請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83193完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳嘉晉 | zh_TW |
| dc.contributor.advisor | Chia-Chin Chen | en |
| dc.contributor.author | 陳咨澔 | zh_TW |
| dc.contributor.author | Tzu Hao Chen | en |
| dc.date.accessioned | 2023-01-10T17:15:03Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-07 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1]Seeger, K. (2013). Semiconductor physics. Springer Science & Business Media [2]Sharma, A. K. (1996). Semiconductor Electronics. New Age International. [3]Singh, Y. (2013). Semiconductor devices. IK International Pvt Ltd. [4]Singleton, J. (2001). Band theory and electronic properties of solids (Vol. 2). Oxford University Press. [5]Hooton, I. E., & Jacobs, P. W. M. (1988). Ionic conductivity of pure and doped sodium chloride crystals. Canadian journal of chemistry, 66(4), 830-835. [6]Faraday, M. (1833). XX. Experimental researches in electricity.—fourth series. Philosophical Transactions of the Royal Society of London, (123), 507-522. [7]Tubandt, C., Eggert, S., & Schibbe, G. (1921). Über Elektrizitätsleitung in festen kristallisierten Verbindungen. Dritte Mitteilung. Über das elektrische Leitvermögen des Schwefelsilbers und Kupfersulfürs. Zeitschrift für anorganische und allgemeine Chemie, 117(1), 1-47. [8]Barbir, F., & Görgün, H. (2007). Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack. Journal of Applied Electrochemistry, 37(3), 359-365. [9]Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 16141. [10]Han, F., Westover, A. S., Yue, J., Fan, X., Wang, F., Chi, M., Leonard, D. N., Dudney, N. J., Wang, H., & Wang, C. (2019). High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy, 4(3), 187-196. [11]Brissot, C., Rosso, M., Chazalviel, J. N., & Lascaud, S. (1999). Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources, 81-82, 925-929. [12]Yahiro, H., Eguchi, Y., Eguchi, K., & Arai, H. (1988). Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. Journal of Applied Electrochemistry, 18(4), 527-531. [13]VanHandel, G. J., & Blumenthal, R. N. (1974). The Temperature and Oxygen Pressure Dependence of the Ionic Transference Number of Nonstoichiometric CeO [sub 2−x]. Journal of The Electrochemical Society, 121(9), 1198. [14]Wu, H., Chua, Y. S., Krungleviciute, V., Tyagi, M., Chen, P., Yildirim, T., & Zhou, W. (2013). Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. Journal of the American Chemical Society, 135(28), 10525-10532. [15]Peterson, G. W., DeCoste, J. B., Fatollahi-Fard, F., & Britt, D. K. (2014). Engineering UiO-66-NH2 for Toxic Gas Removal. Industrial & Engineering Chemistry Research, 53(2), 701-707. [16]Wiersum, A. D., Soubeyrand-Lenoir, E., Yang, Q., Moulin, B., Guillerm, V., Yahia, M. B., Bourrelly, S., Vimont, A., Miller, S., Vagner, C., Daturi, M., Clet, G., Serre, C., Maurin, G., & Llewellyn, P. L. (2011). An Evaluation of UiO-66 for Gas Based Applications Chemistry – An Asian Journal, 6(12), 3270-3280. [17]Castarlenas, S., Téllez, C., & Coronas, J. (2017). Gas separation with mixed matrix membranes was obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 526, 205-211. [18]Liu, X. (2020). Metal-organic framework UiO-66 membranes. Frontiers of Chemical Science and Engineering, 14(2), 216-232. [19]Zhang, X., Chen, A., Zhong, M., Zhang, Z., Zhang, X., Zhou, Z., & Bu, X.-H. (2019). Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electrochemical Energy Reviews, 2(1), 29-104. [20]Li, Y., Xu, Y., Yang, W., Shen, W., Xue, H., & Pang, H. (2018). MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage Small, 14(25), 1704435. [21]Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294-1314. [22]Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5), 456-462. [23]Kreuer, K.-D., Rabenau, A., & Weppner, W. (1982). Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors. Angewandte Chemie International Edition in English, 21(3), 208-209. [24]Bi, F., Zhang, X., Chen, J., Yang, Y., & Wang, Y. (2020). Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Applied Catalysis B: Environmental, 269, 118767. [25]Dhakshinamoorthy, A., Santiago-Portillo, A., Asiri, A. M., & Garcia, H. (2019). Engineering UiO-66 Metal-Organic Framework for Heterogeneous Catalysis. Chem CatChem, 11(3), 899-923. [26] Calvo, J. J., Angel, S. M., & So, M. C. (2020). Charge transport in metal–organic frameworks for electronics applications. APL Materials, 8(5), 050901. [27] Wang, Y.-S., Chen, Y.-C., Li, J.-H., & Kung, C.-W. (2019). Toward Metal–Organic Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese European Journal of Inorganic Chemistry, 2019(26), 3036-3044. [28] Kung, C.-W., Platero-Prats, A. E., Drout, R. J., Kang, J., Wang, T. C., Audu, C. O., Hersam, M. C., Chapman, K. W., Farha, O. K., & Hupp, J. T. (2018). Inorganic “Conductive Glass” Approach to Rendering Mesoporous Metal–Organic Frameworks Electronically Conductive and Chemically Responsive. ACS Applied Materials & Interfaces, 10(36), 30532-30540. [29]Sun, L., Campbell, M. G., & Dincă, M. (2016). Electrically Conductive Porous Metal–Organic Frameworks [https://doi.org/10.1002/anie.201506219]. Angewandte Chemie International Edition, 55(11), 3566-3579. [30]Sun, L., Park, S. S., Sheberla, D., & Dincă, M. (2016). Measuring and Reporting Electrical Conductivity in Metal–Organic Frameworks: Cd2(TTFTB) as a CaseStudy. Journal of the American Chemical Society, 138(44), 14772-14782. [31]Ela, A. H. A. E., & Afifi, H. H. (1979). Hopping transport in organic semiconductor system. Journal of Physics and Chemistry of Solids, 40(4), 257-259. [32]Ya-Rui, S., Hui-Ling, W., Ya-Ting, S., & Yu-Fang, L. (2017). Theoretical study of the charge transport mechanism in π-stacked systems of organic semiconductor crystals. CrystEngComm, 19(40), 6008-6019. [33]Xie, L. S., Skorupskii, G., & Dincă, M. (2020). Electrically Conductive Metal Organic Frameworks. Chemical Reviews, 120(16), 8536-8580. [34]Piscopo, C. G., Polyzoidis, A., Schwarzer, M., & Loebbecke, S. (2015). Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications. Microporous and Mesoporous Materials, 208, 30-35. [35]Ramsahye, N. A., Gao, J., Jobic, H., Llewellyn, P. L., Yang, Q., Wiersum, A. D., Koza, M. M., Guillerm, V., Serre, C., Zhong, C. L., & Maurin, G. (2014). Adsorption and Diffusion of Light Hydrocarbons in UiO-66(Zr): A Combination of Experimental and Modeling Tools. The Journal of Physical Chemistry C, 118(47), 27470-27482. [36]Zou, D., & Liu, D. (2019). Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Materials Today Chemistry, 12, 139-165. [37]Calbo, J., Golomb, M. J., & Walsh, A. (2019). Redox-active metal–organic frameworks for energy conversion and storage. Journal of Materials Chemistry A, 7(28), 16571-16597. [38]Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5), 456-462. [39]Kreuer, K.-D., Rabenau, A., & Weppner, W. (1982). Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors. Angewandte Chemie International Edition in English, 21(3), 208-209. [40]Schoenecker, P. M., Carson, C. G., Jasuja, H., Flemming, C. J. J., & Walton, K. S. (2012). Effect of Water Adsorption on Retention of Structure and Surface Area of Metal Organic Frameworks. Industrial & Engineering Chemistry Research, 51(18), 6513-6519. [41]Taylor, J. M., Dekura, S., Ikeda, R., & Kitagawa, H. (2015). Defect Control To Enhance Proton Conductivity in a Metal–Organic Framework. Chemistry of Materials, 27(7), 2286-2289. [42]Yang, F., Huang, H., Wang, X., Li, F., Gong, Y., Zhong, C., & Li, J.-R. (2015). Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses. Crystal Growth & Design, 15(12), 5827-5833. [43]Phang, W. J., Jo, H., Lee, W. R., Song, J. H., Yoo, K., Kim, B., & Hong, C. S. (2015). Superprotonic conductivity of a UiO‐66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angewandte Chemie, 127(17), 5231-5235. [44]Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850−13851. [45]Xu, H., Sommer, S., Broge, N. L. N., Gao, J., & Iversen, B. B. (2019). The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO-66 MOF Formation Chemistry-A European Journal, 25(8), 2051-2058. [46]Ramsahye, N. A., Gao, J., Jobic, H., Llewellyn, P. L., Yang, Q., Wiersum, A. D., .. & Maurin, G. (2014). Adsorption and diffusion of light hydrocarbons in UiO-66 (Zr): a combination of experimental and modeling tools. The Journal of Physical Chemistry C, 118(47), 27470-27482. [47]Thangadurai, V., & Weppner, W. (2005). Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction Advanced Functional Materials, 15(1), 107-112. [48]Lee, C., Dutta, P. K., Ramamoorthy, R., & Akbar, S. A. (2005). Mixed Ionic and Electronic Conduction in Li_3PO_4 Electrolyte for a CO_2 Gas Sensor. [49] Qian, X., Gu, N., Cheng, Z., Yang, X., Wang, E., & Dong, S. (2001). Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes. Electrochimica Acta, 46(12), 1829-1836. [50]Hebb, M. H. (1952). Electrical Conductivity of Silver Sulfide. The Journal of Chemical Physics, 20(1), 185-190. [51]Kreuer, K.-D., Dippel, T., Meyer, W., & Maier, J. (1992). Nafion® Membranes: Molecular Diffusion, Proton Conductivity and Proton Conduction Mechanism. MRS Online Proceedings Library, 293(1), 273-282. [52]Lee, J., Choe, I. R., Kim, Y.-O., Namgung, S. D., Jin, K., Ahn, H.-Y., Sung, T., Kwon, J.-Y., Lee, Y.-S., & Nam, K. T. (2017). Proton Conduction in a Tyrosine-Rich Peptide/Manganese Oxide Hybrid Nanofilm Advanced Functional Materials, 27(35), 1702185. [53]Amin, R., Balaya, P., & Maier, J. (2007). Anisotropy of Electronic and Ionic Transport in LiFePO4 Single Crystals. Electrochemical and Solid-State Letters, 10(1), A13. [54]Amin, R., Maier, J., Balaya, P., Chen, D. P., & Lin, C. T. (2008). Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics, 179(27), 1683-1687. [55]Wagner, C. (1953). Investigations on Silver Sulfide. The Journal of Chemical Physics, 21(10), 1819-1827. [56]Gerbig, O., Merkle, R., & Maier, J. (2013). Electron and Ion Transport In Li2O2. Advanced Materials, 25(22), 3129-3133. [57]Jamnik, J., & Maier, J. (1999). Treatment of the Impedance of Mixed Conductors Equivalent Circuit Model and Explicit Approximate Solutions. Journal of The Electrochemical Society, 146(11), 4183-4188. [58]Lee, J.-S., Jamnik, J., & Maier, J. (2009). Generalized equivalent circuits for mixed conductors: silver sulfide as a model system. Monatshefte für Chemie - Chemical Monthly, 140(9), 1113-1119. [59]Irvine, J. T. S., Sinclair, D. C., & West, A. R. (1990). Electroceramics: Characterization by Impedance Spectroscopy. Advanced Materials, 2(3), 132-138. [60]Maier, J. (2004). Physical chemistry of ionic materials: ions and electrons in solids. John Wiley & Sons. [61]Kluth, G. J., Sung, M. M., & Maboudian, R. (1997). Thermal Behavior of Alkylsiloxane Self-Assembled Monolayers on the Oxidized Si(100) Surface. Langmuir, 13(14), 3775-3780. [62]Zhang, W., Yan, Z., Gao, J., Tong, P., Liu, W., & Zhang, L. (2015). Metal–organic framework UiO-66 modified magnetite@silica core–shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples. Journal of Chromatography A, 1400, 10-18. [63]Miyamoto, M., Kohmura, S., Iwatsuka, H., Oumi, Y., & Uemiya, S. (2015). In situ solvothermal growth of highly oriented Zr-based metal organic framework UiO-66 film with monocrystalline layer . CrystEngComm, 17(18), 3422-3425 [64]O'Brien, F. E. (1948). The control of humidity by saturated salt solutions. Journal of Scientific Instruments, 25(3), 73. [65]Rockland, L. B. (1960). Saturated