請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83176
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡怡陞 | zh_TW |
dc.contributor.advisor | Isheng Jason Tsai | en |
dc.contributor.author | 賴政國 | zh_TW |
dc.contributor.author | Cheng-Kuo Lai | en |
dc.date.accessioned | 2023-01-10T17:08:56Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-01-07 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2022-12-28 | - |
dc.identifier.citation | 1. Lai, C.-K. et al. The Aphelenchoides genomes reveal major events of horizontal gene transfers in clade IV nematodes. bioRxiv 2022.09.13.507733 (2022). doi:10.1101/2022.09.13.507733
2. Blaxter, M. L. et al. A molecular evolutionary framework for the phylum Nematoda. Nat. 1998 3926671 392, 71–75 (1998). 3. Van Megen, H. et al. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11, 927–950 (2009). 4. Quist, C. W., Smant, G. & Helder, J. Evolution of Plant Parasitism in the Phylum Nematoda. Annu. Rev. Phytopathol. 53, 289–310 (2015). 5. Grynberg, P. et al. Comparative genomics reveals novel target genes towards specific control of plant-parasitic nematodes. (2020). doi:10.20944/preprints202010.0449.v1 6. Jen, F. Y., Tsay, T. T. & Chen, P. Aphelenchoides bicaudatus from ornamental nurseries in Taiwan and its relationship with some agricultural crops. Plant Dis. 96, 1763–1766 (2012). 7. Subbotin, S. A. et al. The taxonomic status of Aphelenchoides besseyi Christie, 1942 (Nematoda: Aphelenchoididae) populations from the southeastern USA, and description of Aphelenchoides pseudobesseyi sp. N. Nematology (2020). doi:10.1163/15685411-bja10048 8. Oliveira, C. J. et al. Morphological and Molecular Identification of Two Florida Populations of Foliar Nematodes (Aphelenchoides spp.) Isolated from Strawberry with the Description of Aphelenchoides pseudogoodeyi sp. N. (Nematoda: Aphelenchoididae) and notes on their bionomics. Plant Dis. 103, 2825–2842 (2019). 9. Kent, W. J. BLAT—The BLAST-Like Alignment Tool. Genome Res. 12, 656 (2002). 10. Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. (2019). doi:10.1186/s13059-019-1727-y 11. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. (2019). doi:10.1038/s41587-019-0072-8 12. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. (2017). doi:10.1101/gr.214270.116 13. Medaka: Sequence correction by using ONT research. https://github.com/nanoporetech/medaka 14. Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One (2014). doi:10.1371/journal.pone.0112963 15. Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Syst. (2016). doi:10.1016/j.cels.2015.07.012 16. Alonge, M. et al. RaGOO: Fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 20, 224 (2019). 17. Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. U. S. A. (2020). doi:10.1073/pnas.1921046117 18. Edgar, R. C. & Bateman, A. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). 19. Coghlan, A., Coghlan, A., Tsai, I. J. & Berriman, M. Creation of a comprehensive repeat library for a newly sequenced parasitic worm genome. Protoc. Exch. (2018). doi:10.1038/protex.2018.054 20. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics (2009). doi:10.1002/0471250953.bi0410s25 21. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics (2014). doi:10.1093/bioinformatics/btu170 22. Dobin, A. & Gingeras, T. R. Mapping RNA-seq Reads with STAR. Curr. Protoc. Bioinforma. (2015). doi:10.1002/0471250953.bi1114s51 23. Venturini, L., Caim, S., Kaithakottil, G. G., Mapleson, D. L. & Swarbreck, D. Leveraging multiple transcriptome assembly methods for improved gene structure annotation. Gigascience 7, (2018). 24. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. (2011). doi:10.1038/nbt.1883 25. Wu, T. D. & Watanabe, C. K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics (2005). doi:10.1093/bioinformatics/bti310 26. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. (2015). doi:10.1038/nbt.3122 27. Song, L., Sabunciyan, S. & Florea, L. CLASS2: Accurate and efficient splice variant annotation from RNA-seq reads. Nucleic Acids Res. (2016). doi:10.1093/nar/gkw158 28. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics (2015). doi:10.1093/bioinformatics/btv351 29. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 1–9 (2004). 30. Stanke, M. et al. AUGUSTUS: A b initio prediction of alternative transcripts. Nucleic Acids Res. (2006). doi:10.1093/nar/gkl200 31. Howe, K. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite − a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2 (2017). 32. Davis, P. et al. WormBase in 2022—data, processes, and tools for analyzing Caenorhabditis elegans. Genetics 220, (2022). 33. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019). 34. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics (2014). doi:10.1093/bioinformatics/btu033 35. Xu, J. ‐H. Carbohydrate Active Enzyme database. in Catalysis from A to Z (2020). doi:10.1002/9783527809080.cataz02801 36. Fast and accurate short read alignment with Burrows-Wheeler transform. - PubMed - NCBI. Available at: https://www.ncbi.nlm.nih.gov/pubmed/19451168. (Accessed: 1st November 2019) 37. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics (2011). doi:10.1093/bioinformatics/btr509 38. Nadachowska-Brzyska, K., Burri, R., