請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83263完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游文岳 | zh_TW |
| dc.contributor.advisor | Wen-Yueh Yu | en |
| dc.contributor.author | 龔子傑 | zh_TW |
| dc.contributor.author | Zi-Jie Gong | en |
| dc.date.accessioned | 2023-02-01T17:09:11Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-02-01 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-01-14 | - |
| dc.identifier.citation | [1] Y.T. Wang, D.Y. Zhao, D. Rodriguez-Padron, and C. Len. "Recent advances in catalytic hydrogenation of furfural" Catalysts 9 (2019) 33. https://doi.org/10.3390/catal9100796
[2] A.Y. Li, and A. Moores. "Carbonyl reduction and biomass: A case study of sustainable catalysis" ACS Sustain. Chem. Eng. 7 (2019) 10182-10197. https://doi.org/10.1021/acssuschemeng.9b00811 [3] R. Padilla, S. Koranchalil, and M. Nielsen. "Efficient and selective catalytic hydrogenation of furanic aldehydes using well defined Ru and Ir pincer complexes" Green Chem. 22 (2020) 6767-6772. https://doi.org/10.1039/d0gc90140g [4] A. Mandalika, L. Qin, T.K. Sato, and T. Runge. "Integrated biorefinery model based on production of furans using open-ended high yield processes" Green Chem. 16 (2014) 2480-2489. https://doi.org/10.1039/c3gc42424c [5] S. Sitthisa, T. Sooknoi, Y.G. Ma, P.B. Balbuena, and D.E. Resasco. "Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts" J. Catal. 277 (2011) 1-13. https://doi.org/10.1016/j.jcat.2010.10.005 [6] D. Wang, and D. Astruc. "The golden age of transfer hydrogenation" Chem. Rev. 115 (2015) 6621-6686. https://doi.org/10.1021/acs.chemrev.5b00203 [7] M.J. Gilkey, and B.J. Xu. "Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading" ACS Catal. 6 (2016) 1420-1436. https://doi.org/10.1021/acscatal.5b02171 [8] E. Barath. "Hydrogen transfer reactions of carbonyls, alkynes, and alkenes with noble metals in the presence of alcohols/ethers and amines as hydrogen donors" Catalysts 8 (2018) 25. https://doi.org/10.3390/catal8120671 [9] S. Mudhulu, Z.J. Gong, H.C. Ku, Y.S. Lu, and W.Y. Yu. "Recent advances in heterogeneous catalytic hydrodeoxygenation of biomass-derived oxygenated furanics mediated by formic acid" Mater. Today Sustain. 19 (2022) 100199. https://doi.org/https://doi.org/10.1016/j.mtsust.2022.100199 [10] M.L. Granados, J. Moreno, A.C. Alba-Rubio, J. Iglesias, D.M. Alonso, and R. Mariscal. "Catalytic transfer hydrogenation of maleic acid with stoichiometric amounts of formic acid in aqueous phase: paving the way for more sustainable succinic acid production" Green Chem. 22 (2020) 1859-1872. https://doi.org/10.1039/c9gc04221k [11] T. Terashima, M. Ouchi, T. Ando, and M. Sawamoto. "Transfer hydrogenation of ketones catalyzed by PEG-armed ruthenium-microgel star polymers: microgel-core reaction space for active, versatile and recyclable catalysis" Polym. J. 43 (2011) 770-777. https://doi.org/10.1038/pj.2011.52 [12] R.F. Nie, Y.W. Tao, Y.Q. Nie, T.L. Lu, J.S. Wang, Y.S. Zhang, X.Y. Lu, and C.C. Xu. "Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts" ACS Catal. 11 (2021) 1071-1095. https://doi.org/10.1021/acscatal.0c04939 [13] I. KlinSoda, and P. Piumsomboon. "Isopropanol-acetone-hydrogen chemical heat pump: A demonstration unit" Energy Conv. Manag. 48 (2007) 1200-1207. https://doi.org/10.1016/j.enconman.2006.10.006 [14] L.H. Gong, Y.Y. Cai, X.H. Li, Y.N. Zhang, J. Su, and J.S. Chen. "Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid" Green Chem. 16 (2014) 3746-3751. https://doi.org/10.1039/c4gc00981a [15] J. Mondal, Q.T. Trinh, A. Jana, W.K.H. Ng, P. Borah, H. Hirao, and Y.L. Zhao. "Size-dependent catalytic activity of palladium nanoparticles fabricated in porous organic polymers for alkene hydrogenation at room temperature" ACS Appl. Mater. Interfaces 8 (2016) 15307-15319. https://doi.org/10.1021/acsami.6b03127 [16] Y.J. Chou, H.C. Ku, C.C. Chien, C.C. Hu, and W.Y. Yu. "Palladium nanoparticles supported on nanosheet-like graphitic carbon nitride for catalytic transfer hydrogenation reaction" Catal. Sci. Technol. 10 (2020) 7883-7893. https://doi.org/10.1039/dOcy01703e [17] Y.W. Wei, D. Xue, Q. Lei, C. Wang, and J.L. Xiao. "Cyclometalated iridium complexes for transfer hydrogenation of carbonyl groups in water" Green Chem. 15 (2013) 629-634. https://doi.org/10.1039/c2gc36619c [18] A.M. Palvolgyi, J. Bitai, V. Zeindlhofer, C. Schroder, and K. Bica. "Ion-tagged chiral ligands for asymmetric transfer hydrogenations in aqueous medium" ACS Sustain. Chem. Eng. 7 (2019) 3414-3423. https://doi.org/10.1021/acssuschemeng.8b05613 [19] A.H. Ngo, and L.H. Do. "Structure-activity relationship study of halfsandwich metal complexes in aqueous transfer hydrogenation catalysis" Inorg. Chem. Front. 7 (2020) 5283-5291. https://doi.org/10.1039/c9qi01310e [20] M. Naulani-Garcia, D. Salinas-Torres, K. Mori, Y. Kuwahara, and H. Yamashita. "Enhanced formic acid dehydrogenation by the synergistic alloying effect of PdCo catalysts supported on graphitic carbon nitride" Int. J. Hydrog. Energy 44 (2019) 28483-28493. https://doi.org/10.1016/j.ijhydene.2018.11.057 [21] W.H. Wang, M.Z. Ertem, S.A. Xu, N. Onishi, Y. Manaka, Y. Suna, H. Kambayash, J.T. Muckerman, E. Fujita, and Y. Himeda. "Highly robust hydrogen generation by bioinspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH" ACS Catal. 5 (2015) 5496-5504. https://doi.org/10.1021/acscatal.5b01090 [22] K. Mori, M. Dojo, and H. Yamashita. "Pd and Pd-Ag nanoparticles within a macroreticular basic resin: An efficient catalyst for hydrogen production from formic acid decomposition" ACS Catal. 3 (2013) 1114-1119. https://doi.org/10.1021/cs400148n [23] J. Mitra, X.Y. Zhou, and T. Rauchfuss. "Pd/C-catalyzed reactions of HMF: decarbonylation, hydrogenation, and hydrogenolysis" Green Chem. 17 (2015) 307-313. https://doi.org/10.1039/c4gc01520g [24] J.M. Trillo, J.M. Criado, and G. Munuera. "Catalytic decomposition of formic acid on metal oxides" Catal. Rev. 7 (1972) 51. https://doi.org/10.1080/01614947208064710 [25] S. Kwon, T.C. Lin, and E. Iglesia. "Formic acid dehydration rates and elementary steps on Lewis acid-base site pairs at anatase and rutile TiO2 surfaces" J. Phys. Chem. C 124 (2020) 20161-20174. https://doi.org/10.1021/acs.jpcc.0c05721 [26] S. Kwon, T.C. Lin, and E. Iglesia. "Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces" J. Catal. 