salt solutions for static control of relative humidity between 5° and 40° C. Analytical Chemistry, 32(10), 1375-1376. [66]Wexler, A., & Hasegawa, S. (1954). Relative Humidity-Temperature Relationships of Some Saturated Salt Solutions in the Temperature. Journal of research of the National Bureau of standards, 53(1), 19-26. [67]Jamnik, J., Maier, J., & Pejovnik, S. (1999). A powerful electrical network model for the impedance of mixed conductors. Electrochimica Acta, 44(24), 4139-4145. [68]Miccoli, I., Edler, F., Pfnür, H., & Tegenkamp, C. (2015). The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter, 27(22), 223201. [69]Musho, T. D., & Yasin, A. S. (2018). Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework. Journal of Electronic Materials, 47(7), 3692-3700. [70]De Vos, A., Hendrickx, K., Van Der Voort, P., Van Speybroeck, V., & Lejaeghere, K. (2017). Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering. Chemistry of Materials, 29(7), 3006-3019. [71]Shan, B., James, J. B., Armstrong, M. R., Close, E. C., Letham, P. A., Nikkhah, K., Lin, Y. S., & Mu, B. (2018). Influences of Deprotonation and Modulation on Nucleation and Growth of UiO-66: Intergrowth and Orientation. The Journal of Physical Chemistry C, 122(4), [72]Calbo, J., Golomb, M. J., & Walsh, A. (2019). Redox-active metal-organic frameworks for energy conversion and storage. Journal of Materials Chemistry A, 7(28), 16571-16597. [73] Miner, E. M., Wang, L., & Dincă, M. (2018). Modular O2 electroreduction activity in triphenylene-based metal–organic frameworks . Chemical Science, 9(29), 6286-6291. [74] Tang, B., Huang, S., Fang, Y., Hu, J., Malonzo, C., Truhlar, D. G., & Stein, A. (2016). Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes. The Journal of Chemical Physics, 144(19), 194702. [75]Yurash, B., Cao, D. X., Brus, V. V., Leifert, D., Wang, M., Dixon, A., Seifrid, M., Mansour, A. E., Lungwitz, D., Liu, T., Santiago, P. J., Graham, K. R., Koch, N., Bazan, G. C., & Nguyen, T. Q. (2019). Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nature materials, 18(12), 1327–1334 [76]Bauch, F., Dong, C.-D., & Schumacher, S. (2022). Protonation-induced charge transfer and polaron formation in organic semiconductors doped by Lewis acids. RSC Advances, 12(22), 13999-14006. [77]Shi, Q., Pei, Z., Song, J., Li, S.-J., Wei, D., Coote, M. L., & Lan, Y. (2022). Diradical Generation via Relayed Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 144(7), [78]Chen, C.-C., Navickas, E., Fleig, J., & Maier, J. (2018). Kinetics of Space Charge Storage in Composites. Advanced Functional Materials, 28(15), 1705999. [79]Maier, J. (1993). Mass Transport in the Presence of Internal Defect Reactions Concept of Conservative Ensembles: I, Chemical Diffusion in Pure Compounds. Journal of the American Ceramic Society, 76(5), 1212-1217. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83193 | - |
| dc.description.abstract | 有機金屬框架(Metal organic framework, MOF)是一種由金屬與有機分子互相配位自組裝而形成具有穩定重複結構的材料,MOF透過不同金屬離子與有機分子之間的配位,使其具有高可調節性,高孔洞性、高比表面、均勻孔洞大小的優異性質,使這種材料在催化、吸收、分離等應用上有極佳的表現。然而多數MOF為電子絕緣體,且無法穩定存在於水溶液中,使得其在電化學領域中的應用被大幅縮限。本研究以MOF家族中的UiO-66作為目標材料,其結構乃以鋯(zirconium)為金屬節點,與配位基(ligand)對苯二甲酸(H2BDC)鍵結而成,其獨特性為在水溶液中的高穩定性以及具備質子傳輸導電的能力。但另一方面UiO-66近絕緣的電子傳導限制了其在能源領域的應用。若能理解其傳輸機制,並加以調控材料的電子導電性,將可拓展UiO-66在能源應用的影響性。文獻一般認為UiO-66為質子導體,從本篇實驗結果得知,UiO-66 質子導電度隨著濕度上升增加了三個數量級,證實了其質子導電性質。令人意外的是,UiO-66的電子導電度也會隨著濕度大幅變化,高達四個數量級。在此研究中,我們首度發現UiO-66具備混合離子電子傳導特性,且其傳輸速度能夠透過外在環境調控,這種方式有別於傳統的方法,能更簡易而有效的改變MOF的材料特性。此外,我們量測了材料中的化學擴散係數,以理解材料中的電荷載子的傳輸情形。其中化學擴散係數也與外界濕度成高度相關且高達1x10-7 cm2 s-1。藉由本論文研究成果,我們除了更深入的了解MOF的導電傳輸機制,且成功控制MOF導電特性,未來將能大幅拓展MOF在能源領域的應用。 | zh_TW |
