Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83208
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊文議zh_TW
dc.contributor.advisorWen-I Chuangen
dc.contributor.author楊喬宇zh_TW
dc.contributor.authorChiao-Yu Yangen
dc.date.accessioned2023-01-10T17:20:37Z-
dc.date.available2023-11-10-
dc.date.copyright2023-01-10-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationReference
[1] Amihud, Y. (2002). "Illiquidity and stock returns: cross-section and time-series effects." Journal of Finance Markets 5(1): 31-56.

[2] Ang, A., et al. (2006). "The cross‐section of volatility and expected returns." Journal of Finance 61(1): 259-299.

[3] Bali, T. G., et al. (2011). "Maxing out: Stocks as lotteries and the cross-section of expected returns." Journal of Finance Economics 99(2): 427-446.

[4] Bali, T. G. and A. Hovakimian (2009). "Volatility spreads and expected stock returns." Management Science 55(11): 1797-1812.

[5] Black, F. (1975). "Fact and fantasy in the use of options." Financial Analysts Journal 31(4): 36-41.

[6] Chan, K., et al. (1993). "Why option prices lag stock prices: A trading‐based explanation." Journal of Finance 48(5): 1957-1967.

[7] Cremers, M. and D. Weinbaum (2010). "Deviations from put-call parity and stock return predictability." Journal of Financial and Quantitative Analysis 45(2): 335-367.

[8] Doran, J. S. and K. Krieger (2010). "Implications for asset returns in the implied volatility skew." Financial Analysts Journal 66(1): 65-76.

[9] Doran, J. S., et al. (2007). "Is there information in the volatility skew?" Journal of Futures Markets: Futures, Options, and Other Derivative Products 27(10): 921-959.

[10] Easley, D., et al. (1998). "Option volume and stock prices: Evidence on where informed traders trade." Journal of Finance 53(2): 431-465.

[11] Ferhati, T. (2020). "Svi model free wings."

[12] Gatheral, J. (2004). "A parsimonious arbitrage-free implied volatility parameterization with application to the valuation of volatility derivatives." Presentation at Global Derivatives & Risk Management, Madrid: 0.

[13] Giot, P. (2005). "Relationships between implied volatility indexes and stock index returns." Journal of Portfolio Management 31(3): 92-100.

[14] Guo, B., et al. (2014). "The Nelson–Siegel model of the term structure of option implied volatility and volatility components." Journal of Futures Markets 34(8): 788-806.

[15] Keim, D. B. and A. Madhavan (1998). "The cost of institutional equity trades." Financial Analysts Journal 54(4): 50-69.

[16] Lee, R. W. (2004). "The moment formula for implied volatility at extreme strikes." Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 14(3): 469-480.

[17] Nelson, C. R. and A. F. Siegel (1987). "Parsimonious Modeling of Yield Curves." Journal of Business 60(4): 473-489.

[18] Ofek, E., et al. (2004). "Limited arbitrage and short sales restrictions: Evidence from the options markets." Journal of Financial Economics 74(2): 305-342.

[19] Stephan, J. A. and R. E. Whaley (1990). "Intraday price change and trading volume relations in the stock and stock option markets." Journal of Finance 45(1): 191-220.

[20] Xing, Y., et al. (2010). "What does the individual option volatility smirk tell us about future equity returns?" Journal of Financial and Quantitative Analysis 45(3): 641-662.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83208-
dc.description.abstract不少文獻說明隱含波動度偏斜和買賣權波動度的差異對於股票未來報酬的預測性。本研究試圖利用 Stochastic Volatility Inspired 隱含波動率曲線改善利用特定執行價對現貨價格比例的建立隱含波動度的偏斜衡量的方式。我們使用的公式可以很好的擬合現有的波動度資料。在 1996 到 2019 的標普 500 成分股公司中,我們發現負偏向的波動度曲線對資產報酬有正相關。另一方面,以本論文提出的波動度尋找方式建立隱含波動度的偏斜衡量,可以達到更好的效果。本研究說明文獻中提供的特定執行價對現貨價格比例並不是建立偏斜衡量的唯一方式,也沒有發現最佳比例。同時投資人對於行權價與當前股價之間的最小價格區間數是具有敏感性的。zh_TW
dc.description.abstractAbundant literatures have demonstrated the predictive power of the implied volatility skew and the call-put volatility spread for future stock returns. This study attempts to use smoothing curves to facilitate the use of the information of the implied volatilities corresponding to specific strike-to-spot prices. I employ the Stochastic Volatility Inspired (SVI) model fits empirical volatility data well and obtain the SVI IV (implied volatility) curve. Among S&P 500 companies from 1996 to 2019, This study find that a negatively skewed volatility smile is positively correlated with asset returns. On the other hand, it can achieve better results by establishing the skew measure of implied volatility with the volatility finding method proposed in this paper. This study illustrates that the specific strike-to-spot ratios provided in the literature are not the only way to establish the skew measures, and no optimal ratio has been found. Thus, investors are sensitive to the step size of the option’s distance from the current stock price.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:20:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-10T17:20:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS
摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
Chapter 3 Data and Methodology 7
3.1 Data 7
3.2 Methodology 7
3.2.1 Construction of Implied Volatility Measures 7
3.2.2 Stochastic Volatility Inspired (SVI) Model 9
3.2.4 Calibration for SVI model 12
3.2.5 Five measures on SVI IV Curve–Fix or Float Moneyness 14
3.2.6 Construct the five factors based on strike price interval 15
3.2.7 Testing Effectiveness of Each Option-Based Measure 16
3.2.8 Examined Trading Strategy 18
Chapter 4 Empirical Results 19
4.1 Descriptive Analyses 19
4.2 Single-Sorted Portfolio 26
4.3 Double-Sorted Portfolio 30
4.4 Characteristic Analyses 32
4.5 Trading Performance Over Time 36
Chapter 5 Conclusion 39
Reference 41
Appendix 43
-
dc.language.isoen-
dc.title以 Stochastic Volatility Inspired 模型為基礎的隱含波動度曲線來預測資產報酬zh_TW
dc.titlePredicting Asset Returns with Implied Variance Curves based on Stochastic Volatility Inspired Modelen
dc.title.alternativePredicting Asset Returns with Implied Variance Curves based on Stochastic Volatility Inspired Model-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.coadvisor王之彥zh_TW
dc.contributor.coadvisorJr-Yan Wangen
dc.contributor.oralexamcommittee繆維中zh_TW
dc.contributor.oralexamcommitteeWei-Chung Miaoen
dc.subject.keyword隱含波動率,zh_TW
dc.subject.keywordSVI,implied volatility,volatility skew,en
dc.relation.page53-
dc.identifier.doi10.6342/NTU202201719-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-10-18-
dc.contributor.author-college管理學院-
dc.contributor.author-dept財務金融學系-
dc.date.embargo-lift2027-07-26-
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  此日期後於網路公開 2027-07-26
1.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved