001
Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R., Lindley, R. I., O'Brien, J. T., Barkhof, F., Benavente, O. R., Black, S. E., Brayne, C., Breteler, M., Chabriat, H., Decarli, C., de Leeuw, F. E., Doubal, F., Duering, M., Fox, N. C., Greenberg, S., Hachinski, V., Kilimann, I., Mok, V., Oostenbrugge, R., Pantoni, L., Speck, O., Stephan, B. C., Teipel, S., Viswanathan, A., Werring, D., Chen, C., Smith, C., van Buchem, M., Norrving, B., Gorelick, P. B., & Dichgans, M. (2013). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol, 12(8), 822-838. https://doi.org/10.1016/s1474-4422(13)70124-8
Young, K. Z., Rojas Ramirez, C., Keep, S. G., Gatti, J. R., Lee, S. J., Zhang, X., Ivanova, M. I., Ruotolo, B. T., & Wang, M. M. (2022). Oligomerization, trans-reduction, and instability of mutant NOTCH3 in inherited vascular dementia. Commun Biol, 5(1), 331. https://doi.org/10.1038/s42003-022-03259-2
Zellner, A., Scharrer, E., Arzberger, T., Oka, C., Domenga-Denier, V., Joutel, A., Lichtenthaler, S. F., Muller, S. A., Dichgans, M., & Haffner, C. (2018). CADASIL brain vessels show a HTRA1 loss-of-function profile. Acta Neuropathol. https://doi.org/10.1007/s00401-018-1853-8
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83311-
dc.description.abstract血管性認知障礙是造成年長者認知退化的第二大病因,僅次於阿茲海默氏症。在針對血管性認知障礙致病機轉的研究中,單基因遺傳的腦部小血管疾病是探討血管性認知障礙的病因機轉重要的疾病模式。體顯性腦動脈血管病變合併皮質下腦梗塞及腦白質病變(CADASIL)是單基因遺傳的腦部小血管疾病中盛行率最高的疾病,其血管的病變肇因於致病性的NOTCH3基因變異。過去針對CADASIL的研究多半著重在其所造成的腦血管病變與相關臨床表徵;然而,CADASIL特有的血管病理變化在全身的血管組織都可以發現,亦可以藉由皮膚切片觀察到。針對CADASIL是否除了中樞神經之外,也會造成周邊神經的病變,過去的文獻探討十分有限,亦沒有一致的結論。本研究探討CADASIL的病患,其周邊小神經的病理變化,進而推演此周邊小神經的病變與病患認知障礙的關聯性。
本研究共招募37位CADASIL病患(包含14位認知功能正常、與23位患有血管性認知障礙的病患)與59位年齡與之相配對的健康受試者,進行皮膚小神經病變的病理檢測。針對小神經病變,我們利用免疫螢光染色定量表皮內神經纖維密度 (intra-epidermal nerve fiber density)、汗腺與真皮層小動脈的神經密度、以及真皮層小動脈上的NOTCH3蛋白沈積量。針對CADASIL的病患,我們進行認知功能測試、腦部影像學檢查、以及神經退化相關的血漿生物標記檢測,並利用多變數迴歸分析,探討上述中樞神經病變相關的臨床表徵與小神經病變嚴重度之間的關聯性。
CADASIL病患的小神經密度,不論在表皮內神經纖維密度(5.22 ± 2.42 vs. 7.88 ± 2.89 fibers/mm, P=0.0001)、汗腺與的神經密度(P<0.0001)、或是小動脈的神經密度(P<0.0001)都顯著低於健康受試者。在校正了年齡之後,CADASIL病患的表皮內神經纖維密度的下降與認知障礙(以簡易心智量表,Mini-Mental State Examination分數為依據)有顯著的相關性(B=1.062, 95% CI=0.370 ~1.753, P=0.004),且此相關性在校正了糖尿病共病之後依然維持顯著(p=0.043)。此外,表皮內神經纖維密度與病患大腦的平均皮質厚度有關(Pearson’s r = 0.565, P=0.0023),然而與白質病變體積、腔隙性腦梗塞(lacune)數量、大腦微出血(cerebral microbleed)數量等腦部小血管病變的特徵性影像標記無顯著之關聯。在32位致病性變異位點位於NOTCH3第11號外顯子的CADASIL病患(其中大部分帶有台灣較常見的NOTCH3 p.R544C變異)當中,表皮內神經纖維密度的下降亦與小動脈上的NOTCH3蛋白沈積量有顯著相關(B= -0.092, 95% CI= -0.175 ~ -0.009, p= 0.031)。相較於認知功能正常的CADASIL病患,患有血管性認知障礙的病患其血漿中的神經纖維絲輕鏈(neurofilament light chain)顯著較高;而同時具有血管性認知障礙與周邊小神經病變的病患,則其血漿中的膠質纖維酸性蛋白(glial fibrillary acidic protein)顯著較高。
