請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83244
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐善慧 | zh_TW |
dc.contributor.advisor | Shan-hui Hsu | en |
dc.contributor.author | 施宇峰 | zh_TW |
dc.contributor.author | Yu-Feng Shih | en |
dc.date.accessioned | 2023-02-01T17:02:31Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-02-01 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2023-01-10 | - |
dc.identifier.citation | [1] H. Shin, S. Jo, A.G. Mikos, Biomimetic Materials for Tissue Engineering, Biomaterials 24(24) (2003) 4353-4364.
[2] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, xxii PREFACE. [3] M.T.I. Mredha, H.H. Le, P. Trtik, J. Cui, I. Jeon, Anisotropic Tough Multilayer Hydrogels with Programmable Orientation, Materials Horizons 6(7) (2019) 1504-1511. [4] P. Calvert, Hydrogels for Soft Machines, Advanced materials 21(7) (2009) 743-756. [5] M.A. Haque, T. Kurokawa, J.P. Gong, Anisotropic Hydrogel Based on Bilayers: Color, Strength, Toughness, and Fatigue Resistance, Soft Matter 8(31) (2012) 8008-8016. [6] W. Kong, C. Wang, C. Jia, Y. Kuang, G. Pastel, C. Chen, G. Chen, S. He, H. Huang, J. Zhang, Muscle‐Inspired Highly Anisotropic, Strong, Ion‐Conductive Hydrogels, Advanced Materials 30(39) (2018) 1801934. [7] Y. Osada, J.P. Gong, Soft and Wet Materials: Polymer Gels, Advanced Materials 10(11) (1998) 827-837. [8] M.T.I. Mredha, I. Jeon, Biomimetic anisotropic hydrogels: Advanced fabrication strategies, extraordinary functionalities, and broad applications, Progress in Materials Science 124 (2022) 100870. [9] M.T.I. Mredha, Y.Z. Guo, T. Nonoyama, T. Nakajima, T. Kurokawa, J.P. Gong, A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures, Advanced Materials 30(9) (2018) 1704937. [10] M.T.I. Mredha, S.-G. Jeong, J.-K. Seon, I. Jeon, A diffusion-driven fabrication technique for anisotropic tubular hydrogels, Soft Matter 14(37) (2018) 7706-7713. [11] A.S. Crouch, D. Miller, K.J. Luebke, W. Hu, Correlation of anisotropic cell behaviors with topographic aspect ratio, Biomaterials 30(8) (2009) 1560-1567. [12] I. Mirza, S. Saha, Biocompatible anisotropic polymeric particles: synthesis, characterization, and biomedical applications, ACS Applied Bio Materials 3(12) (2020) 8241-8270. [13] M. Zhu, Y. Wang, S. Zhu, L. Xu, C. Jia, J. Dai, J. Song, Y. Yao, Y. Wang, Y. Li, Anisotropic, transparent films with aligned cellulose nanofibers, Advanced Materials 29(21) (2017) 1606284. [14] K. Nie, Z. Wang, R. Tang, L. Zheng, C. Li, X. Shen, Q. Sun, Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing, ACS Applied Materials & Interfaces 12(38) (2020) 43024-43031. [15] G.M. Vlăsceanu, M. Ioniță, C.C. Popescu, E.D. Giol, I. Ionescu, A.-M. Dumitrașcu, M. Floarea, I. Boerasu, M.I. Necolau, E. Olăreț, Chitosan-Based Materials Featuring Multiscale Anisotropy for Wider Tissue Engineering Applications, International Journal of Molecular Sciences 23(10) (2022). [16] T. Li, C. Chen, A.H. Brozena, J. Zhu, L. Xu, C. Driemeier, J. Dai, O.J. Rojas, A. Isogai, L. Wågberg, Developing fibrillated cellulose as a sustainable technological material, Nature 590(7844) (2021) 47-56. [17] K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang, R. Zhang, H. Li, H. Xie, X. Zhang, M. Ma, Recent advances in cellulose and its derivatives for oilfield applications, Carbohydrate Polymers 259 (2021) 117740. [18] A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, S. Goswami, Commercial application of cellulose nano-composites–A review, Biotechnology Reports 21 (2019) e00316. [19] H. Seddiqi, E. Oliaei, H. Honarkar, J. Jin, L.C. Geonzon, R.G. Bacabac, J. Klein-Nulend, Cellulose and its derivatives: Towards biomedical applications, Cellulose 28(4) (2021) 1893-1931. [20] I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose 17(3) (2010) 459-494. [21] K. Abe, H. Yano, Formation of Hydrogels from Cellulose Nanofibers, Carbohydrate Polymers 85(4) (2011) 733-737. [22] P. Tang, H. Yan, L. Chen, Q. Wu, T. Zhao, S. Li, H. Gao, M. Liu, Anisotropic Nanocomposite Hydrogels with Enhanced Actuating Performance through Aligned Polymer Networks, Science China Materials (2020) 1-10. [23] D. Ye, X. Lei, T. Li, Q. Cheng, C. Chang, L. Hu, L. Zhang, Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films, ACS nano 13(4) (2019) 4843-4853. [24] L. Zhou, Z. Xu, Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents, Journal of hazardous materials 388 (2020) 121804. [25] W. Yang, Z. Zhao, K. Wu, R. Huang, T. Liu, H. Jiang, F. Chen, Q. Fu, Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding, Journal of Materials Chemistry C 5(15) (2017) 3748-3756. [26] C. Zheng, Y. Yue, L. Gan, X. Xu, C. Mei, J. Han, Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels, Nanomaterials 9(7) (2019) 937. [27] Y. Jiao, K. Lu, Y. Lu, Y. Yue, X. Xu, H. Xiao, J. Li, J. Han, Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel, Cellulose 28(7) (2021) 4295-4311. [28] M. Rinaudo, Chitin and chitosan: Properties and applications, Progress in polymer science 31(7) (2006) 603-632. [29] W. Wang, Q. Meng, Q. Li, J. Liu, M. Zhou, Z. Jin, K. Zhao, Chitosan derivatives and their application in biomedicine, International journal of molecular sciences 21(2) (2020) 487. [30] M. Maruthapandi, K. Sharma, J.H. Luong, A. Gedanken, Antibacterial activities of microwave-assisted synthesized polypyrrole/chitosan and poly (pyrrole-N-(1-naphthyl) ethylenediamine) stimulated by C-dots, Carbohydrate polymers 243 (2020) 116474. [31] B. Bagheri, P. Zarrintaj, A. Samadi, R. Zarrintaj, M.R. Ganjali, M.R. Saeb, M. Mozafari, O.O. Park, Y.C. Kim, Tissue engineering with electrospun electro-responsive chitosan-aniline oligomer/polyvinyl alcohol, International journal of biological macromolecules 147 (2020) 160-169. [32] Z. Zheng, S. Bian, Z. Li, Z. Zhang, Y. Liu, X. Zhai, H. Pan, X. Zhao, Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing, Carbohydrate Polymers 249 (2020) 116826. [33] S. Yamada, K. Sugahara, S. Özbek, Evolution of glycosaminoglycans: Comparative biochemical study, Communicative & integrative biology 4(2) (2011) 150-158. [34] J. Xu, C.-Y. Fu, Y.-L. Tsai, C.-W. Wong, S.-h. Hsu, Thermoresponsive and conductive chitosan-polyurethane biocompatible thin films with potential coating application, Polymers 13(3) (2021) 326. [35] X. Li, R. Yu, Y. He, Y. Zhang, X. Yang, X. Zhao, W. Huang, Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing, ACS Macro Letters 8(11) (2019) 1511-1516. [36] C.-T. Hsieh, S.