| dc.description.abstract | Metal-organic frameworks (MOFs), are a class of extended solids composed of materials with repeating structures formed by the coordination and self-assembly of metal and organic molecules. The excellent properties of regulation, high porosity, high specific surface, and uniform pore size render this material indispensable in catalysis, absorption, and separation. However, due to the nature of MOF, most of them tend to be electronic insulators, which greatly limits their application in the field of energy storage. In fact, the insulation of MOFs usually arises from the lack of free electrons in metal cations and the redox-inactive ligands in MOF’s structure. UiO-66, as a classical member of MOF, is composed of zirconium as metal nodes which bridge with terephthaltic acid (H2BDC) as ligand. While UiO-66 presents itself as an electron-insulator, it presents the strong advantages as its extraordinary stability in aqueous solutions and the ability to smoothly conduct proton. As a matter of fact, experimental results of our study show that proton conductivity can soar up to three orders of magnitude as the relative humidity of the environment increases. Interestingly, we also found that electron conductivity of UiO-66 varied with relative humidity, and such difference could rise up to four orders of magnitude. As a result, we could reach the conclusion that UiO-66 plays the role as a mixed-conductor, and the transport of the charge carriers in the material is tunable by the condition of external environment, pointing out the simple route to manipulate the material’s properties. In addition, we measured the chemical diffusion coefficient of the material in order to further understand the transport of charge carriers in the material. On that account, we disclosed a high chemical diffusion coefficient 1x10-7 cm2 s-1 for the material, which is subjected to the influence of humidity as well. Consequently, the results of this study allows us to get insight into deeper understanding of the conduction and transport mechanism of MOFs, and eventually, to successfully achieve a keen control of the conduction of MOFs, sparking off the considerable possibilities to apply MOFs in energy field for the foreseeable future. of the application of MOFs energy field will be greatly expanded in the foreseeable future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:15:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-10T17:15:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of content 摘要 1 Abstract 2 List of figures 7 List of tables 9 Chapter 1 Introduction 10 1-1 Motivation 10 1-2 Electron conductor 12 1-3 Ion conductor 14 1-4 Mixed ion-electron conductor 15 1-5 MOF structure and its applications 16 1-6 Electron transport in MOF 17 1-7 Proton transport mechanism in MOF 19 1-8 Introduction of UiO-66 21 1-9 Electrical transport measurement 24 1-9-1 Electrochemical impedance spectroscopy 24 1-9-2 DC polarization 31 1-10 Ion blocking electrode 35 1-11 Transmission line model 37 1-12 Diffusion in solid-state material 41 1-13 Thin-film material 44 1-14 In-plane conductivity and through-plane conductivity 44 Chapter 2 Experiment 46 2-1 Materials and Chemicals: 46 2-2 Experimental instrument 47 2-3 Substrate surface-modified 48 2-3-1 Substrate clean process 48 2-3-2 Surface modification 49 2-3-3 Film preparation 52 2-4 Electrical properties measurement 53 Chapter3 Results and discussions 55 3-1 Material characterization 55 3-2 Reduction of film resistance 58 3-2-1The designed pattern of electrode 58 3-3 Electrical conductivity measurement 61 3-4 Confirming electrical conductivity dominated by bulk transport 64 3-4-1 Contact issue 66 3-5 Electrical conductivity enhancement by tunning the environment condition 67 3-5-1 Proton conductivity 67 3-5-2 Electron conductivity 69 3-6 Proton-induced electron transfer 72 3-7 Ambipolar diffusion 75 Chapter 4 Conclusion 78 References 79 List of figures Figure 1-1. Illustration of orbital hybridization. 