請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83211
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王慧瑜蕭仁傑 | zh_TW |
dc.contributor.advisor | Hui-Yu WangJen-Chieh Shiao | en |
dc.contributor.author | 杜宗諺 | zh_TW |
dc.contributor.author | Zong-Yen Tu | en |
dc.date.accessioned | 2023-01-10T17:21:40Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-01-10 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected papers of hirotugu akaike (pp. 199-213). Springer, New York, NY. Allen, G. R. (1991). Damselfishes of the world. Allen, G. R., Erdmann, M. V., Randall, J. E., Ching, P., Rauzon, M. J., Hayashi, L. A., ... & Coste, M. (2013). Reef fishes of the East Indies. Philosophy East and West, 63(2). Angilletta Jr, M. J. (2006). Estimating and comparing thermal performance curves. Journal of Thermal Biology, 31(7), 541-545. Barneche, D. R., Rezende, E. L., Parravicini, V., Maire, E., Edgar, G. J., R, D. S., . . . Floeter, S. R. (2019). Body size, reef area and temperature predict global reef‐fish species richness across spatial scales. Global Ecology and Biogeography, 28(3), 315-327. Barton, K., & Barton, M. K. (2015). Package ‘mumin’. Version, 1(18), 439. Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H., Singmann, H., & Dai, B. (2015). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. 2014. Bay, L. K., Buechler, K., Gagliano, M., & Caley, M. J. (2006). Intraspecific variation in the pelagic larval duration of tropical reef fishes. Journal of Fish Biology, 68(4), 1206-1214. Bergenius, M. A., Meekan Mark, G., Robertson, R. D., & McCormick, M. I. (2002). Larval growth predicts the recruitment success of a coral reef fish. Oecologia, 131(4), 521-525. Brandl, S. J., Tornabene, L., Goatley, C. H., Casey, J. M., Morais, R. A., Côté, I. M., ... & Bellwood, D. R. (2019). Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science, 364(6446), 1189-1192. Brogan, M. W. (1994). Distribution and retention of larval fishes near reefs in the Gulf of California. MARINE ECOLOGY-PROGRESS SERIES, 115, 1-1. Campana, S. E. (1992). Otolith microstructure examination and analysis (pp. 73-100). D. K. Stevenson (Ed.). Department of Fisheries and Oceans. Carvalho, M. G., Moreira, C., Queiroga, H., Santos, P. T., & Correia, A. T. (2017). Pelagic larval duration, size at settlement and coastal recruitment of the intertidal blenny Lipophrys pholis. Journal of the Marine Biological Association of the United Kingdom, 97(1), 197-205. Chang, J., Rabosky, D. L., Smith, S. A., & Alfaro, M. E. (2019). An R package and online resource for macroevolutionary studies using the ray‐finned fish tree of life. Methods in Ecology and Evolution, 10(7), 1118-1124. Chiang, Y. P., Tzeng, H. Y., Lien-Siang, C. H. O. U., & Bain, A. (2021). Adaptation in a changing climate: The phenology of two closely related sympatric Ficus species in Taiwan. Taiwania, 66(4). Dias, M., Roma, J., Fonseca, C., Pinto, M., Cabral, H. N., Silva, A., & Vinagre, C. (2016). Intertidal pools as alternative nursery habitats for coastal fishes. Marine Biology Research, 12(4), 331-344. differences in the early life history of reef-associated fishes. Marine Ecology Progress Series 57, 187–205. Donelson, J. M., Munday, P. L., McCormick, M. I., Pankhurst, N. W., & Pankhurst, P. M. (2010). Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Marine Ecology Progress Series, 401, 233-243. Dotu, Y. (1955). Life history of a goby, Gobius poecilichthys Jordan et Snyder. Sci. Bull. Fac. Agric. Kyushu Univ., 15, 77-86. Douglas, M., Keck, B. P., Ruble, C., Petty, M., Shute, J. R., Rakes, P., & Hulsey, C. D. (2013). Pelagic larval duration predicts extinction risk in a freshwater fish clade. Biology Letters, 9(6), 20130672. Fowler, G. M., & Smith, S. J. (1983). Length changes in silver hake (Merluccius bilinearis) larvae: effects of formalin, ethanol, and freezing. Canadian Journal of Fisheries and Aquatic Sciences, 40(7), 866-870. Francis, M.P. (1994). Duration of larval and spawning periods inPagrus auratus (Sparidae) determined from otolith daily increments. Environ Biol Fish 39, 137–152. Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., & Jensen, O. P. (2019). Impacts of historical warming on marine fisheries production. Science, 363(6430), 979-983. Gleiber, M. R., Sponaugle, S., Robinson, K. L., & Cowen, R. K. (2020). Food web constraints on larval growth in subtropical coral reef and pelagic fishes. Marine Ecology Progress Series, 650, 19-36. Gregory, W. K. (1913). Convergence and applied phenomena in the mammalia. Rep Br Assoc Adv Sci, 83, 525-526. Griffiths, S.P. (2000), The use of clove oil as an anaesthetic and method for sampling intertidal rockpool fishes. Journal of Fish Biology, 57: 1453-1464. Hall, A. E., Vitale, L., & Kingsford, M. J. (2019). Planktonic larval duration, early growth, and the influence of dietary input on the otolith microstructure of 0RW1S34RfeSDcfkexd09rT2scolopsis bilineatus1RW1S34RfeSDcfkexd09rT2 (nemipteridae). Environmental Biology of Fishes, 102(4), 541-552. Ho, L., Wang, S., Shao, K., Chen, I., & Chen, H. (2020). A long-term monitoring dataset of fish assemblages in rocky tidepools on the northern coast of taiwan. Scientific Data, 7(1), 84. Huang, S. Y., Yen, J. Y., Wu, B. L., & Shih, N. W. (2020). Field observations of sediment transport across the rocky coast of east Taiwan: Impacts of extreme waves on the coastal morphology by Typhoon Soudelor. Marine Geology, 421, 106088. Hundt, P. J., Liddle, E. B., Nielsen, S. V., Pinto, B. J., & Gamble, T. (2019). Sex chromosomes and sex-specific molecular markers in indo-pacific combtooth blennies (blenniidae, istiblennius). Marine Ecology Progress Series, 627, 195. Kim, B. J., & An, J. H. (2007). New Korean record of the streaky rockskipper, Istiblennius dussumieri (Perciformes: Blenniidae). Korean Journal of Ichthyology, 19(2), 160-163. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2015). Package ‘lmertest’. R package version, 2(0), 734. Lobel, L. K. (2005). Field studies evaluating developmental and reproductive effects of chemical exposure in the coral reef fish, Abudefduf sordidus (Pomacentridae). University of Massachusetts Boston. Lucas, J. S. (1982). Quantitative studies of feeding and nutrition during larval development of the coral reef asteroid Acanthaster planci (L.). Journal of Experimental Marine Biology and Ecology, 65(2), 173-193. Luiz, O. J., Allen, A. P., Robertson, D. R., Floeter, S. R., Kulbicki, M., Vigliola, L., . . . Madin, J. S. (2013). Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proceedings of the National Academy of Sciences of the United States of America, 110(41), 16498. Marliave, J. B. (1986). Lack of planktonic dispersal of rocky intertidal fish larvae. Transactions of the American Fisheries Society, 115(1), 149-154. McLeod, I. M., Jones, R. E., Jones, G. P., Takahashi, M., & McCormick, M. I. (2015). Interannual variation in the larval development of a coral reef fish in response to temperature and associated environmental factors. Marine Biology, 162(12), 2379-2389. McLeod, I. M., McCormick, M. I., Munday, P. L., Clark, T. D., Wenger, A. S., Brooker, R. M., . . . Jones, G. P. (2015). Latitudinal variation in larval development of coral reef fishes: Implications of a warming ocean. Marine Ecology Progress Series, 521, 129-141. Mehraban, H. R., & Esmaeili, H. R. (2017). New geographical record of the lined rockskipper, Istiblennius lineatus (Valenciennes, 1836) from the Iranian coast of the Makran Sea (Teleostei, Blenniidae). Check List, 13(6), 743-746. Mihalitsis, M., Hemingson, C. R., Goatley, C. H. R., & Bellwood, D. R. (2021). The role of fishes as food: A functional perspective on predator–prey interactions. Functional Ecology, 35(5), 1109-1119. MITO, S. (1954). Breeding habits of a blennioid fish, Salarias enosimae. Japanese Journal of Ichthyology, 3(3-5), 144-152. Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743-756. Murase, A. (2013). Community structure and short temporal stability of a rockpool fish assemblage at Yaku-shima Island, southern Japan, northwestern Pacific. Ichthyological Research, 60(4), 312-326. Nagatomo, S., Machida, Y., & Endo, H. (2001). Growth-related changes in morphology and food habit of a blenny, Istiblennius edentulus, inhabiting rock pools at Shiranohana on Yokonami Peninsula, Kochi prefecture [Japan]. Bulletin of Marine Science and Fisferies-Kochi University (Japan). Nakabo T (2013) Fishes of Japan with pictorial keys to the species, 3rd edition. Tokai University Press. Nakamura, Y., Shibuno, T., & Yamaoka, K. (2012). Relationship between pelagic larval duration and abundance of tropical fishes on temperate coasts of japan. Journal of Fish Biology, 80(2), 346-357. O'Connor, M. I., Bruno, J. F., Gaines, S. D., Halpern, B. S., Lester, S. E., Kinlan, B. P., & Weiss, J. M. (2007). Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences, 104(4), 1266-1271. Ohlberger, J., Mehner, T., Staaks, G., & Hölker, F. (2012). Intraspecific temperature dependence of the scaling of metabolic rate with body mass in fishes and its ecological implications. Oikos, 121(2), 245-251. Okada, T., Ishihara, K., Murase, A., & Hino, T. (2015). A latitudinal gradient in the biogeographic compositions of rock pool fish assemblages on the Pacific coast of central Japan: an examination of the influence of the Kuroshio Current. Biogeography, 17, 1-11. Osborn, H. F. (1917). Heritage and habitus. Science, 45(1174), 660-661. O'Sullivan, R. J., Aykanat, T., Johnston, S. E., Kane, A., Poole, R., Rogan, G., . . . Reed, T. E. (2019). Evolutionary stasis of a heritable morphological trait in a wild fish population despite apparent directional selection. Ecology and Evolution, 9(12), 7096-7111. Pankhurst, N. W., & Munday, P. L. (2011). Effects of climate change on fish reproduction and early life history stages. Marine & Freshwater Research, 62(9), 1015-1026. Patzner, R. A. (Ed.). (2009). The biology of blennies. CRC Press. Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., FitzJohn, R. G., ... & Harmon, L. J. (2014). geiger v2. 0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics, 30(15), 2216-2218. Pepin, P. (1991). Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Canadian Journal of Fisheries and Aquatic Sciences CJFSDX, Vol.48, no.3, p 503-518, March 1991.12 Fig, 8 Tab, 135 Ref. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., & Maintainer, R. (2017). Package ‘nlme’. Linear and nonlinear mixed effects models, version, 3(1). Raventos, N., Torrado, H., Rohan, A., Alcoverro, T., & Macpherson, E. (2021). Temperature reduces fish dispersal as larvae grow faster to their settlement size. The Journal of Animal Ecology, 90(6), 1419-1432. Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in ecology and evolution, (2), 217-223. Robitzch, V. S. N., Lozano-Cortes, D., Kandler, N. M., Salas, E., & Berumen, M. L. (2016). Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the red sea. Marine Pollution Bulletin, 105(2), 566-574. Sanvicente-Añorve, L., Zavala-Hidalgo, J., Allende-Arandía, E., & Hermoso-Salazar, M. (2018). Larval dispersal in three coral reef decapod species: Influence of larval duration on the metapopulation structure. PLoS One, 13(3) Schilling, H. T., Everett, J. D., Smith, J. A., Stewart, J., Hughes, J. M., Roughan, M., . . . Suthers, I. M. (2020). Multiple spawning events promote increased larval dispersal of a predatory fish in a western boundary current. Fisheries Oceanography, 29(4), 309-323. Shafer, D. J. (1998). Early life history growth and settlement dynamics of a tropical reef fish (Gobiidae: Bathygobius coalitus). University of Hawai'i at Manoa. Spies, B. T., & Steele, M. A. (2016). Effects of temperature and latitude on larval traits of two estuarine fishes in differing estuary types. Marine Ecology Progress Series, 544, 243-255. Sponaugle, S. & Cowen, R. K. (1994). Larval durations and recruitment patterns of two Caribbean gobies (Gobiidae): contrasting early life histories in demersal spawners. Marine Biology 120, 133–143. Sponaugle, S., Grorud-Colvert, K., & Pinkard, D. (2006). Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish thalassoma bifasciatum in the florida keys. Marine Ecology Progress Series, 308, 1-15. Thia, J. A., Riginos, C., Liggins, L., Figueira, W. F., & McGuigan, K. (2018). Larval traits show temporally consistent constraints, but are decoupled from postsettlement juvenile growth, in an intertidal fish. The Journal of Animal Ecology, 87(5), 1353-1363. Thresher, R. E., & Brothers, E. B. (1989). Evidence of intra-and inter-oceanic regional differences in the early life history of reef-associated fishes. Marine Ecology Progress Series.Oldendorf, 57(2), 187-205. Victor, B. C., & Wellington, G. M. (2000). Endemism and the pelagic larval duration of reef fishes in the eastern pacific ocean. Marine Ecology Progress Series, 205, 241-248. Vigliola, L., & Meekan, M. G. (2009). The back-calculation of fish growth from otoliths. In Tropical fish otoliths: information for assessment, management and ecology (pp. 174-211). Springer, Dordrecht. Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and Community Ecology. Annual Review of Ecology and Systematics, 33, 475–505. Wellington, G. M., & Victor, B. C. (1989). Planktonic larval duration of one hundred species of pacific and atlantic damselfishes (pomacentridae). Marine Biology.Berlin, Heidelberg, 101(4), 557-567. Wen, C.K., Chen, L., & Shao, K. (2018). Regional and Seasonal Differences in Species Composition and Trophic Groups for Tidepool Fishes of a Western Pacific Island – Taiwan. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 23, 1-18. Wen, K. C., Shao, K. T., Ho, L. T., & Chen, L. S. (2005). A comparison between clove oil and rotenone for collecting subtropical intertidal fishes. 臺灣水產學會刊, 32(1), 29-39. White, G. E., Hose, G. C., & Brown, C. (2015). Influence of rock‐pool characteristics on the distribution and abundance of inter‐tidal fishes. Marine Ecology, 36(4), 1332-1344. Wilson, D. T., & McCormick, M. I. (1999). Microstructure of settlement-marks in the otoliths of tropical reef fishes. Marine Biology, 134(1), 29-41. Zong-Han Chan (2021) Interactive effects of allometric energy and temperature on larval growth for two subtropical reef fish species. Master of Science, National Taiwan University. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83211 | - |
dc.description.abstract | 早期生活史特徵的變異對族群的動態有深遠的影響。例如在環境和生物因子的影響下,仔魚期會產生變異,進而影響物種的成長和存活。然而,因為很少有研究比較環境和生物因子對仔魚期的相對影響,目前仍不清楚何者為影響仔魚期變異的重要因子。在這裡,我們進行了台灣北部和南部海岸潮間帶中6種小型底棲魚類的採樣並從耳石估計個體仔魚期,探討1) 溫度對種間和種內的仔魚期影響,並同時考慮台灣南北區域、孵化季節、體型大小的影響;2) 溫度與系統發育對仔魚期的影響。由於研究區域的緯度和季節包含大範圍的溫度梯度 (15.4-30.7°C ),我們認為溫度對種內仔魚期的影響會因為區域和孵化季節而不同: 即溫度對種內仔魚期的影響在南部與北部 (或暖季與涼季) 會有不同的趨勢。在考慮溫度的影響下,體型和親緣關係也會影響仔魚期: 即較小的物種會擁有較短的仔魚期,且親緣關係影響物種間仔魚期的相似性。本研究發現溫度對6種珊瑚礁魚 (Abudefduf sordidus, Bathygobius fuscus, Bathygobius cocosensis, Istiblennius edentulous, Istiblennius lineatus, Praealticus striatus ) 的種內仔魚期影響均一致,但溫度升高的效應在南部或暖季為延長仔魚期 (南部斜率為0.001 (暖季為0.01 天/°C));而升溫的效應在北部或涼季為縮短仔魚期 (北部斜率為 -0.005 (涼季為 -0.002 天/°C))。此外,在考慮溫度影響下,體型大小和親緣關係並不能進一步解釋物種間的仔魚期變異。這些結果表明環境與季節的溫度變異對仔魚期有不同影響,特別在暖季時的升溫會導致仔魚期有較大程度的延長,此不同的季節升溫影響是否產生不同的族群動態需要進一步評估。本研究透過了解仔魚期對溫度變化的敏感性,將可提升預測海洋暖化對珊瑚礁魚的影響。 | zh_TW |
dc.description.abstract | Variation in early life-history traits has profound effects on population dynamics. For example, pelagic larval durations (PLDs), which change under the environmental and biological influences, determine growth and survival of fish. However, as few studies compare the effects of environmental and biological factors on PLDs, it remains unclear the relative effects of these factors on variability of PLDs. Here, we surveyed 6 small benthic fish (Abudefduf sordidus, Bathygobius fuscus, Bathygobius cocosensis, Istiblennius edentulous, Istiblennius lineatus, Praealticus striatus) in the intertidal zone of the northern and southern coasts of Taiwan (ST and NT), estimating PLDs of individual fish based on otoliths. We explored: 1) the effects of temperature on interspecific and intraspecific PLDs, accounting for the effects of regions, hatching seasons, and body size; 2) the effects of temperature and phylogeny on PLDs. Since the latitudes and seasons of our study design encompass a broad range of temperature (15.4-30.7°C), we hypothesize that the effects of temperature on intraspecific PLDs vary between regions and hatching seasons: that is, the effect of temperature on intraspecific PLDs vary between ST vs. NT (or warm vs. cool season). Body size and phylogeny may also affect PLDs when temperature is considered: i.e., smaller species have shorter PLDs, and that similarity of PLDs may resemble the phylogenetic relationships among species. Our analysis shows a consistent effect of temperature on the intraspecific PLDs of the 6 species . However, the effect of increasing temperature on PLDs was positive in ST (or warm season) (slope of ST was 0.001 (0.01 in the warm season days/°C)) but negative in NT (or cool season) (slope of NT was -0.005 (cool season was -0.002 days/°C)). In addition, body size and phylogeny did not further explain variation of PLDs among species when accounting for temperature. These results indicate that rising temperature in the warm season may lead to prolonged PLDs for our study fishes. Whether such differential temperature effects lead to different population dynamics between seasons require to be assessed. Through investigating the sensitivity of PLDs to temperature, our research will advance forecasting of the impact of ocean warming on coral reef fish. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:21:40Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-01-10T17:21:40Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 i 英文摘要 ii 前言 1 魚類早期生活史的重要性 1 溫度變化對仔魚期的影響 1 不同物種仔魚期的變化 2 利用物種親緣關係來量化物種間的差異 2 台灣沿岸的環境和珊瑚礁魚類 3 研究目的與假設 4 材料與方法 5 採樣地點和魚類採集 5 魚種鑑定 5 生物特徵和耳石測量 6 溫度資料 8 統計分析 8 系統發育廣義最小二乘法模型 9 結果 11 潮池魚種孵化季節與溫度變化 11 潮池魚種的仔魚期空間與季節的變化 11 溫度對潮池魚種的仔魚期的影響 12 潮池魚種間仔魚期的變異與沉降體長的關係 12 親緣關係對物種仔魚期的影響 12 討論 14 物種內仔魚期季節和空間的變化 14 溫度在季節與空間的改變下對珊瑚礁魚種內仔魚期的影響 15 沉降體長和親緣關係對珊瑚礁魚種間仔魚期的影響 15 結論 16 參考文獻 17 圖 24 表格 38 附錄 46 | - |
dc.language.iso | zh_TW | - |
dc.title | 地區與季節的溫度對仔魚期的不同影響: 以臺灣珊瑚礁魚為例 | zh_TW |
dc.title | Temperature effects on larval durations vary between regions and seasons: based on reef fishes in Taiwan | en |
dc.title.alternative | Temperature effects on larval durations vary between regions and seasons: based on reef fishes in Taiwan | - |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 沈聖峰 | zh_TW |
dc.contributor.oralexamcommittee | Sheng-Feng Shen | en |
dc.subject.keyword | 珊瑚礁魚類,入添,仔魚浮游期,溫度變化,系統發育最小二乘法模型, | zh_TW |
dc.subject.keyword | reef fish,recruitment,pelagic larval duration,temperature,phylogenetic generalized least square, | en |
dc.relation.page | 48 | - |
dc.identifier.doi | 10.6342/NTU202204252 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-10-13 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0410202214202400.pdf | 2.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。