請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/832完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李靜? | |
| dc.contributor.author | Hsien-Yu Lee | en |
| dc.contributor.author | 李先祐 | zh_TW |
| dc.date.accessioned | 2021-05-11T05:09:24Z | - |
| dc.date.available | 2020-02-15 | |
| dc.date.available | 2021-05-11T05:09:24Z | - |
| dc.date.copyright | 2019-02-15 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-02-12 | |
| dc.identifier.citation | Ackerly, D.D., Cornwell, W.K., 2007. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10: 135-145.
Affeld, K., Sullivan, J., Worner, S.P., Didham, R.K., 2008. Can spatial variation in epiphyte diversity and community structure be predicted from sampling vascular epiphytes alone? Journal of Biogeography 35: 2274-2288. Bazzaz, F.A., 1991. Habitat selection in plants. The American Naturalist 137: S116-S130. Benzing, D.H., 2004. Vascular epiphytes. In: Lowman, M., Rinker, H. (eds.), Forest canopies. Springer Verlag, Berlin, pp. 175-211. Burns, K., 2010. How arboreal are epiphytes? A null model for Benzing's classifications. New Zealand Journal of Botany 48: 185-191. Cabral, J.S., Petter, G., Mendieta-Leiva, G., Wagner, K., Zotz, G., Kreft, H., 2015. Branchfall as a demographic filter for epiphyte communities: lessons from forest floor-based sampling. PLoS ONE 10: e0128019. Cadotte, M.W., Tucker, C.M., 2017. Should Environmental Filtering be Abandoned? Trends in Ecology & Evolution 32: 429-437. Cavaleri, M.A., Oberbauer, S.F., Clark, D.B., Clark, D.A., Ryan, M.G., 2010. Height is more important than light in determining leaf morphology in a tropical forest. Ecology 91: 1730-1739. Chilpa-Galván, N., Tamayo-Chim, M., Andrade, J.L., Reyes-García, C., 2013. Water table depth may influence the asymmetric arrangement of epiphytic bromeliads in a tropical dry forest. Plant Ecology 214: 1037-1048. Christy, H.R., 1952. Vertical temperature gradients in a beech forest in central Ohio. The Ohio Journal of Science 52: 199-209. Cornwell, W.K., Ackerly, D.D., 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109-126. Coste, S., Baraloto, C., Leroy, C., Marcon, É., Renaud, A., Richardson, A.D., Roggy, J.C., Schimann, H., Uddling, J., Hérault, B., 2010. Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Annals of Forest Science 67: 607. Davies-Colley, R.J., Payne, G.W., van Elswijk, M., 2000. Microclimate gradients across a forest edge. New Zealand Journal of Ecology 24: 111-121. de Mirbel, C.F.B., 1815. Élémens de physiologie végétale et de botanique. Magimel. Dray, S., Legendre, P., 2008. Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89: 3400-3412. Gotsch, S.G., Nadkarni, N., Darby, A., Glunk, A., Dix, M., Davidson, K., Dawson, T.E., 2015. Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest. Ecological Monographs 85: 393-412. Hardy, O.J., Couteron, P., Munoz, F., Ramesh, B.R., Pélissier, R., 2012. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Global Ecology and Biogeography 21: 1007-1016. Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415-427. Johansson, D., 1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica 59: 1-136. Kantvilas, G., Minchin, P.R., 1989. An analysis of epiphytic lichen communities in Tasmanian cool temperate rainforest. Vegetatio 84: 99-112. Kraft, N.J.B., Adler, P.B., Godoy, O., James, E.C., Fuller, S., Levine, J.M., 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29: 592-599. Kress, W.J., 1989. The systematic distribution of vascular epiphytes. In: Lüttge, U (ed.), Vascular plants as epiphytes. Springer, pp. 234-261. Krömer, T., Kessler, M., Gradstein, S.R., 2007. Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecology 189: 261-278. Krömer, T., Kessler, M., Gradstein, S.R., Acebey, A., 2005. Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32: 1799-1809. Küper, W., Kreft, H., Nieder, J., Köster, N., Barthlott, W., 2004. Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography 31: 1477-1487. Laliberté, E., Zemunik, G., Turner, B.L., 2014. Environmental filtering explains variation in plant diversity along resource gradients. Science 345: 1602-1605. Lambers, H., 2008. Plant physiological ecology. Springer, New York, USA. Lepš, J., Šmilauer, P., 2003. Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge, UK. Lowman, M.D., Schowalter, T.D., Franklin, J., 2012. Methods in forest canopy research. University of California Press, Oakland, CA, USA. Malhado, A.C.M., Whittaker, R.J., Malhi, Y., Ladle, R.J., ter Steege, H., Phillips, O., Aragão, L., Baker, T.R., Arroyo, L., Almeida, S., Higuchi, N., Killeen, T.J., Monteagudo, A., Pitman, N.C.A., Prieto, A., Salomão, R.P., Vásquez-Martínez, R., Laurance, W.F., Ramírez-Angulo, H., 2010. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography 19: 852-862. Markesteijn, L., Poorter, L., Bongers, F., 2007. Light-dependent leaf trait variation in 43 tropical dry forest tree species. American Journal of Botany 94: 515-525. McGill, B.J., Enquist, B.J., Weiher, E., Westoby, M., 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178-185. McMurtrie, R.E., Dewar, R.C., 2011. Leaf-trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves. Tree Physiology 31: 1007-1023. Moe, B., Botnen, A., 2000. Epiphytic vegetation on pollarded trunks of Fraxinus excelsior in four different habitats at Grinde, Leikanger, western Norway. Plant Ecology 151: 143-159. Nieder, J., Engwald, S., Klawun, M., Barthlott, W., 2000. Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland amazonian rain forest (Surumoni crane plot) of southern Venezuela. Biotropica 32: 385-396. Nock, C.A., Vogt, R.J., Beisner, B.E., 2016. Functional traits. In: eLS. John Wiley & Sons, Chichester, UK. Ögren, E., Evans, J.R., 1993. Photosynthetic light-response curves 1 - the influence of CO2 partial-pressure and leaf inversion. Planta 189: 182-190. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2018. vegan: Community Ecology Package. R package version 2.5-2. URL: https://CRAN.R-project.org/package=vegan Oliver, H., 1971. Wind profiles in and above a forest canopy. Quarterly Journal of the Royal Meteorological Society 97: 548-553. Onoda, Y., Schieving, F., Anten, N.P.R., 2008. Effects of light and nutrient availability on leaf mechanical properties of Plantago major: A conceptual approach. Annals of Botany 101: 727-736. Parra, M.J., Acu ñ a, K., Corcuera, L.J., Saldaña, A., 2009. Vertical distribution of Hymenophyllaceae species among host tree microhabitats in a temperate rain forest in Southern Chile. Journal of Vegetation Science 20: 588-595. Pärtel, M., Szava-Kovats, R., Zobel, M., 2011. Dark diversity: shedding light on absent species. Trends in Ecology & Evolution 26: 124-128. Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., de Vos, A.C., Buchmann, N., Funes, G., Quétier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., ter Steege, H., van der Heijden, M.G.A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M.V., Conti, G., Staver, A.C., Aquino, S., Cornelissen, J.H.C., 2016. New handbook for standardised measurement of plant functional traits worldwide (vol 61, pg 167, 2013). Australian Journal of Botany 64: 715-716. Petter, G., Wagner, K., Wanek, W., Delgado, E.J.S., Zotz, G., Cabral, J.S., Kreft, H., 2016. Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Functional Ecology 30: 188-198. Poorter, L., Kwant, R., Hernández, R., Medina, E., Werger, M.J.A., 2000. Leaf optical properties in Venezuelan cloud forest trees. Tree Physiology 20: 519-526. Püttker, T., Bueno, A.D., Prado, P.I., Pardini, R., 2015. Ecological filtering or random extinction? Beta-diversity patterns and the importance of niche-based and neutral processes following habitat loss. Oikos 124: 206-215. R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/. Richards, P., 1996. The tropical rain forest: an ecological study. 2nd edition. Cambridge University Press, Cambridge, UK. Rozendaal, D.M.A., Hurtado, V.H., Poorter, L., 2006. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Funcional. Ecology 20: 207-216. Sage, R.F., Kubien, D.S., 2007. The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment 30: 1086-1106. ter Braak, C.J.F., Cormont, A., Dray, S., 2012. Improved testing of species traits-environment relationships in the fourth-corner problem. Ecology 93: 1525-1526. Tichý, L., 2002. JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451-453. Tichý, L., Chytrý, M., 2006. Statistical determination of diagnostic species for site groups of unequal size. Journal of Vegetation Science 17: 809-818. Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional! Oikos 116: 882-892. Wagner, K., Bogusch, W., Zotz, G., 2013. The role of the regeneration niche for the vertical stratification of vascular epiphytes. Journal of Tropical Ecology 29: 277-290. Weiher, E., Keddy, P.A., 1995. The assembly of experimental wetland plant-communities. Oikos 73: 323-335. Werner, F.A., Homeier, J., Oesker, M., Boy, J., 2012. Epiphytic biomass of a tropical montane forest varies with topography. Journal of Tropical Ecology 28: 23-31. Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428: 821-827. Xu, F., Guo, W.H., Xu, W.H., Wei, Y.H., Wang, R.Q., 2009. Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Progress in Natural Science 19: 1789-1798. Zelený, D., 2018. weimea: Weighted Mean Analysis. R package version 0.1.10. Zotz, 2016. Plants on Plants – The Biology of Vascular Epiphytes. Springer Nature Switzerland AG, Basel, Switzerland. Zotz, G., 2007. Johansson revisited: the spatial structure of epiphyte assemblages. Journal of Vegetation Science 18: 123-130. Zotz, G., 2013. The systematic distribution of vascular epiphytes-a critical update. Botanical Journal of the Linnean Society 171: 453-481. Zotz, G., Asshoff, R., 2010. Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogen. Plant Biology 12: 108-113. Zotz, G., Hietz, P., 2001. The physiological ecology of vascular epiphytes: Current knowledge, open questions. Journal of Experimental Botany 52: 2067-2078. 徐嘉君,2007。台灣的維管束附生植物綜論。國立臺灣大學生物資源暨農學院實驗林研究報告21:161-180頁。 徐嘉君,2013。福山植物園的附生植物-潮濕亞熱帶林的綠色巨塔。林業研究專訊20:40-44頁。 林建融,2009。台灣植群多樣性組成及分布之探討。碩士論文。國立臺灣大學森林環境暨資源學研究所。 梁玉琦,2004。台灣生態區分區之研究。碩士論文。國立臺灣大學森林環境暨資源學研究所。 簡珮瑜,2011。福山森林生態系巢蕨對垂葉書帶蕨促進作用之探討。碩士論文。國立臺灣師範大學生命科學研究所。 蘇鴻傑,1984。台灣天然林氣候與植群型之研究(二):山地植群帶與溫度梯度之關係。中華林學季刊17:57-73頁。 蘇鴻傑,1985。台灣天然林氣候與植群型之研究(三):地理氣候區之劃分。中華林學季刊18:33-44頁。 郭城孟,2008。蕨類圖鑑:台灣三百多種蕨類生態圖鑑。遠流,台北市,臺灣。 陸象豫,黃惠雪,2013。福山試驗林氣候特性及其變化分析。林業研究專訊20: 69-73頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/832 | - |
| dc.description.abstract | 在森林中包括光度、相對濕度及溫度等環境因子都會隨高度改變,形成垂直的環境梯度。維管束附生植物因為生長在其他植物之上,面對從林下層到樹冠層的多樣微環境,因此適合用來研究垂直環境梯度對生物的影響。本研究針對在臺灣東北部福山試驗林的附生植物,以釐清附生植物的物種組成以及功能性狀是否會隨著高度改變。本研究選定24棵樣樹,在每棵樣樹上劃設5-6個垂直分區,並透過雙索攀樹技術,在各分區內設立樣區進行物種調查。除了記錄樣區內的物種及豐度,亦採集個體量測功能性狀,包括葉厚度、比葉面積、葉乾物質重、單位葉面積葉含水率以及葉綠素含量 (單位葉面積及單位葉質量) 。
研究結果顯示,樣區的物種組成會隨離地高度而改變。各物種會佔據不同的高度範圍,形成垂直分層分布。此外,對於單葉的附生植物物種來說,葉厚度以及單位葉面積葉含水率會隨高度上升而增加,比葉面積和單位葉質量的葉綠素含量則會隨高度上升而減少。本研究指出離地高度確實對附生植物的分布以及功能性狀都具有顯著的影響。 | zh_TW |
| dc.description.abstract | Vascular epiphytes grow on other plants, facing various micro-environments from dark and humid understory to bright and dry canopy. Therefore, it is quite suitable to use epiphytes to analyze the effects of vertical environmental gradients on organisms. I studied vascular epiphytes in Fushan Experimental Forest (located in northeastern Taiwan) in 2018 and aimed to determine whether species composition and several functional leaf traits of vascular epiphytes change along vertical environmental gradients. I used doubled rope techniques to climb up 24 sampled trees and surveyed the epiphytes on them. I set 5-6 vertical zones within each sampled tree based on height above ground, and set sampling plots within each zone, recorded all species that appeared in the plots and their abundance. I also collected some epiphyte individuals to measure functional traits including leaf thickness, specific leaf area, leaf dry matter content, leaf water content (per unit area) and leaf chlorophyll content (per unit area and per unit mass).
The results show that epiphyte species composition changed significantly with height, and epiphyte species differentiated in their height distribution. Angle differences between aspects of plots and the south direction were also suggested to have effects on epiphyte species composition. Besides, several functional leaf traits show vertical trends. Leaf thickness and leaf water content (per unit area) of simple-leaved epiphytes significantly increased with height, while specific leaf area and chlorophyll content (per unit mass) decreased with height. This study reveals that height is an important factor which not only structures species composition but also creates vertical trends of several functional leaf traits. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-11T05:09:24Z (GMT). No. of bitstreams: 1 ntu-108-R05625005-1.pdf: 3105369 bytes, checksum: 57adbf67c71199c82c9adf640e048921 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書.......................................i 謝辭..................................................ii 中文摘要...............................................iv Abstract..............................................v Contents..............................................vii List of Figures.......................................ix List of Tables........................................xi Introduction..........................................1 1.Vascular epiphytes and their importance.............1 2.Environmental gradients that epiphytes experience...4 3.Effects of vertical environmental gradients on species composition...........................................7 4.Effects of vertical environmental gradients on functional traits.....................................12 5.Purposes of this study..............................16 Methods...............................................17 1.Study site..........................................17 2.Vertical environmental gradients within the study site ......................................................20 3.Plot survey for recording epiphyte species..........25 4.Measurements of functional traits...................31 5.Data analyses.......................................38 Results...............................................56 1.Variation in species composition....................56 2.Distribution patterns of different species..........60 3.Variation of functional traits of all epiphytes.....66 4.Variation of functional traits within species.......72 Discussion............................................73 1.Variation in species composition....................73 2.Distribution patterns of different species..........75 3.Variation of functional traits of all epiphytes.....79 4.Variation of functional traits within species.......83 Conclusions...........................................84 References............................................86 Appendices............................................94 | |
| dc.language.iso | en | |
| dc.subject | 維管束附生植物 | zh_TW |
| dc.subject | 垂直環境梯度 | zh_TW |
| dc.subject | 垂直分層分布 | zh_TW |
| dc.subject | 功能性狀 | zh_TW |
| dc.subject | 群落加權平均 | zh_TW |
| dc.subject | community weighted mean | en |
| dc.subject | Vascular epiphytes | en |
| dc.subject | vertical environmental gradients | en |
| dc.subject | vertical stratification | en |
| dc.subject | functional traits | en |
| dc.title | 福山地區維管束附生植物之物種組成及功能性狀在垂直方向的變化趨勢 | zh_TW |
| dc.title | Species Composition and Functional Traits of Vascular Epiphytes Show Vertical Trends in Fushan Experimental Forest | en |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 丁宗蘇 | |
| dc.contributor.oralexamcommittee | 徐嘉君,澤大衛(David Zeleny) | |
| dc.subject.keyword | 維管束附生植物,垂直環境梯度,垂直分層分布,功能性狀,群落加權平均, | zh_TW |
| dc.subject.keyword | Vascular epiphytes,vertical environmental gradients,vertical stratification,functional traits,community weighted mean, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU201900489 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-02-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 3.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