在CADASIL病患中,皮膚的小神經病理變化與認知障礙以及神經退化相關的生物標記相關。本研究顯示致病性變異的NOTCH3蛋白,其於周邊神經系統亦有造成神經退化的證據。
zh_TW
dc.description.abstractVascular cognitive impairment is the second leading cause of dementia in the elder population, just after Alzheimer’s disease. Monogenetic small vessel disease may provide a unique model to study the pathogenesis and possible treatment strategy for vascular cognitive impairment. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common monogenetic small vessel disease caused by pathogenic NOTCH3 mutations, is traditionally considered a disease of the cerebrovascular system although the pathologic hallmark is also demonstrated in skin biopsy. Although circumstantial evidence suggests the coexistence of peripheral neurodegeneration, the effect of NOTCH3 mutations on peripheral nerves and its clinical relevance have been sparely investigated. The present study aimed to investigate the patterns of small fiber pathology and its clinical significance in the context of cognitive impairment for CADASIL patients.
Thirty-seven genetically confirmed CADASIL patients (14 with normal cognition and 23 with cognitive impairment) and 59 age-matched healthy controls were enrolled to evaluate cutaneous small fiber pathology. Small fiber pathology was assessed by quantitative measures of intraepidermal nerve fiber (IENF) density, sweat gland innervation, and vascular innervation. Cognitive performance of CADASIL patients was evaluated by a comprehensive neuropsychological assessment, and its association with small fiber pathology was tested using multivariable linear regression analysis adjusted for age and diabetes mellitus. We further assessed the relationships of IENF density with cutaneous vascular NOTCH3 ectodomain (NOTCH3ECD) deposition and biomarkers of neurodegeneration including structural brain MRI measures, plasma neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), tau, and ubiquitin carboxy-terminal hydrolase L1 (UCHL1).
CADASIL patients showed reduced IENF density (5.22 ± 2.42 vs. 7.88 ± 2.89 fibers/mm, P=0.0001), as well as reduced sweat gland (P<0.0001) and vascular (P<0.0001) innervations compared to age-matched controls. Reduced IENF density was associated with impaired global cognition measured by Mini-Mental State Examination (B=1.062, 95% CI=0.370 ~1.753, P=0.004), and this association remained after adjustment for age and diabetes mellitus (p=0.043). In addition, IENF density in CADASIL patients was associated with mean cortical thickness (Pearson’s r = 0.565, P=0.0023) but not white matter hyperintensity volume, total lacune count, or total microbleed count. Reduced IENF density was associated with cutaneous vascular NOTCH3ECD deposition amount among patients harboring pathogenic variants in exon 11 (mainly p.R544C) (B= -0.092, 95% CI= -0.175 ~ -0.009, p= 0.031). Compared to those with normal cognition, CADASIL patients with cognitive impairment had an elevated plasma NfL level regardless of concurrent small fiber denervation, while only patients with both cognitive impairment and small fiber denervation showed an elevated plasma GFAP level. Cutaneous small fiber pathology correlates cognitive impairment and CNS neurodegeneration in CADASIL patients, indicating a peripheral neurodegenerative process related to NOTCH3ECD aggregation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-03-08T17:03:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-03-08T17:03:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Table of Contents vii
List of Figures ix
List of Tables x
Chapter 1. Introduction 1
1.1 Cerebral small vessel disease is an important pathology in vascular cognitive impairment 1
1.2 Monogenetic small vessel disease as a disease model for vascular cognitive impairment 3
1.3 Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) 4
1.4 Pathogenic NOTCH3 variant and proposed mechanism underlying vasculopathy 5
1.5 Cognitive impairment in CADASIL 7
1.6 Peripheral nervous system involvement in CADASIL 8
1.7 CADASIL in Taiwan 10
1.8 Hypothesis and study objectives 10
Chapter 2. Material and Methods 12
2.1 Study participants 12
2.2 Neuropsychological evaluation 13
2.3 Skin biopsy and quantification of small fiber pathology 14
2.4 Quantification of vascular NOTCH3ECD deposition 16
2.5 Peripheral neurophysiologic evaluation 17
2.6 Brain MRI acquisition and quantification 17
2.7 Plasma biomarker measurements for neurodegeneration 18
2.8 Statistical analysis 18
Chapter 3. Results 20
3.1 Clinical characteristics of enrolled subjects 20
3.2 Cutaneous small fiber denervation in CADASIL 20
3.3 Small fiber pathology correlates with vascular NOTCH3ECD deposition 21
3.4 Clinical significance of skin innervation: correlation with cognitive impairment in CADASIL 22
3.5 Clinical significance of skin innervation: associations with neuroimaging characteristics 24
3.6 Small fiber pathology correlates with plasma neurodegeneration biomarkers 25
Chapter 4. Discussion 26
4.1 Small fiber pathology as a peripheral marker for neurodegeneration in CADASIL 26
4.2 Small fiber Pathology and NOTCH3 Vasculopathy 27
4.3 The role of concurrent diabetes on small fiber pathology in CADASIL 29
4.4 Plasma biomarker for central and peripheral neurodegeneration 29
4.5 Study limitations 30
Chapter 5. Conclusions and Prospectives 32
5.1 Implication to pathomechanism and future therapeutic target in cerebral small vessel disease 32
5.2 Cutaneous small fiber pathology as a potential biomarker for neurodegeneration in CADASIL 32
5.3 The clinical implication of small fiber pathology in CADASIL patients 34
References 35
Appendix 1. Figures and Tables 46
Appendix 2. List of Publications 63
-
dc.language.isoen-
dc.title以皮膚之小神經病變探討遺傳性腦部小血管病變—CADASIL之認知障礙zh_TW
dc.titleSmall Fiber Pathology in CADASIL: a Window to Vascular Cognitive Impairmenten
dc.title.alternativeSmall Fiber Pathology in CADASIL: a Window to Vascular Cognitive Impairment-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.coadvisor湯頌君zh_TW
dc.contributor.coadvisorSung-Chun Tangen
dc.contributor.oralexamcommittee楊偉勛;趙啟超;陳儀莊;黃怡萱zh_TW
dc.contributor.oralexamcommitteeWei-Shiung Yang;Chi-Chao Chao;Yijuang Chern;Yi-Shuian Huangen
dc.subject.keyword體顯性腦動脈血管病變合併皮質下腦梗塞及腦白質病變,腦部小血管疾病,血管性認知功能障礙,小神經病變,表皮內神經纖維密度,zh_TW
dc.subject.keywordCADASIL,cerebral small vessel disease,intraepidermal nerve fiber density,small fiber neuropathy,vascular cognitive impairment,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202300066-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-01-11-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1142230110031013.pdf7.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved