請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83216完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王勝德 | zh_TW |
| dc.contributor.advisor | Sheng-De Wang | en |
| dc.contributor.author | 凌于凱 | zh_TW |
| dc.contributor.author | Yu-Kai Ling | en |
| dc.date.accessioned | 2023-01-10T17:23:26Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-10 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] H. Ahn, J. Kwak, S. Lim, H. Bang, H. Kim, and T. Moon. Ss-il: Separated softmax for incremental learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 844–853, 2021. [2] P.Buzzega,M.Boschini,A.Porrello,D.Abati,andS.Calderara.Darkexperiencefor general continual learning: a strong, simple baseline. Advances in neural information processing systems, 33:15920–15930, 2020. [3] H. Guo, Y. Mao, and R. Zhang. Mixup as locally linear out-of-manifold regulariza- tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3714–3722, 2019. [4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. [5] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2(7), 2015. [6] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017. [7] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009. [8] M.McCloskeyandN.J.Cohen.Catastrophicinterferenceinconnectionistnetworks: The sequential learning problem. In Psychology of learning and motivation, vol- ume 24, pages 109–165. Elsevier, 1989. [9] R. Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and forgetting functions. Psychological review, 97(2):285, 1990. [10] S.-A.Rebuffi,A.Kolesnikov,G.Sperl,andC.H.Lampert.icarl:Incrementalclassi- fier and representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 2001–2010, 2017. [11] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910, 2018. [12] A. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):123–146, 1995. [13] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning with deep generative replay. Advances in neural information processing systems, 30, 2017. [14] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. Advances in neural information processing systems, 29, 2016. [15] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu. Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 374–382, 2019. [16] G. Xu, Z. Liu, and C. C. Loy. Computation-efficient knowledge distillation via uncertainty-aware mixup. arXiv preprint arXiv:2012.09413, 2020. [17] F.Zenke,B.Poole,andS.Ganguli.Continuallearningthroughsynapticintelligence. In International Conference on Machine Learning, pages 3987–3995. PMLR, 2017. [18] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83216 | - |
| dc.description.abstract | 深度神經網路在經過持續學習會遭遇到災難性遺忘的問題,學習新知會影響舊知的保存,使得模型在舊任務的表現嚴重下滑,而經驗回放是透過儲存樣本,在接收到新任務的資料時同時進行回放訓練,為解決持續學習災難性遺忘的最有效的方法之一,但由於儲存空間的有限,每一個過去的任務只會儲存少量的資料,會遇到新舊資料不平衡的問題,因此本文提出透過混和數據增強的方式增加過去回放樣本的多樣性,另外基於困難度決定混和參數,消除由於隨機混和所造成的困難樣本模糊化的現象,所提出的方法可以直接應用在經驗回放之方法上,我們將方法實作在ER、DER、以及DER++上,並在split cifar-10、split cifar-100、split mini-ImageNet數據集上檢測我們的方法,實驗結果顯示,所提出的方法在沒有增加過多的計算資源下可以有效的提高平均正確率,並減輕了遺忘程度。 | zh_TW |
| dc.description.abstract | Deep neural networks suffer from the issue of catastrophic forgetting after continual learning, causing a sudden deterioration in performance when training on new tasks. Replay-based methods, which is one of the most effective solutions, alleviate catastrophic forgetting by replaying the subset of past data stored in memory buffer. However, due to the limited storage space, a small amount of past data can be stored, and there will form a data imbalance situation between old and new tasks. Hence, in this work, we tried to increase the diversity of past samples by mixup. In addition, we propose difficulty-aware mixup approach that modifies the mixing coefficient according to the distance between output logits and ground truth labels to reduce the ambiguity of hard examples. We implement our method on ER, DER, and DER++, and test it on split-CIFAR10, split-CIFAR100, and split-miniImagenet. The experimental result shows that the proposed method can effectively improve the average accuracy and reduce the forgetting without adding too many computing resources. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:23:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-10T17:23:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i 摘要 iii Abstract v Contents vii List of Figures ix List of Tables xi Chapter 1 Introduction 1 Chapter 2 Related Works 5 2.1 Continual learning 5 2.2 Data augmentation 6 Chapter 3 Approach 9 3.1 Problem formulation 9 3.2 Baseline method 10 3.2.1 ER 11 3.2.2 DER 11 3.2.3 DER++ 12 3.3 Mixup for experience replay 12 3.4 Difficulty-aware Mixup 13 Chapter 4 Experiments 17 4.1 Experiment setup 17 4.1.1 Dataset 17 4.1.2 Training 17 4.2 Evaluation metrics 18 4.3 Results 18 4.4 Analysis 21 4.4.1 Trend of average accuracy 21 4.4.2 New task bias 21 Chapter 5 Conclusion 25 References 27 | - |
| dc.language.iso | en | - |
| dc.subject | 數據增強 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 持續學習 | zh_TW |
| dc.subject | data augmentation | en |
| dc.subject | continual learning | en |
| dc.subject | deep learning | en |
| dc.title | 基於難易度感知之混合數據增強對於經驗回放持續學習之方法 | zh_TW |
| dc.title | Difficulty-Aware Mixup for Replay-based Continual Learning | en |
| dc.title.alternative | Difficulty-Aware Mixup for Replay-based Continual Learning | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 雷欽隆;王鈺強;余承叡 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Laung Lei;Yu-Chiang Wang;Cheng-Juei Yu | en |
| dc.subject.keyword | 持續學習,深度學習,數據增強, | zh_TW |
| dc.subject.keyword | continual learning,deep learning,data augmentation, | en |
| dc.relation.page | 29 | - |
| dc.identifier.doi | 10.6342/NTU202203783 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-27 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2209202200234000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 409.62 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