383 (2020) 60-76. https://doi.org/10.1016/j.jcat.2019.12.043 [27] K. Nakajima, M. Tominaga, M. Waseda, H. Miura, and T. Shishido. "Highly efficient supported palladium-gold alloy catalysts for hydrogen storage based on ammonium bicarbonate/formate redox cycle" ACS Sustain. Chem. Eng. 7 (2019) 6522-6530. https://doi.org/10.1021/acssuschemeng.8b04698 [28] S. Masuda, Y. Shimoji, K. Mori, Y. Kuwahara, and H. Yamashita. "Interconversion of formate/bicarbonate for hydrogen storage/release: Improved activity following sacrificial surface modification of a Ag@Pd/TiO2 catalyst with a TiOx Shell" ACS Appl. Energ. Mater. 3 (2020) 5819-5829. https://doi.org/10.1021/acsaem.0c00744 [29] T. Thananatthanachon, and T.B. Rauchfuss. "Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent" Angew. Chem. Int. Edit. 49 (2010) 6616-6618. https://doi.org/10.1002/anie.201002267 [30] Y.X. Gao, S. Jaenicke, and G.K. Chuah. "Highly efficient transfer hydrogenation of aldehydes and ketones using potassium formate over AlO(OH)-entrapped ruthenium catalysts" Appl. Catal. A: Gen. 484 (2014) 51-58. https://doi.org/10.1016/j.apcata.2014.07.010 [31] L. Tao, T.H. Yan, W.Q. Li, Y. Zhao, Q. Zhang, Y.M. Liu, M.M. Wright, Z.H. Li, H.Y. He, and Y. Cao. "Toward an integrated conversion of 5-hydroxymethylfurfural and ethylene for the production of renewable p-xylene" Chem 4 (2018) 2212-2227. https://doi.org/10.1016/j.chempr.2018.07.007 [32] J. Du, J.R. Zhang, Y. Sun, W.L. Jia, Z.H. Si, H. Gao, X. Tang, X.H. Zeng, T.Z. Lei, S.J. Liu, and L. Lin. "Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source" J. Catal. 368 (2018) 69-78. https://doi.org/10.1016/j.jcat.2018.09.025 [33] Z.L. Fu, Z. Wang, W.G. Lin, W.L. Song, and S.G. Li. "High efficient conversion of furfural to 2-methylfuran over Ni-Cu/Al2O3 catalyst with formic acid as a hydrogen donor" Appl. Catal. A: Gen. 547 (2017) 248-255. https://doi.org/10.1016/j.apcata.2017.09.011 [34] P.P. Yang, Q.N. Xia, X.H. Liu, and Y.Q. Wang. "Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst" Fuel 187 (2017) 159-166. https://doi.org/10.1016/j.fuel.2016.09.026 [35] C.K.P. Neeli, Y.M. Chung, and W.S. Ahn. "Catalytic transfer hydrogenation of furfural to furfuryl alcohol by using ultrasmall Rh nanoparticles embedded on diamine-functionalized KIT-6" ChemCatChem 9 (2017) 4570-4579. https://doi.org/10.1002/cctc.201701037 [36] J.W. Zhao, M.R. Liu, G.L. Fan, L. Yang, and F. Li. "Efficient transfer hydrogenolysis of 5-hydromethylfurfural to 2,5-dimethylfuran over CoFe bimetallic catalysts using formic acid as a sustainable hydrogen donor" Ind. Eng. Chem. Res. 60 (2021) 5826-5837. https://doi.org/10.1021/acs.iecr.1c01029 [37] L. Xu, R.F. Nie, X.L. Lyu, J.C. Wang, and X.Y. Lu. "Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts" Fuel Process. Technol. 197 (2020) 8. https://doi.org/10.1016/j.fuproc.2019.106205 [38] L. Xu, R.F. Nie, X.J. Chen, Y.C. Li, Y.X. Jiang, and X.Y. Lu. "Formic acid enabled selectivity boosting in transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-furandimethanol on highly dispersed Co-N-x sites" Catal. Sci. Technol. 11 (2021) 1451-1457. https://doi.org/10.1039/d0cy01969k [39] K. Tedsree, T. Li, S. Jones, C.W.A. Chan, K.M.K. Yu, P.A.J. Bagot, E.A. Marquis, G.D.W. Smith, and S.C.E. Tsang. "Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst" Nat. Nanotechnol. 6 (2011) 302-307. https://doi.org/10.1038/nnano.2011.42 [40] D.W. Yuan, and Z.R. Liu. "Atomic ensemble effects on formic acid oxidation on PdAu electrode studied by first-principles calculations" J. Power Sources 224 (2013) 241-249. https://doi.org/10.1016/j.jpowsour.2012.09.113 [41] W.Y. Yu, G.M. Mullen, D.W. Flaherty, and C.B. Mullins. "Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces" J. Am. Chem. Soc. 136 (2014) 11070-11078. https://doi.org/10.1021/ja505192v [42] A.K. Singh, S. Jang, J.Y. Kim, S. Sharma, K.C. Basavaraju, M.G. Kim, K.R. Kim, J.S. Lee, H.H. Lee, and D.P. Kim. "One-pot defunctionalization of lignin-derived compounds by dual-functional Pd50Ag50/Fe3O4/N-rGO catalyst" ACS Catal. 5 (2015) 6964-6972. https://doi.org/10.1021/acscatal.5b01319 [43] R.A. Sheldon. "Green and sustainable manufacture of chemicals from biomass: state of the art" Green Chem. 16 (2014) 950-963. https://doi.org/10.1039/c3gc41935e [44] M.F. Li, S. Yang, and R.C. Sun. "Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass" Bioresour. Technol. 200 (2016) 971-980. https://doi.org/10.1016/j.biortech.2015.10.004 [45] W. Schutyser, T. Renders, S. Van den Bosch, S.F. Koelewijn, G.T. Beckham, and B.F. Sels. "Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading" Chem. Soc. Rev. 47 (2018) 852-908. https://doi.org/10.1039/c7cs00566k [46] P. Panagiotopoulou, N. Martin, and D.G. Vlachos. "Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst" J. Mol. Catal. A: Chem. 392 (2014) 223-228. https://doi.org/10.1016/j.molcata.2014.05.016 [47] A. Gervasini, and A. Auroux. "Acidity and basicity of metal-oxide surface. 2. Determination by catalytic decomposition of isopropanol" J. Catal. 131 (1991) 190-198. https://doi.org/10.1016/0021-9517(91)90335-2 [48] D. Kulkarni, and S.E. Wachs. "Isopropanol oxidation by pure metal oxide catalysts: number of active surface sites and turnover frequencies" Appl. Catal. A: Gen. 237 (2002) 121-137. https://doi.org/10.1016/s0926-860x(02)00325-3 [49] W. Turek, and A. Krowiak. "Evaluation of oxide catalysts' properties based on isopropyl alcohol conversion" Appl. Catal. A: Gen. 417 (2012) 102-110. https://doi.org/10.1016/j.apcata.2011.12.030 [50] Z.J. Gong, Y.S.L.V. Narayana, Y.C. Lin, W.H. Huang, W.N. Su, Y.P. Li, M. Higuchi, and W.Y. Yu. "Rational synthesis of ruthenium-based metallo-supramolecular polymers as heterogeneous catalysts for catalytic transfer hydrogenation of carbonyl compounds" Appl. Catal. B: Environ. 312 (2022) 121383. https://doi.org/https://doi.org/10.1016/j.apcatb.2022.121383 [51] H.A. Younus, N. Ahmad, W. Su, and F. Verpoort. "Ruthenium pincer complexes: Ligand design and complex synthesis" Coord. Chem. Rev. 276 (2014) 112-152. https://doi.org/10.1016/j.ccr.2014.06.016 [52] S. Werkmeister, J. Neumann, K. Junge, and M. Beller. "Pincer-type complexes for catalytic (de)hydrogenation and transfer (de)hydrogenation reactions: recent progress" Chem.-Eur. J. 21 (2015) 12226-12250. https://doi.org/10.1002/chem.201500937 [53] C.Y. Wei, Y. He, X.D. Shi, and Z.G. Song. "Terpyridine-metal complexes: Applications in catalysis and supramolecular chemistry" Coord. Chem. Rev. 385 (2019) 1-19. https://doi.org/10.1016/j.ccr.2019.01.005 [54] X.J. Cui, W. Li, P. Ryabchuk, K. Junge, and M. Beller. "Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts" Nat. Catal. 1 (2018) 385-397. https://doi.org/10.1038/s41929-018-0090-9 [55] N. End, and K.U. Schoning. "Immobilized catalysts in industrial research and application" in: A. Kirschning (Ed.) Immobilized Catalysts: Solid Phases, Immobilization and Applications, Springer-Verlag Berlin, Berlin, 2004, pp. 241-271. https://doi.org/10.1007/b96878 [56] P. McMorn, and G.J. Hutchings. "Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts" Chem. Soc. Rev. 33 (2004) 108-122. https://doi.org/10.1039/b200387m [57] G.M. Eichenseer, B. Kastl, M.A. Pericas, P.R. Hanson, and O. Reiser. "Synthesis and application of magnetic noyori-type ruthenium catalysts for asymmetric transfer hydrogenation reactions in water" ACS Sustain. Chem. Eng. 4 (2016) 2698-2705. https://doi.org/10.1021/acssuschemeng.6b00197 [58] B.G.P. van Ravensteijn, D.J. Schild, W.K. Kegel, and R.J.M. Klein Gebbink. "The immobilization of a transfer hydrogenation catalyst on colloidal particles" ChemCatChem 9 (2017) 440-450. https://doi.org/10.1002/cctc.201601096 [59] Y.M.Y. Haddad, J. Husbands, H.B. Henbest, and T.R. Mitchell. "Reduction of cyclohexanones to axial alcohols via iridium-containing catalysts" Proc. Chem. Soc. Lond. (1964) 361. [60] M. McPartlin, and R. Mason. "Structure of a bis(dimethyl sulphoxide)iridium(3) complex containing a metal-carbon sigma-bond" Chem. Commun. (1967) 545. https://doi.org/10.1039/c19670000545 [61] J. Trochagrimshaw, and H.B. Henbest. "Catalysis of transfer of hydrogen from propan-2-ol to alphabeta-unsaturated ketones by organoiridium compounds. A carbon-iridium compound containing a chelate keto-group" Chem. Commun. (1967) 544. https://doi.org/10.1039/c19670000544 [62] Y. Sasson, and J. Blum. "Homogeneous catalytic transfer-hydrogenation of alpha,beta-unsaturated carbonyl compounds by dichlorotris(triphenylphosphine)ruthenium (ii)" Tetrahedron Lett. (1971) 2167. [63] Y. Sasson, and J. Blum. "Dichlorotris(triphenylphosphine)ruthenium-catalyzed hydrogen transfer from alcohols to saturated and alpha,beta-unsaturated ketones" J. Org. Chem. 40 (1975) 1887-1896. https://doi.org/10.1021/jo00901a004 [64] A.J. Arduengo, R.L. Harlow, and M. Kline. "A stable crystalline carbene" J. Am. Chem. Soc. 113 (1991) 361-363. https://doi.org/10.1021/ja00001a054 [65] E. Peris, and R.H. Crabtree. "Recent homogeneous catalytic applications of chelate and pincer N-heterocyclic carbenes" Coord. Chem. Rev. 248 (2004) 2239-2246. https://doi.org/10.1016/j.ccr.2004.04.014 [66] C.J. Moulton, and B.L. Shaw. "Transition metal-carbon bonds .42. Complexes of nickel, palladium, platinum, rhodium and iridium with tridentate ligand 2,6-bis (di-t-butylphosphino)methyl phenyl" J. Chem. Soc., Dalton Trans. (1976) 1020-1024. https://doi.org/10.1039/dt9760001020 [67] G. Vankoten, K. Timmer, J.G. Noltes, and A.L. Spek. "Novel type of Pt-C interaction and a model for final stage in reductive elimination processes involving C-C coupling at Pt - synthesis and molecular-geometry of 1,N,N'-η-2,6-bis((dimethylamino)methyl)-toluene iodoplatinum(ii) tetrafluoroborate" J. Chem. Soc., Chem. Commun. (1978) 250-252. https://doi.org/10.1039/c39780000250 [68] I. Nieto, M.S. Livings, J.B. Sacci, L.E. Reuther, M. Zeller, and E.T. Papish. "Transfer hydrogenation in water via a ruthenium catalyst with OH groups near the netal center on a bipy scaffold" Organometallics 30 (2011) 6339-6342. https://doi.org/10.1021/om200638p [69] E. Barath. "Selective reduction of carbonyl compounds via (asymmetric) transfer hydrogenation on heterogeneous catalysts" Synthesis 52 (2020) 504-520. https://doi.org/10.1055/s-0039-1691542 [70] P.J. Tseng, C.L. Chang, Y.H. Chan, L.Y. Ting, P.Y. Chen, C.H. Liao, M.L. Tsai, and H.H. Chou. "Design and synthesis of cycloplatinated polymer dots as photocatalysts for visible-light-driven hydrogen evolution" ACS Catal. 8 (2018) 7766-7772. https://doi.org/10.1021/acscatal.8b01678 [71] Z.Z. Gao, Y.Y. Xu, Z.K. Wang, H. Wang, D.W. Zhang, and Z.T. Li. "Porous Ru(bpy)(3) (2+)-cored metallosupramolecular polymers: preparation and recyclable photocatalysis for the formation of amides and 2-diazo-2-phenylacetates" ACS Appl. Polym. Mater. 2 (2020) 4885-4892. https://doi.org/10.1021/acsapm.0c00800 [72] M.K. Bera, Y. Ninomiya, and M. Higuchi. "Constructing alternated heterobimetallic Fe(II)/Os(II) supramolecular polymers with diverse solubility for facile fabrication of voltage-tunable multicolor electrochromic devices" ACS Appl. Mater. Interfaces 12 (2020) 14376-14385. https://doi.org/10.1021/acsami.9b21966 [73] M.D. Hossain, C. Chakraborty, U. Rana, S. Mondal, H.J. Holdt, and M. Higuchi. "Green-to-black electrochromic copper(I)-based metallo-supramolecular polymer with a perpendicularly twisted structure" ACS Appl. Polym. Mater. 2 (2020) 4449-4454. https://doi.org/10.1021/acsapm.0c00559 [74] Y.J. Ai, M.Q. He, F. Zhang, Y. Long, Y.Z. Li, Q. Han, M.Y. Ding, H.B. Sun, and Q.L. Liang. "Metallo-supramolecular polymer engineered porous carbon framework encapsulated stable ultra-small nanoparticles: a general approach to construct highly dispersed catalysts" J. Mater. Chem. A 6 (2018) 16680-16689. https://doi.org/10.1039/c8ta05369c [75] M.D. Hossain, and M. Higuchi. "Synthesis of metallo-supramolecular polymers using 5,5 '-linked bis(1,10-phenanthroline) ligands" Synthesis 45 (2013) 753-758. https://doi.org/10.1055/s-0032-1316858 [76] K. Hara, H. Sugihara, L.P. Singh, A. Islam, R. Katoh, M. Yanagida, K. Sayama, S. Murata, and H. Arakawa. "New Ru(II) phenanthroline complex photo sensitizers having different number of carboxyl groups for dye-sensitized solar cells" J. Photochem. Photobiol. A: Chem. 145 (2001) 117-122. https://doi.org/10.1016/s1010-6030(01)00570-6 [77] J. Gopinath, K.H. Park, S.J. Kim, V. Santosh, A.V.S. Sainath, and M. Dhayal. "Phenanthroline-based ruthenium complexes for enhanced charge transportation in solvent-free ionic liquid electrolyte" J. Mater. Sci. 52 (2017) 10545-10556. https://doi.org/10.1007/s10853-017-1207-2 [78] F.S. Han, M. Higuchi, and D.G. Kurth. "Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: Photophysical, electrochemical, and electrochromic properties" J. Am. Chem. Soc. 130 (2008) 2073-2081. https://doi.org/10.1021/ja710380a [79] J. Yano, and V.K. Yachandra. "X-ray absorption spectroscopy" Photosynth. Res. 102 (2009) 241-254. https://doi.org/10.1007/s11120-009-9473-8 [80] A.D. Becke. "Density-functional thermochemistry .3. The role of exact exchange" J. Chem. Phys. 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913 [81] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. Frisch. "Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields" J. Phys. Chem. 98 (1994) 11623-11627. https://doi.org/10.1021/j100096a001 [82] F. Weigend, and R. Ahlrichs. "Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy" Phys. Chem. Chem. Phys. 7 (2005) 3297-3305. https://doi.org/10.1039/b508541a [83] E. Epifanovsky, A.T.B. Gilbert, X.T. Feng, J. Lee, Y.Z. Mao, N. Mardirossian, P. Pokhilko, A.F. White, M.P. Coons, A.L. Dempwolff, Z.T. Gan, D. Hait, P.R. Horn, L.D. Jacobson, I. Kaliman, J. Kussmann, A.W. Lange, K.U. Lao, D.S. Levine, J. Liu, S.C. McKenzie, A.F. Morrison, K.D. Nanda, F. Plasser, D.R. Rehn, M.L. Vidal, Z.Q. You, Y. Zhu, B. Alam, B.J. Albrecht, A. Aldossary, E. Alguire, J.H. Andersen, V. Athavale, D. Barton, K. Begam, A. Behn, N. Bellonzi, Y.A. Bernard, E.J. Berquist, H.G.A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty, A.D. Chien, K.D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.T. Fang, S. Fatehi, Q.G. Feng, T. Friedhoff, J. Gayvert, Q.H. Ge, G. Gidofalvi, M. Goldey, J. Gomes, C.E. Gonzalez-Espinoza, S. Gulania, A.O. Gunina, M.W.D. Hanson-Heine, P.H.P. Harbach, A. Hauser, M.F. Herbst, M.H. Vera, M. Hodecker, Z.C. Holden, S. Houck, X.K. Huang, K. Hui, B.C. Huynh, M. Ivanov, A. Jasz, H. Ji, H.J. Jiang, B. Kaduk, S. Kahler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda, J.H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C.M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjanszki, A. Landau, K.V. Lawler, D. Lefrancois, S. Lehtola, R.R. Li, Y.P. Li, J.S. Liang, M. Liebenthal, H.H. Lin, Y.S. Lin, F.L. Liu, K.Y. Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor, S.F. Manzer, S.P. Mao, A.V. Marenich, T. Markovich, S. Mason, S.A. Maurer, P.F. McLaughlin, M. Menger, J.M. Mewes, S.A. Mewes, P. Morgante, J.W. Mullinax, K.J. Oosterbaan, G. Paran, A.C. Paul, S.K. Paul, F. Pavosevic, Z. Pei, S. Prager, E.I. Proynov, A. Rak, E. Ramos-Cordoba, B. Rana, A.E. Rask, A. Rettig, R.M. Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S.M. Sharada, W. Skomorowski, D.W. Small, C.J. Stein, Y.C. Su, E.J. Sundstrom, Z. Tao, J. Thirman, G.J. Tornai, T. Tsuchimochi, N.M. Tubman, S.P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh, S.R. Yost, A. Zech, I.Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A.T. Bell, N.A. Besley, K.B. Bravaya, B.R. Brooks, D. Casanova, J.D. Chai, S. Coriani, C.J. Cramer, G. Cserey, A.E. DePrince, R.A. DiStasio, A. Dreuw, B.D. Dunietz, T.R. Furlani, W.A. Goddard, S. Hammes-Schiffer, T. Head-Gordon, W.J. Hehre, C.P. Hsu, T.C. Jagau, Y.S. Jung, A. Klamt, J. Kong, D.S. Lambrecht, W.Z. Liang, N.J. Mayhall, C.W. McCurdy, J.B. Neaton, C. Ochsenfeld, J.A. Parkhill, R. Peverati, V.A. Rassolov, Y.H. Shao, L.V. Slipchenko, T. Stauch, R.P. Steele, J.E. Subotnik, A.J.W. Thom, A. Tkatchenko, D.G. Truhlar, T. Van Voorhis, T.A. Wesolowski, K.B. Whaley, H.L. Woodcock, P.M. Zimmerman, S. Faraji, P.M.W. Gill, M. Head-Gordon, J.M. Herbert, and A.I. Krylov. "Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package" J. Chem. Phys. 155 (2021) 59. https://doi.org/10.1063/5.0055522 [84] M. Higuchi. "Metallo-Supramolecular polymers" Synthesis, properties, and device applications, Springer, Tokyo, 2019, pp. 89. https://doi.org/10.1007/978-4-431-56891-9 [85] A. Abebe, and T. Hailemariam. "Synthesis and assessment of antibacterial activities of ruthenium(III) mixed ligand complexes containing 1,10-phenanthroline and guanide" Bioinorg. Chem. Appl. 2016 (2016) 9. https://doi.org/10.1155/2016/3607924 [86] F. Heinemann, J. Karges, and G. Gasser. "Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy" Accounts Chem. Res. 50 (2017) 2727-2736. https://doi.org/10.1021/acs.accounts.7b00180 [87] S. Roeser, F. Bozoglian, C.J. Richmond, A.B. League, M.Z. Ertem, L. Francas, P. Miro, J. Benet-Buchholz, C.J. Cramer, and A. Llobet. "Water oxidation catalysis with ligand substituted Ru-bpp type complexes" Catal. Sci. Technol. 6 (2016) 5088-5101. https://doi.org/10.1039/c6cy00197a [88] O. Impert, A. Kozakiewicz, G. Wrzeszcz, A. Katafias, A. Bienko, R. van Eldik, and A. Ozarowski. "Characterization of a mixed-valence Ru(II)/Ru(III) ion-pair complex. Unexpected high-frequency electron paramagnetic resonance evidence for Ru(III)-Ru(III) dimer coupling" Inorg. Chem. 59 (2020) 8609-8619. https://doi.org/10.1021/acs.inorgchem.0c01068 [89] N.C. de Carvalho, S.P. Neves, R.B. Dias, L.D. Valverde, C.B.S. Sales, C.A.G. Rocha, M.B.P. Soares, E.R. dos Santos, R.M.M. Oliveira, R.M. Carlos, P.C.L. Nogueira, and D.P. Bezerra. "A novel ruthenium complex with xanthoxylin induces S-phase arrest and causes ERK1/2-mediated apoptosis in HepG2 cells through a p53-independent pathway" Cell Death Dis. 9 (2018) 24. https://doi.org/10.1038/s41419-017-0104-6 [90] M. Yanagida, L.P. Singh, K. Sayama, K. Hara, R. Katoh, A. Islam, H. Sugihara, H. Arakawa, M.K. Nazeeruddin, and M. Gratzel. "A new efficient photosensitizer for nanocrystalline solar cells: synthesis and characterization of cis-bis(4,7-dicarboxy-1,10-phenanthroline)dithiocyanato ruthenium(II)" J. Chem. Soc., Dalton Trans. (2000) 2817-2822. https://doi.org/10.1039/b002391o [91] G. Lemercier, M. Four, and S. Chevreux. "Two-photon absorption properties of 1,10-phenanthroline-based Ru(II) complexes and related functionalized nanoparticles for potential application in two-photon excitation photodynamic therapy and optical power limiting" Coord. Chem. Rev. 368 (2018) 1-12. https://doi.org/10.1016/j.ccr.2018.03.019 [92] V. Huntosova, S. Gay, P. Nowak-Sliwinska, S.K. Rajendran, M. Zellweger, H. van den Bergh, and G. Wagnieres. "In vivo measurement of tissue oxygenation by time-resolved luminescence spectroscopy: advantageous properties of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate" J. Biomed. Opt. 19 (2014) 12. https://doi.org/10.1117/1.jbo.19.7.077004 [93] M.A. Hoque, M. Gil-Sepulcre, A. de Aguirre, J. Elemans, D. Moonshiram, R. Matheu, Y.Y. Shi, J. Benet-Buchholz, X. Sala, M. Malfois, E. Solano, J. Lim, A. Garzon-Manjon, C. Scheu, M.R. Lanza, F. Maseras, C. Gimbert-Surinach, and A. Llobet. "Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes" Nat. Chem. 12 (2020) 1060-1066. https://doi.org/10.1038/s41557-020-0548-7 [94] Y. Pushkar, D. Moonshiram, V. Purohit, L.F. Yan, and I. Alperovich. "Spectroscopic analysis of catalytic water oxidation by Ru-II(bpy)(tpy)H2O)(2+) suggests that Ru-V=O is not a rate-limiting intermediate" J. Am. Chem. Soc. 136 (2014) 11938-11945. https://doi.org/10.1021/ja506586b [95] C. Milsmann, E. Bill, T. Weyhermuller, S.D. George, and K. Wieghardt. "Electronic structures of [RuII(cyclam)(Et2dtc)]+, [Ru(cyclam)(tdt)]+, and [Ru(cyclam)(tdt)]2+: An X-ray absorption spectroscopic and computational study (tdt = toluene-3,4-dithiolate; Et2dtc = N,N-diethyldithiocarbamate(1-))" Inorg. Chem. 48 (2009) 9754-9766. https://doi.org/10.1021/ic9011845 [96] I. Arcon, A. Bencan, A. Kodre, and M. Kosec. "X-ray absorption spectroscopy analysis of Ru in La2RuO5" X-Ray Spectrom. 36 (2007) 301-304. https://doi.org/10.1002/xrs.946 [97] L. Salassa, T. Ruiu, C. Garino, A.M. Pizarro, F. Bardelli, D. Gianolio, A. Westendorf, P.J. Bednarski, C. Lamberti, R. Gobetto, and P.J. Sadler. "EXAFS, DFT, light-Induced nucleobase binding, and cytotoxicity of the photoactive complex cis-[Ru(bpy)2(CO)Cl]+" Organometallics 29 (2010) 6703-6710. https://doi.org/10.1021/om100734y [98] S. Muratsugu, M.H. Lim, T. Itoh, W. Thumrongpatanaraks, M. Kondo, S. Masaoka, T.S.A. Hor, and M. Tada. "Dispersed Ru nanoclusters transformed from a grafted trinuclear Ru complex on SiO2 for selective alcohol oxidation" Dalton Trans. 42 (2013) 12611-12619. https://doi.org/10.1039/c3dt51142a [99] Z.L. Wang, S.M. Xu, Y.Q. Xu, L. Tan, X. Wang, Y.F. Zhao, H.H. Duan, and Y.F. Song. "Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis" Chem. Sci. 10 (2019) 378-384. https://doi.org/10.1039/c8sc04480e [100] A. Blazevic, A.A. Hummer, P. Heffeter, W. Berger, M. Filipits, G. Cibin, B.K. Keppler, and A. Rompel. "Electronic state of sodium trans- tetrachloridobis(1H-indazole)ruthenate(III) (NKP-1339) in tumor, liver and kidney tissue of a SW480-bearing mouse" Sci Rep 7 (2017) 8. https://doi.org/10.1038/srep40966 [101] Q.Y. Bi, J.D. Lin, Y.M. Liu, H.Y. He, F.Q. Huang, and Y. Cao. "Dehydrogenation of formic acid at room temperature: boosting palladium nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon" Angew. Chem. Int. Edit. 55 (2016) 11849-11853. https://doi.org/10.1002/anie.201605961 [102] J.L. Zhou, L.L. Liu, L.L. Cao, and D.W. Stephan. "Nitrogen-based lewis acids: synthesis and reactivity of a cyclic (alkyl)(amino)nitrenium cation" Angew. Chem. Int. Edit. 57 (2018) 3322. https://doi.org/10.1002/anie.201713118 [103] A. Iida, A. Sekioka, and S. Yamaguchi. "Heteroarene-fused boroles: what governs the antiaromaticity and Lewis acidity of the borole skeleton?" Chem. Sci. 3 (2012) 1461-1466. https://doi.org/10.1039/c2sc20100c [104] A. Maity, and T.S. Teets. "Main group Lewis acid-mediated transformations of transition-metal hydride complexes" Chem. Rev. 116 (2016) 8873-8911. https://doi.org/10.1021/acs.chemrev.6b00034 [105] A.H. Valekar, M. Lee, J.W. Yoon, J. Kwak, D.Y. Hong, K.R. Oh, G.Y. Cha, Y.U. Kwon, J. Jung, J.S. Chang, and Y.K. Hwang. "Catalytic transfer hydrogenation of furfural to furfuryl alcohol under mild conditions over Zr-MOFs: Exploring the role of metal node coordination and modification" ACS Catal. 10 (2020) 3720-3732. https://doi.org/10.1021/acscatal.9b05085 [106] Z.-J. Gong, C.-C. Chien, S. Mudhulu, J.C.S. Wu, N. Daneu, M.M. Kržmanc, and W.-Y. Yu. "SrTiO3 catalysts prepared from topochemical conversion of Bi4Ti3O12 nanoplatelets: Surface characterizations and interactions with isopropanol" J. Catal. 416 (2022) 222-232. https://doi.org/https://doi.org/10.1016/j.jcat.2022.11.001 [107] J.J. Zhu, H.L. Li, L.Y. Zhong, P. Xiao, X.L. Xu, X.G. Yang, Z. Zhao, and J.L. Li. "Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis" ACS Catal. 4 (2014) 2917-2940. https://doi.org/10.1021/cs500606g [108] S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, and H. Alamdari. "Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality" Chem. Rev. 114 (2014) 10292-10368. https://doi.org/10.1021/cr500032a [109] G.S. Foo, F. Polo-Garzon, V. Fung, D.E. Jiang, S.H. Overbury, and Z.L. Wu. "Acid-base reactivity of perovskite catalysts probed via conversion of 2-propanol over titanates and zirconates" ACS Catal. 7 (2017) 4423-4434. https://doi.org/10.1021/acscatal.7b00783 [110] J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu, and Y. Shao-Horn. "Perovskites in catalysis and electrocatalysis" Science 358 (2017) 751-756. https://doi.org/10.1126/science.aam7092 [111] F. Polo-Garzon, and Z.L. Wu. "Acid-base catalysis over perovskites: a review" J. Mater. Chem. A 6 (2018) 2877-2894. https://doi.org/10.1039/c7ta10591f [112] V.M. Goldschmidt. "The laws of crystal chemistry" Naturwissenschaften 14 (1926) 477-485. https://doi.org/10.1007/bf01507527 [113] F. Polo-Garzon, S.Z. Yang, V. Fung, G.S. Foo, E.E. Bickel, M.F. Chisholm, D.E. Jiang, and Z.L. Wu. "Controlling reaction selectivity through the surface termination of perovskite catalysts" Angew. Chem. 56 (2017) 9820-9824. https://doi.org/10.1002/anie.201704656 [114] S. Tan, M.B. Gray, M.K. Kidder, Y.Q. Cheng, L.L. Daemen, D. Lee, H.N. Lee, Y.Z. Ma, B. Doughty, and D.A. Lutterman. "Insight into the selectivity of isopropanol conversion at strontium titanate (100) surfaces: A combination kinetic and spectroscopic study" ACS Catal. 7 (2017) 8118-8129. https://doi.org/10.1021/acscatal.7b02417 [115] Z.H. Bao, V. Fung, F. Polo-Garzon, Z.D. Hood, S.H. Cao, M.F. Chi, L. Bai, D.E. Jiang, and Z.L. Wu. "The interplay between surface facet and reconstruction on isopropanol conversion over SrTiO3 nanocrystals" J. Catal. 384 (2020) 49-60. https://doi.org/10.1016/j.jcat.2020.02.014 [116] X. Xiao, H. Wang, P. Urbankowski, and Y. Gogotsi. "Topochemical synthesis of 2D materials" Chem. Soc. Rev. 47 (2018) 8744-8765. https://doi.org/10.1039/c8cs00649k [117] K.G.S. Ranmohotti, E. Josepha, J. Choi, J.X. Zhang, and J.B. Wiley. "Topochemical manipulation of perovskites: Low-temperature reaction strategies for directing structure and properties" Adv. Mater. 23 (2011) 442-460. https://doi.org/10.1002/adma.201002274 [118] Q.C. Zhang, W.C. Peng, Y. Li, F.B. Zhang, and X.B. Fan. "Topochemical synthesis of low-dimensional nanomaterials" Nanoscale 12 (2020) 21971-21987. https://doi.org/10.1039/d0nr04763e [119] J. Bae, M. Kim, H. Kang, T. Kim, H. Choi, B. Kim, H.W. Do, and W. Shim. "Kinetic 2D crystals via topochemical approach" Adv. Mater. 33 (2021) 35. https://doi.org/10.1002/adma.202006043 [120] K. Watari, B. Brahmaroutu, G.L. Messing, S. Trolier-McKinstry, and S.C. Cheng. "Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3" J. Mater. Res. 15 (2000) 846-849. https://doi.org/10.1557/jmr.2000.0121 [121] Y. Saito, and H. Takao. "Synthesis of platelike {100} SrTiO3 particles by topochemical microcrystal conversion and fabrication of grain-oriented ceramics" Jpn. J. Appl. Phys. 45 (2006) 7377-7381. https://doi.org/10.1143/jjap.45.7377 [122] A. Contala, M.M. Krzmanc, and D. Suvorov. "Plate-like Bi4Ti3O12 particles and their topochemical conversion to SrTiO3 under hydrothermal conditions" Acta Chim. Slov. 65 (2018) 630-637. https://doi.org/10.17344/acsi.2018.4286 [123] M.M. Krzmanc, N. Daneu, A. Contala, S. Santra, K.M. Kamal, B. Likozar, and M. Spreitzer. "SrTiO3/Bi4Ti3O12 nanoheterostructural platelets synthesized by topotactic epitaxy as effective noble-metal-free photocatalysts for pH-neutral hydrogen evolution" ACS Appl. Mater. Interfaces 13 (2021) 370-381. https://doi.org/10.1021/acsami.0c16253 [124] G.L. Wu, P. Li, D.B. Xu, B.F. Luo, Y.Z. Hong, W.D. Shi, and C.B. Liu. "Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes" Appl. Surf. Sci. 333 (2015) 39-47. https://doi.org/10.1016/j.apsusc.2015.02.008 [125] S.T. Huang, W.W. Lee, J.L. Chang, W.S. Huang, S.Y. Chou, and C.C. Chen. "Hydrothermal synthesis of SrTiO3 nanocubes: Characterization, photocatalytic activities, and degradation pathway" J. Taiwan Inst. Chem. Eng. 45 (2014) 1927-1936. https://doi.org/10.1016/j.jtice.2014.02.003 [126] V. Kalyani, B.S. Vasile, A. Ianculescu, A. Testino, A. Carino, M.T. Buscaglia, V. Buscaglia, and P. Nanni. "Hydrothermal synthesis of SrTiO3: Role of interfaces" Cryst. Growth Des. 15 (2015) 5712-5725. https://doi.org/10.1021/acs.cgd.5b00770 [127] Z.W. Shen, Y.Z. Hu, Q.S. Pan, C.H. Huang, B.Z. Zhu, W. Xia, H.H. Wang, J.R. Yue, M. Muhler, G.X. Zhao, X.K. Wang, and X.B. Huang. "Oxygen vacancies-enriched Ta-doped Bi2WO6 with Pt as cocatalyst for boosting the dehydrogenation of benzyl alcohol in water" Appl. Surf. Sci. 571 (2022) 8. https://doi.org/10.1016/j.apsusc.2021.151370 [128] M.I. Zaki, M.A. Hasan, and L. Pasupulety. "In situ FTIR spectroscopic study of 2-propanol adsorptive and catalytic interactions on metal-modified aluminas" Langmuir 17 (2001) 4025-4034. https://doi.org/10.1021/la001810r [129] S.A. Fuente, C.A. Ferretti, N.F. Domancich, V.K. Diez, C.R. Apesteguia, J.I. Di Cosimo, R.M. Ferullo, and N.J. Castellani. "Adsorption of 2-propanol on MgO surface: A combined experimental and theoretical study" Appl. Surf. Sci. 327 (2015) 268-276. https://doi.org/10.1016/j.apsusc.2014.11.159 [130] F.A. Rabuffetti, P.C. Stair, and K.R. Poeppelmeier. "Synthesis-dependent surface acidity and structure of SrTiO3 nanoparticles" J. Phys. Chem. C 114 (2010) 11056-11067. https://doi.org/10.1021/jp101727c [131] N.C. Nelson, B.W. Boote, P. Naik, A.J. Rossini, E.A. Smith, and Slowing, II. "Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation" J. Catal. 346 (2017) 180-187. https://doi.org/10.1016/j.jcat.2016.12.018 [132] L.F. da Silva, W. Avansi, J. Andres, C. Ribeiro, M.L. Moreira, E. Longo, and V.R. Mastelaro. "Long-range and short-range structures of cube-like shape SrTiO3 powders: microwave-assisted hydrothermal synthesis and photocatalytic activity" Phys. Chem. Chem. Phys. 15 (2013) 12386-12393. https://doi.org/10.1039/c3cp50643f [133] M.L. Moreira, V.M. Longo, W. Avansi, M.M. Ferrer, J. Andres, V.R. Mastelaro, J.A. Varela, and E. Longo. "Quantum mechanics insight into the microwave nucleation of SrTiO3 nanospheres" J. Phys. Chem. C 116 (2012) 24792-24808. https://doi.org/10.1021/jp306638r [134] V. Dwij, B.K. De, S. Tyagi, G. Sharma, and V. Sathe. "Fano resonance and relaxor behavior in Pr doped SrTiO3: A Raman spectroscopic investigation" Physica B: Condensed Matter 620 (2021) 9. https://doi.org/10.1016/j.physb.2021.413265 [135] R. Ranjan, R. Hackl, A. Chandra, E. Schmidbauer, D. Trots, and H. Boysen. "High-temperature relaxor ferroelectric behavior in Pr-doped SrTiO(3)" Phys. Rev. B 76 (2007) 6. https://doi.org/10.1103/PhysRevB.76.224109 [136] V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, M. Savinov, P. Samoukhina, T. Ostapchuk, J. Pokorny, M. Avdeev, A. Kholkin, and P. Vilarinho. "Broad-band dielectric spectroscopy of SrTiO3 : Bi ceramics" Phys. Rev. B 69 (2004) 10. https://doi.org/10.1103/PhysRevB.69.144104 [137] I. Atkinson, V. Parvulescu, J.P. Cusu, E.M. Anghel, M. Voicescu, D. Culita, S. Somacescu, C. Munteanu, M. Scepanovic, Z.V. Popovic, and V. Fruth. "Influence of preparation method and nitrogen (N) doping on properties and photo-catalytic activity of mesoporous SrTiO3" J. Photochem. Photobiol. A: Chem. 368 (2019) 41-51. https://doi.org/10.1016/j.jphotochem.2018.09.019 [138] M.I. Zaki, G.A.M. Hussein, H.A. Elammawy, S.A.A. Mansour, J. Polz, and H. Knozinger. "Effect of foreign ion additives on ceria surface reactivity towards isopropanol adsorption and decomposition - an infrared investigation" J. Mol. Catal. 57 (1990) 367-378. https://doi.org/10.1016/0304-5102(90)85010-f [139] Z.L. Wu, M.J. Li, D.R. Mullins, and S.H. Overbury. "Probing the surface sites of CeO2 nanocrystals with well-defined surface planes via methanol adsorption and desorption" ACS Catal. 2 (2012) 2224-2234. https://doi.org/10.1021/cs300467p [140] M. Tamura, A. Satsuma, and K. Shimizu. "CeO2-catalyzed nitrile hydration to amide: reaction mechanism and active sites" Catal. Sci. Technol. 3 (2013) 1386-1393. https://doi.org/10.1039/c3cy00033h [141] Y.Z. Hu, G.X. Zhao, Q.S. Pan, H.H. Wang, Z.W. Shen, B.X. Peng, G.W. Busser, X.K. Wang, and M. Muhler. "Highly selective anaerobic oxidation of alcohols over Fe-doped SrTiO3 under visible light" ChemCatChem 11 (2019) 5139-5144. https://doi.org/10.1002/cctc.201901451 [142] W.F. Kuan, W.Y. Yu, F.Y. Tu, C.H. Chung, Y.C. Chang, M.M. Lin, T.H. Yu, and L.J. Chen. "Facile reflux preparation of defective mesoporous ceria nanorod with superior catalytic activity for direct carbon dioxide conversion into dimethyl carbonate" Chem. Eng. J. 430 (2022) 11. https://doi.org/10.1016/j.cej.2021.132941 [143] Z.J. Gong, Y.R. Li, H.L. Wu, S.D. Lin, and W.Y. Yu. "Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst" Appl. Catal. B: Environ. 265 (2020) 118524. https://doi.org/10.1016/j.apcatb.2019.118524 [144] C.H. Chung, F.Y. Tu, T.A. Chiu, T.T. Wu, and W.Y. Yu. "Critical roles of surface oxygen vacancy in heterogeneous catalysis over ceria-based materials: A selected review" Chem. Lett. 50 (2021) 856-865. https://doi.org/10.1246/cl.200845 [145] J. Jupille, and G. Thornton. "Defects at oxide surfaces", Springer, Switzerland, 2015. https://doi.org/10.1007/978-3-319-14367-5 [146] X.D. Li, P. Jia, and T.F. Wang. "Furfural: A promising platform compound for sustainable production of C-4 and C-5 chemicals" ACS Catal. 6 (2016) 7621-7640. https://doi.org/10.1021/acscatal.6b01838 [147] X. Chang, A.F. Liu, B. Cai, J.Y. Luo, H. Pan, and Y.B. Huang. "Catalytic transfer hydrogenation of furfural to 2-methylfuran and 2-methyltetrahydrofuran over bimetallic copper-palladium catalysts" ChemSusChem 9 (2016) 3330-3337. https://doi.org/10.1002/cssc.201601122 [148] B.L. Li, L.L. Li, H. Sun, and C. Zhao. "Selective deoxygenation of aqueous furfural to 2-methylfuran over Cu-0/Cu2O center dot SiO2 sites via a copper phyllosilicate precursor without extraneous gas" ACS Sustain. Chem. Eng. 6 (2018) 12096-12103. https://doi.org/10.1021/acssuschemeng.8b02425 [149] Z.H. Zhang, C.X. Wang, X. Gou, H. Chen, K.Q. Chen, X.Y. Lu, P.K. Ouyang, and J. Fu. "Catalytic in-situ hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Cu-based catalysts with methanol as a hydrogen donor" Appl. Catal. A: Gen. 570 (2019) 245-250. https://doi.org/10.1016/j.apcata.2018.11.029 [150] S. Mhadmhan, A. Franco, A. Pineda, P. Reubroycharoen, and R. Luque. "Continuous flow selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran using highly active and stable Cu-Pd/reduced graphene oxide" ACS Sustain. Chem. Eng. 7 (2019) 14210-14216. https://doi.org/10.1021/acssuschemeng.9b03017 [151] T.J. Osinga, B.G. Linsen, and W.P. Vanbeek. "Determination of specific copper surface area in catalysts" J. Catal. 7 (1967) 277. https://doi.org/10.1016/0021-9517(67)90106-6 [152] J.J. Scholten, and J.A. Konvalinks. "Reaction of nitrous oxide with copper surfaces - application to determination of free-copper surface areas" Trans. Faraday Soc. 65 (1969) 2465. https://doi.org/10.1039/tf9696502465 [153] J.T. Scanion, and D.E. Willis. "Calculation of flame ionization detector relative response factors using the effective carbon number concept" J. Chromatogr. Sci. 23 (1985) 333-340. https://doi.org/10.1093/chromsci/23.8.333 [154] A.D. Jorgensen, K.C. Picel, and V.C. Stamoudis. "Prediction of gas-chromatography flame ionization detector response factors from molecular-structures" Anal. Chem. 62 (1990) 683-689. https://doi.org/10.1021/ac00206a007 [155] A.G. Sato, D.P. Volanti, D.M. Meira, S. Damyanova, E. Longo, and J.M.C. Bueno. "Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion" J. Catal. 307 (2013) 1-17. https://doi.org/10.1016/j.jcat.2013.06.022 [156] I.C. Freitas, S. Damyanova, D.C. Oliveira, C.M.P. Marques, and J.M.C. Bueno. "Effect of Cu content on the surface and catalytic properties of Cu/ZrO2 catalyst for ethanol dehydrogenation" J. Mol. Catal. A: Chem. 381 (2014) 26-37. https://doi.org/10.1016/j.molcata.2013.09.038 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83263 | - |
| dc.description.abstract | 本論文目標為開發觸媒用於催化轉移氫化反應(catalytic transfer hydrogenation, CTH)與醇類脫氫反應,並針對觸媒之物化與表面性質對催化表現的影響進行研究。首先,我們成功以釕金屬離子與雙邊的鄰二氮菲配體製備金屬超分子聚合物(Ru-MSP),並透過調整金屬/配體的比例與合成時間分別來調控Ru-MSP的配位結構與聚合程度。活性測試結果指出,在Ru-MSP觸媒中,Ru配位未飽和點(coordinatively unsaturated site)是催化CTH反應非常重要的活性位點,並且,Ru-MSP觸媒活性遠大於商售的Ru/C、RuCl3、Ru(DMSO)4Cl2和Ru(phen)2Cl2。根據DFT理論計算,Ru-MSP的Ru電子密度與電子親和力會隨著聚合度增加而提升,因此,我們認為Ru-MSP活性優異的原因是:(1)高電子密度的Ru原子,能有助於甲酸根上C-H鍵解離,以利於甲酸根的脫氫;(2)較低的LUMO能量(較高的電子親和力),有助於吸附與活化反應物上羰基的氧,以利於後續的氫化步驟。最適化的Ru-MSP觸媒有被證明有良好的穩定性、再利用性與泛用性。本研究結果證實了Ru-MSP觸媒是相當有潛力的異相觸媒,能用於含羰基化合物的CTH反應生成對應的醇類化合物。
第二部分,我們通過鹼性水熱法以平板狀的Bi4Ti3O12 (BIT)作為前趨物進行拓撲化學轉化,合成了具有不同鈦酸鍶(SrTiO3, STO)含量的異質結構BIT-STO平板顆粒。利用異丙醇(isopropanol, IPA)的程序升溫表面反應對BIT-STO的表面性質進行討論,發現所有BIT-STO觸媒在IPA脫氫(產生丙酮)中的選擇性皆高於IPA脫水(產生丙烯)反應。與水熱合成的STO和商售STO相比,BIT衍生的STO觸媒在IPA脫氫反應中表現出更高的活性和選擇性,這歸因於在拓撲化學轉化過程中形成的具有大量表面缺陷的(100)晶面。原位紅外光譜結果顯示,在IPA吸附後,BIT衍生的STO觸媒有更高比例的橋接異丙醇(IPO)存在於表面上。我們認為,BIT衍生的STO表面存在的大量氧空缺可以促進IPO中間體的橋接吸附,有利於進一步分解成丙酮,進而促進IPA選擇性脫氫。 第三部分,探討擔載銅觸媒之擔體對於CTH反應的影響,我們使用商售的ZrO2、Al2O3、TiO2和SiO2作為比較的擔體,以含浸法擔載銅金屬於擔體表面,以IPA作為氫源、羥甲基糠醛(5-hydroxymethylfurfural, HMF)為反應物生成二甲基呋喃(2,5-dimethylfuran, DMF),並透過一系列鑑定方法瞭解觸媒之物化性質、觸媒和反應物(HMF)之間的作用力、氫源(IPA)在觸媒表面的反應選擇性。結果指出,反應中間體2,5-呋喃二甲醇(2,5-bis(hydroxymethyl)furan, BHMF)的氫解為HMF生成DMF的瓶頸步驟,並且此步驟會同時與醚化以及脫水聚合反應進行競爭,在這四個Cu/MOx觸媒上的反應選擇性有顯著的不同,以Cu/ZrO2有最佳的目標氫解產物(DMF)選擇率。經由HMF-IR的分析,我們推測Cu/SiO2表面與HMF過強的作用力會抑制IPA的吸附,進而導致其難以催化HMF的氫化步驟。透過IPA-TPSR與CO-IR的結果,發現Cu/ZrO2與Cu/Al2O3相較於Cu/SiO2與Cu/TiO2有較低的表面金屬銅價態(電子較聚集),有助於IPA的脫氫反應,進而有較高的DMF選擇率。 | zh_TW |
| dc.description.abstract | The goal of this thesis is to develop catalysts for transfer hydrogenation and dehydrogenation of alcohols, and to study the effects of catalyst physicochemical and surface properties on catalytic performance. In the first part of this thesis, Ru-based metallo-supramolecular polymer (Ru-MSP) were successfully prepared from ruthenium metal ions and ditopic phenanthroline ligands, and the coordination structure and polymerization degree of Ru-MSP were tailored by tuning the ratio of metal/ligand and the synthesis period, respectively. The catalytic results showed that the coordinatively unsaturated Ru sites are found to be the critical active sites in Ru-MSP. The Ru-MSP catalysts are much more active than commercial Ru/C (heterogeneous catalyst), RuCl3, Ru(DMSO)4Cl2, and Ru(phen)2Cl2 (homogeneous catalysts). By DFT calculation, the Ru electron density and electron affinity of Ru-MSP will increase with the increase of polymerization degree. Therefore, we attribute the high CTH activity of Ru-MSP catalyst to (1) electron-enriched Ru ions that help the dissociation of C-H bonds on formate to facilitate the dehydrogenation of formate (hydrogen source), and (2) the lower lowest unoccupied molecular orbital (LUMO) that assists the adsorption of carbonyl oxygen (in the substrate). The optimized Ru-MSP catalyst displays stability, reusability and capability of catalyzing a wide scope of carbonyl compounds. The results of this report confirmed that Ru-MSP catalysts are promising candidates of heterogeneous catalysts, which can be used for the CTH reaction of carbonyl compounds selectively into their corresponding alcohols under ambient conditions.