-h. Hsu, Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D bioprinting, ACS applied materials & interfaces 11(36) (2019) 32746-32757. [37] R.-D. Chen, C.-F. Huang, S.-h. Hsu, Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications, Carbohydrate polymers 212 (2019) 75-88. [38] S.-h. Hsu, L.-G. Dai, Y.-M. Hung, N.-T. Dai, Evaluation and characterization of waterborne biodegradable polyurethane films for the prevention of tendon postoperative adhesion, International Journal of Nanomedicine 13 (2018) 5485. [39] Y.-J. Huang, K.-C. Hung, H.-S. Hung, S.-h. Hsu, Modulation of macrophage phenotype by biodegradable polyurethane nanoparticles: possible relation between macrophage polarization and immune response of nanoparticles, ACS applied materials & interfaces 10(23) (2018) 19436-19448. [40] T.W. Lin, S.h. Hsu, Self‐Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan, Advanced Science 7(3) (2020) 1901388. [41] H.-L. Liu, S.A. Dai, K.-Y. Fu, S.-h. Hsu, Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane, International journal of nanomedicine 5 (2010) 1017. [42] C.-Y. Fu, W.-T. Chuang, S.-h. Hsu, A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory, ACS Applied Materials & Interfaces 13(8) (2021) 9702-9713. [43] J. Xu, C.-W. Wong, S.-h. Hsu, An injectable, electroconductive hydrogel/scaffold for neural repair and motion sensing, Chemistry of Materials 32(24) (2020) 10407-10422. [44] M.L. Auad, V.S. Contos, S. Nutt, M.I. Aranguren, N.E. Marcovich, Characterization of nanocellulose‐reinforced shape memory polyurethanes, Polymer International 57(4) (2008) 651-659. [45] C. Chen, D. Yu, Q. Yuan, M. Wu, Anisotropic, elastic cellulose nanofibril cryogel cross-linked by waterborne polyurethane with excellent thermal insulation performance, Cellulose (2022) 1-11. [46] S. Jiang, Y. Chen, G. Duan, C. Mei, A. Greiner, S. Agarwal, Electrospun nanofiber reinforced composites: A review, Polymer Chemistry 9(20) (2018) 2685-2720. [47] N.W. Karuri, S. Liliensiek, A.I. Teixeira, G. Abrams, S. Campbell, P.F. Nealey, C.J. Murphy, Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells, Journal of cell science 117(15) (2004) 3153-3164. [48] J. Xie, M.R. MacEwan, X. Li, S.E. Sakiyama-Elbert, Y. Xia, Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties, ACS nano 3(5) (2009) 1151-1159. [49] S.h. Hsu, C.H. Su, I.M. Chiu, A novel approach to align adult neural stem cells on micropatterned conduits for peripheral nerve regeneration: a feasibility study, Artificial Organs 33(1) (2009) 26-35. [50] Z.-y. Wang, E.Y. Teo, M.S.K. Chong, Q.-y. Zhang, J. Lim, Z.-y. Zhang, M.-h. Hong, E.-s. Thian, J.K.Y. Chan, S.-H. Teoh, Biomimetic three-dimensional anisotropic geometries by uniaxial stretch of poly (ɛ-caprolactone) films for mesenchymal stem cell proliferation, alignment, and myogenic differentiation, Tissue Engineering Part C: Methods 19(7) (2013) 538-549. [51] A. Saez, M. Ghibaudo, A. Buguin, P. Silberzan, B. Ladoux, Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates, Proceedings of the National Academy of Sciences 104(20) (2007) 8281-8286. [52] C.-F. Huang, J.-K. Chen, T.-Y. Tsai, Y.-A. Hsieh, K.