12 Figure 1-2. Illustration of energy band for conductor semiconductor and insulator. 13 Figure 1-3. Electron transport mechanism in MOF. 17 Figure 1-4. (a) Grothuss mechanism and (b) vehicle mechanism. 19 Figure 1-5. UiO-66 structure with (a) tetrahedral (b) octahedral cage 22 Figure 1-6. UiO-66 water adsorption varied with relative humidity . 23 Figure 1-7. AC voltage and current with phase delay 2 π. 25 Figure 1-8. Alternating current in a vector form. 26 Figure 1-9. Nyquist plot of resistor and capacitor. 26 Figure 1-10. Nyquist plot for RC in series. 29 Figure 1-11. Nyquist plot for RC in parallel and equivalent circuit. 30 Figure 1-12. RC in series under galvnostatic condition. 31 Figure 1-13. RC in series under potentiostatic condition. 32 Figure 1-14. RC in parallel under galvanostatic condition. 33 Figure 1-15. RC in parallel under poteniostatic. 34 Figure 1-16. Illustration of mixed conductor with ion blocking electrode system. 36 Figure 1-17. Transmission line model. 39 Figure 1-18. Diffusion coefficient in Ag/ZrO2/PbO/ZrO2/Ag system 43 Figure 1-19. Illustration of (a) in-plane and (b) through-plane conductivity measurement system. 45 Figure 2-1. React mechanism for 1ststep modification [61]. 49 Figure 2-2. React mechanism for 2ndstep modification [62]. 50 Figure 2-3. React mechanism for 3rd step modification. 51 Figure 2-4. SEM results with different times of film formation (a) once (b) twice (c) three times. 52 Figure 3-1. Comparison of XRD for UiO-66 film, simulated UiO-66, ligand precursor , and metal precursor. 55 Figure 3-2. SEM for as-synthesized film with (a) top view and (b) cross-sectional view. 56 Figure 3-3. XRD comparison with different surface modification steps. 57 Figure 3-4. Surface coverage in different steps of modification. 57 Figure 3-5. (a) Type 1 shadow mask and (b) type 2 shadow mask. 58 Figure 3-6. AC impedances for type 1 mask and type 2 mask sample. 59 Figure 3-7. Cross-sectional view of (a) type 1 (b) type 2 mask 60 Figure 3-8. AC impedance experiment of UiO-66 film. 61 Figure 3-9. DC polarization under constant 100 pA current 63 Figure 3-10. (a) Electrical conductivity varied with thickness and (b) conductance varied with film thickness. 65 Figure 3-11. Results of (a) four-probe and (b) two-probe measurement. 66 Figure 3-12. Proton conductance varied with (a) temperature and (b) relative humidity. 67 Figure 3-13. H2BDC electron transport mechanism. 69 Figure 3-14. Electron conductance varied with (a) temperature. and (b) relative humidity. 70 Figure 3-15. Proton-induced electron transfer mechanism. 73 Figure 3-16. Diffusion coefficient under different temperature and relative humidity 76 List of tables Table 2. 1 Materials and Chemicals: 46 Table 2. 2Experimental instrument 47 Table 2. 3 Relative humidity variation under different temperature 54 | - |
| dc.language.iso | en | - |
| dc.subject | 薄膜 | zh_TW |
| dc.subject | 混合離子電子導體 | zh_TW |
| dc.subject | 有機金屬框架 | zh_TW |
| dc.subject | mixed ion/electron conductor | en |
| dc.subject | MOF | en |
| dc.subject | thin film | en |
| dc.title | 有機金屬框架薄膜之混合離子電子傳輸之研究 | zh_TW |
| dc.title | Mixed Ion-Electron Conduction of Thin-Film Metal-Organic Framework | en |
| dc.title.alternative | Mixed Ion-Electron Conduction of Thin-Film Metal-Organic Framework | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳嘉文;田弘康;葉禮賢 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Wen Wu;Hong-Kang Tian;Li-Hsien Yeh | en |
| dc.subject.keyword | 有機金屬框架,混合離子電子導體,薄膜, | zh_TW |
| dc.subject.keyword | MOF,mixed ion/electron conductor,thin film, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202204270 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-10-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1110202212265700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