In the second part of this thesis, we synthesized heterostructural Bi4Ti3O12-SrTiO3 (or BIT-STO) platelets with various STO contents by the topochemical conversion of BIT platelets via the alkaline hydrothermal treatment. The surface properties of synthesized BIT-STO platelets were probed by the temperature-programmed surface reaction of isopropanol (IPA). It is found that all BIT-STO catalysts show high selectivity in IPA dehydrogenation (to yield acetone) rather than IPA dehydration (to yield propene). Compared with the hydrothermally-synthesized STO and the commercial STO, The BIT-derived STO exhibits much higher activity and selectivity in IPA dehydrogenation, which is attributed to the desirable (100) facet with abundant surface defects formed during the topochemical conversion. In-situ infrared spectroscopy indicates that upon IPA adsorption, the BIT-derived STO shows a higher proportion of bridged isopropoxide (IPO) presents on the surface than the reference STO samples. It is proposed that the abundant oxygen vacancies present on the surface of BIT-derived STO could facilitate the bridged adsorption of IPO intermediate that favors further decomposition into acetone, thus promoting selective IPA dehydrogenation. In the third part of this thesis, we discussed the support effect of copper-supported catalysts on the CTH reaction. Commercially available ZrO2, Al2O3, TiO2, and SiO2 were used as supports, and Cu was loaded by the impregnation method. The IPA-assisted CTH of 5-hydroxymethylfurfural (HMF) to produce dimethylfuran (2,5-dimethylfuran, DMF) was used as the model reaction. The physicochemical properties of catalysts, the interaction between reactant (HMF) and catalysts, and the reaction selectivity of hydrogen source (IPA) on catalysts’ surface were characterized and discussed. The results indicated that the hydrogenolysis of the reaction intermediate, 2,5-bis(hydroxymethyl)furan (BHMF), was the bottleneck step for the production of DMF from HMF. Also, this step would be completed by etherification and dehydration polymerization reaction. The reaction selectivity on these four Cu/MOx catalysts is significantly different, with Cu/ZrO2 having the best target hydrogenolysis product (DMF) selectivity. Based on the analysis of HMF-IR, we suspect that the strong interaction between the Cu/SiO2 surface and HMF will inhibit the adsorption of IPA, which leads to the low activity of HMF hydrogenation. Through the results of IPA-TPSR and CO-IR, it is found that Cu/ZrO2 and Cu/Al2O3 have a lower valence of surface Cu (electron-enriched) than Cu/SiO2 and Cu/TiO2, which is helpful for the dehydrogenation of IPA reaction, and cause a higher DMF selectivity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-02-01T17:09:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-02-01T17:09:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iv ABSTRACT vi 目錄 viii 圖目錄 xi 表目錄 xvii 第一章 緒論 1 1.1 生質能衍生物的高值化 1 1.2 催化轉移氫化反應(Catalytic transfer hydrogenation) 3 1.3 甲酸作為氫源之催化轉移氫化反應 5 1.4 醇類為氫源之催化轉移氫化反應 11 第二章 製備釕金屬超分子聚合物做為異相觸媒應用於羰基之催化轉移氫化反應 13 2.1 研究背景與介紹 13 2.1.1 均相觸媒與異相觸媒的挑戰 13 2.1.2 金屬錯合物觸媒 14 2.1.3 金屬錯合物固定化觸媒 15 2.1.2 金屬錯合物聚合高分子 17 2.1.3 金屬超分子聚合物(metallo-supramolecular polymer) 18 2.2 研究方法 19 2.2.1 實驗藥品 20 2.2.2 觸媒製備 21 2.2.3 觸媒鑑定 24 2.2.4 觸媒活性測試與產物鑑定 29 2.2.5 DFT理論計算 30 2.3 研究結果 34 2.3.1 觸媒物化性質鑑定 34 2.3.2 觸媒活性測試 44 2.3.3 反應機制討論 49 2.3.4 觸媒穩定性、可重複性與泛用性測試 53 2.4 結論 64 第三章 以拓撲化學製備鈦酸鍶應用於異丙醇選擇性脫氫反應的表面研究 65 3.1 研究背景與介紹 65 3.1.1 鈣鈦礦 (perovskite) 65 3.1.2 異丙醇分解反應於鈦酸鍶的表面研究 67 3.1.3 拓樸化學(topochemical)合成法 69 3.2 研究方法 71 3.2.1 實驗藥品 71 3.2.2 觸媒製備 72 3.2.3 觸媒鑑定 73 3.2.4 表面鑑定 77 3.3 研究結果 81 3.3.1 拓樸化學製備BIT、BIT-STO和STO觸媒之比較 81 3.3.1.1 物化性質鑑定 81 3.3.1.2 IPA表面化學 85 3.3.2 拓樸化學製備之STO觸媒與其他STO觸媒的比較 90 3.3.2.1 IPA表面化學 92 3.3.2.2 STO關鍵性質與IPA反應機制討論 96 3.4 結論 106 第四章 擔載銅觸媒之擔體對於催化轉移氫化反應的影響 107 4.1 研究背景與介紹 107 4.2 研究方法 109 4.2.1 實驗藥品 109 4.2.2 觸媒製備 110 4.2.3 觸媒鑑定 110 4.2.4 觸媒活性測試與產物鑑定 112 4.3 研究結果 115 4.3.1 觸媒物化性質鑑定 115 4.3.2 觸媒活性測試與機制討論 121 4.4 結論 128 第五章 總結與未來展望 129 參考文獻 131 發表與獲獎 143 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 轉移氫化反應 | zh_TW |
| dc.subject | 擔體效應 | zh_TW |
| dc.subject | 羰基還原反應 | zh_TW |
| dc.subject | 拓樸化學 | zh_TW |
| dc.subject | 異丙醇脫氫 | zh_TW |
| dc.subject | 鈦酸鍶 | zh_TW |
| dc.subject | 金屬超分子聚合物 | zh_TW |
| dc.subject | 異相觸媒 | zh_TW |
| dc.subject | support effect | en |
| dc.subject | transfer hydrogenation | en |
| dc.subject | heterogeneous catalyst | en |
| dc.subject | metallo-supramolecular polymer | en |
| dc.subject | carbonyl reduction | en |
| dc.subject | strontium titanate (SrTiO3) | en |
| dc.subject | topochemical | en |
| dc.subject | isopropanol dehydrogenation | en |
| dc.title | 開發觸媒用於催化轉移氫化與醇類脫氫反應 | zh_TW |
| dc.title | Development of Catalysts for Catalytic Transfer Hydrogenation and Alcohols Dehydrogenation Reaction | en |
| dc.title.alternative | Development of Catalysts for Catalytic Transfer Hydrogenation and Alcohols Dehydrogenation Reaction | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 黃炳照;林昇佃;吳紀聖;賴育英;康敦彥;李奕霈 | zh_TW |
| dc.contributor.oralexamcommittee | Bing-Joe Hwang;Shawn D. Lin;Jeffrey Chi-Sheng Wu;Yu-Ying Lai;Dun-Yen Kang;Yi-Pei Li | en |
| dc.subject.keyword | 轉移氫化反應,異相觸媒,金屬超分子聚合物,羰基還原反應,鈦酸鍶,拓樸化學,異丙醇脫氫,擔體效應, | zh_TW |
| dc.subject.keyword | transfer hydrogenation,heterogeneous catalyst,metallo-supramolecular polymer,carbonyl reduction,strontium titanate (SrTiO3),topochemical,isopropanol dehydrogenation,support effect, | en |
| dc.relation.page | 144 | - |
| dc.identifier.doi | 10.6342/NTU202300072 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-01-16 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2027-12-06 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0853230111094089.pdf 此日期後於網路公開 2027-12-06 | 10.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