-Y.A. Lin, Dual-functionalized Cellulose Nanofibrils Prepared through TEMPO-Mediated Oxidation and Surface-initiated ATRP, Polymer 72 (2015) 395-405. [53] Y. Wu, Y. Li, S. Luo, M. Lu, N. Zhou, D. Wang, G. Zhang, Multiscale elastic anisotropy of a shale characterized by cross-scale big data nanoindentation, International Journal of Rock Mechanics and Mining Sciences 134 (2020) 104458. [54] C. Freitas, R.H. Müller, Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions, International journal of pharmaceutics 168(2) (1998) 221-229. [55] W. Deng, Y. Tang, J. Mao, Y. Zhou, T. Chen, X. Zhu, Cellulose nanofibril as a crosslinker to reinforce the sodium alginate/chitosan hydrogels, International Journal of Biological Macromolecules 189 (2021) 890-899. [56] K.-C. Cheng, C.-F. Huang, Y. Wei, S.-h. Hsu, Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects, NPG Asia Materials 11(1) (2019) 1-17. [57] Q. Chen, B. Sochor, A. Chumakov, M. Betker, N.M. Ulrich, M.E. Toimil‐Molares, K. Gordeyeva, L.D. Söderberg, S.V. Roth, Cellulose‐Reinforced Programmable and Stretch‐Healable Actuators for Smart Packaging, Advanced Functional Materials (2022) 2208074. [58] Y. Zhou, S. Fu, L. Zheng, H. Zhan, Effect of nanocellulose isolation techniques on the formation of reinforced poly (vinyl alcohol) nanocomposite films, Express Polymer Letters 6(10) (2012). [59] L. Dai, Z. Long, X.h. Ren, H.b. Deng, H. He, W. Liu, Electrospun polyvinyl alcohol/waterborne polyurethane composite nanofibers involving cellulose nanofibers, Journal of Applied Polymer Science 131(22) (2014). [60] Y. Lin, W. Chen, L. Meng, D. Wang, L. Li, Recent advances in post-stretching processing of polymer films with in situ synchrotron radiation X-ray scattering, Soft Matter 16(15) (2020) 3599-3612. [61] O.H. Kwon, T. Ha, D.-G. Kim, B.G. Kim, Y.S. Kim, T.J. Shin, W.-G. Koh, H.S. Lim, Y. Yoo, Anisotropy-driven high thermal conductivity in stretchable poly (vinyl alcohol)/hexagonal boron nitride nanohybrid films, ACS applied materials & interfaces 10(40) (2018) 34625-34633. [62] S. Cheng, X. Li, Y. Zheng, D.M. Smith, C.Y. Li, Anisotropic ion transport in 2D polymer single crystal-based solid polymer electrolytes, Giant 2 (2020) 100021. [63] W. Choi, A. Abraham, J. Ko, J.G. Son, J. Cho, B.-I. Sang, B. Yeom, Anisotropic Alignment of Bacterial Nanocellulose Ionogels for Unconventionally High Combination of Stiffness and Damping, ACS Applied Materials & Interfaces 14(26) (2022) 30056-30066. [64] Z. Zhang, Y. Wang, Z. Chen, D. Xu, D. Zhang, F. Wang, Y. Zhao, Tailoring conductive inverse opal films with anisotropic elliptical porous patterns for nerve cell orientation, Journal of Nanobiotechnology 20(1) (2022) 1-11. [65] L. Li, C. Wu, Y. Ling, C. Hou, Q. Zhang, Y. Li, H. Shi, H. Wang, C. Li, S. Yin, A nanobrush-shearing strategy enabling the alignment of 1D nanomaterials for synchronous electrochromic actuators and controlled growth of neural stem cells, Materials Today Nano 20 (2022) 100256. [66] Z. Wang, S.H. Teoh, M. Hong, F. Luo, E.Y. Teo, J.K.Y. Chan, E.S. Thian, Dual-microstructured porous, anisotropic film for biomimicking of endothelial basement membrane, ACS applied materials & interfaces 7(24) (2015) 13445-13456. [67] Y. Xu, G. Shi, J. Tang, R. Cheng, X. Shen, Y. Gu, L. Wu, K. Xi, Y. Zhao, W. Cui, ECM-inspired micro/nanofibers for modulating cell function and tissue generation, Science advances 6(48) (2020) eabc2036. [68] W. Weng, J. Chi, X. Wang, K. Shi, F. Ye, Y. Zhao, Ellipsoidal porous patch with anisotropic cell inducing ability for inhibiting skin scar formation, Engineered Regeneration 3(3) (2022) 262-269. [69] F. Greco, T. Fujie, L. Ricotti, S. Taccola, B. Mazzolai, V. Mattoli, Microwrinkled conducting polymer interface for anisotropic multicellular alignment, ACS applied materials & interfaces 5(3) (2013) 573-584. [70] Y. Li, G. Huang, X. Zhang, L. Wang, Y. Du, T.J. Lu, F. Xu, Engineering cell alignment in vitro, Biotechnology advances 32(2) (2014) 347-365. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83244 | - |
dc.description.abstract | 聚胺酯是一種具有生物相容性的高分子彈性體,以其形成的複合材料也具有多樣的性質以及應用性,而殼聚醣是一種自然中含量豐富的天然衍生物,同時具有易於改質的特性,但聚氨酯-殼聚醣複合物仍舊受限於不足的強度以及有限的拉伸性。在此研究中,將奈米纖維素(CNFs)與聚氨酯-殼聚醣複合物進行結合,並製備出具有拉伸性以及各向異性的材料。首先將醛基修飾於生物可降解的聚氨酯鏈末端來形成雙醛基聚胺酯奈米粒子,加入CNFs來形成DP-CNF複合物交聯劑(DPF),再將此水性的DPF與殼聚糖水溶液進行混合來形成聚氨酯-纖維素-殼聚醣(DPFC)的三成份複合物。混合後,DPFC在約33分鐘時於室溫下行成水凝膠,證實了DPF其交聯能力。由DPFC混合物乾燥形成的薄膜能夠在60 ˚C下展現優異的拉伸性(~420.2%)。此外,透過應變-退火的步驟能形成各向異性的薄膜。在200%應變下退火的薄膜有約4.9的彈性各向異性比(elastic anisotropic ratio)。原位小角度/大角度散射分析(SAXS/WAXS)顯示應變-退火過程中微結構的重排以及對齊,進一步證實薄膜的各向異性性質。各向異性的複合物薄膜能夠誘導神經幹細胞的生長方向,也顯示了其具有仿生以及組織工程應用的潛力。 | zh_TW |
dc.description.abstract | Polyurethane is a family of biocompatible polymeric elastomers, and composites of polyurethane have versatile properties and applications. Chitosan is a naturally derived biodegradable polymer with abundancy and ease of chemical modification. Polyurethane-chitosan composites were recently developed but had insufficient strength and limited stretchability. In the current study, cellulose nanofibers (CNFs) were integrated in polyurethane-chitosan composites to prepare stretchable and anisotropic materials. Biodegradable polyurethane was first synthesized, end-capped with aldehyde to become dialdehyde polyurethane (DP) nanoparticles, and added with CNFs to prepare the DP-CNF composite crosslinker (DPF). The waterborne DPF crosslinker was then blended with chitosan solution to make polyurethane-CNF- chitosan (DPFC) ternary composites. After blending, DPFC may form hydrogel in ~33 min at room temperature, which confirmed crosslinking. Composite films cast and dried from the blends showed good elongation (~420.2%) at 60 ˚C. Anisotropic films were then generated by tension annealing with pre-strain. The annealed films with 200% pre- strain exhibited large elastic anisotropy with ~4.9 anisotropic ratio. In situ SAXS/WAXS analyses unveiled that rearrangement and alignment of the microstructure during tension annealing accounted for the anisotropy. The anisotropic composite films had the ability to orient the growth of neural stem cells and showed the potential for biomimetic and tissue engineering applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-02-01T17:02:31Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-02-01T17:02:31Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目錄 V 圖目錄 XI 表目錄 XIV 第一章 文獻回顧 1 1.1. 仿生材料(Biomimetic materials) 1 1.2. 各向異性材料(Anisotropic materials) 1 1.3. 纖維素(Cellulose) 2 1.4. 纖維素奈米纖維(Cellulose nanofiber) 2 1.5. 殼聚醣(Chitosan) 3 1.6. 生物可降解聚胺酯(Biodegradable polyurethane) 4 1.7. 水性生物可降解雙醛基聚胺酯奈米粒子交聯劑(Waterborne biodegradable dialdehyde polyurethane nanoparticle crosslinker) 4 1.8. 水性聚胺酯-CNF複合材料 5 1.9. 研究目的 6 第二章 研究方法 7 2.1. 研究架構 7 2.2. 纖維素奈米纖維(Cellulose nanofiber, CNF)的製備 8 2.3. 水性生物可降解雙醛基聚氨酯奈米粒子交聯劑(Waterborne biodegradable dialdehyde polyurethane nanoparticle crosslinker, DP)的製備 8 2.4. 水性生物可降解雙醛基聚氨酯奈米粒子-纖維素奈米纖維複合材料交聯劑(Waterborne biodegradable dialdehyde polyurethane nanoparticle-cellulose nanofiber composite crosslinker, DPF)的製備 9 2.5. DP交聯劑以及DPF複合材料交聯劑的表徵 10 2.5.1. 穿透式電子顯微鏡分析(Transmission electron microscopy, TEM) 10 2.5.2. 膠體滲透層析儀分析(Gel permeation chromatography, GPC) 11 2.5.3. 奈米粒徑分析儀(Nanoparticle analyzer) 11 2.6. DP-CMC(DPC)水凝膠以及DPF-CMC(DPFC)水凝膠製備與表徵 11 2.6.1. DPC水凝膠以及DPFC水凝膠製備 11 2.6.2. 流變學分析(Rheology analyses) 12 2.6.3. 注射實驗 13 2.6.4. 掃描式電子顯微鏡(Scanning electron microscope, SEM)分析 13 2.7. DPC薄膜、DPFC薄膜以及各向異性DPFC薄膜製備 13 2.7.1. DPC薄膜、DPFC薄膜製備 13 2.7.2. 各向異性DPFC薄膜製備 14 2.8. DPC薄膜、DPFC薄膜以及各向異性DPFC薄膜之表徵 14 2.8.1. 熱機械分析儀(Thermomechanical analyzer, TMA) 14 2.8.2. 拉力機(Tensile tester)分析 15 2.8.3. 動態機械分析儀(Dynamic mechanical analyzer, DMA) 16 2.8.4. 熱重分析儀(Thermogravimetric analyzer, TGA) 17 2.8.5. 微示差掃描熱卡分析儀(Differential scanning calorimetry, DSC) 17 2.8.6. X光繞射儀(X-ray diffractometer, XRD) 17 2.8.7. SEM分析 17 2.9. 原位小角度/廣角度X光散射分析(small angle/wide angle X-ray scattering, SAXS/WAXS) 18 2.9.1. 溫度變化原位小角度/廣角度X光散射分析 18 2.9.2. 以不同應變製備各向異性薄膜之原位小角度/廣角度X光散射分析 18 2.10. 細胞實驗 19 2.10.1. 細胞培養 19 2.10.2. 細胞於DPFC薄膜上之增殖 19 2.10.3. 細胞於各向異性DPFC薄膜上之型態 20 2.10.4. 細胞於各向異性DPFC薄膜上之型態走向(cell orientation)統計 20 2.11. 統計學分析 21 第三章 實驗結果 22 3.1. 水性聚胺酯交聯劑DP以及聚氨酯複合材料交聯劑DPF之表徵 22 3.1.1. 穿透式電子顯微鏡分析 22 3.1.2. 膠體滲透層析儀以及奈米粒徑分析儀分析 23 3.2. 表徵DPC和DPFC水凝膠 24 3.2.1. 流變性質測試 24 3.2.2. 注射性質測試 26 3.2.3. 掃描式電子顯微鏡分析 27 3.3. 表徵DPC、DPFC薄膜 28 3.3.1. 熱機械分析儀測試 28 3.3.2. 拉力機測試 29 3.3.3. 熱重分析儀測試 31 3.3.4. 微示差掃描熱卡分析儀測試 32 3.4. 優化以及表徵各向異性DPFC薄膜薄膜 33 3.4.1. 各向異性DPFC薄膜動態機械分析儀測試 33 3.4.2. 微示差掃描熱卡分析儀測試 34 3.4.3. X光繞射儀測試 36 3.4.4. 掃描式電子顯微鏡分析 37 3.5. DPFC薄膜之原位小角度/廣角度X光散射分析 40 3.5.1. 溫度變化原位小角度/廣角度X光散射分析 40 3.5.2. 應變-退火加工之應變變化原位小角度/廣角度X光散射分析 42 3.6. 細胞實驗測試 46 3.6.1. 神經幹細胞增殖測試 46 3.6.2. 神經幹細胞於各向異性DPFC薄膜上的型態分析 46 第四章 討論 48 4.1. 聚氨酯複合材料交聯劑DPF性質分析 48 4.2. DPFC水凝膠性質分析 48 4.3. DPFC薄膜性質分析及優化 49 4.4. 各向異性DPFC薄膜的優化以及性質分析 51 4.5. 薄膜之溫度變化原位小角度/廣角度分析 53 4.6. 退火態薄膜之應變變化原位小角度/廣角度分析 54 4.7. DPFC薄膜上含細胞之增殖率以及型態分析 55 4.8. DPF交聯劑和DPFC複合材料的限制 56 第五章 結論 58 References 59 | - |
dc.language.iso | zh_TW | - |
dc.title | 各向異性之生物可降解暨拉伸性殼聚醣-聚胺酯-奈米纖維素複合材料 | zh_TW |
dc.title | Stretchable and Biodegradable Chitosan-Polyurethane-Cellulose Nanofiber Composites as Anisotropic Materials | en |
dc.title.alternative | Stretchable and Biodegradable Chitosan-Polyurethane-Cellulose Nanofiber Composites as Anisotropic Materials | - |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蘇群仁;張書瑋;周佳靚 | zh_TW |
dc.contributor.oralexamcommittee | Chun-Jen Su;Shu-Wei Chang;Chia-Ching Chou | en |
dc.subject.keyword | 奈米纖維素,殼聚醣,聚胺酯,拉伸性薄膜,原位小角度/大角度散射分析, | zh_TW |
dc.subject.keyword | cellulose nanofiber,chitosan,polyurethane,stretchable films,in situ SAXS/WAXS, | en |
dc.relation.page | 66 | - |
dc.identifier.doi | 10.6342/NTU202300064 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-01-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0757230110509023.pdf 目前未授權公開取用 | 8.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。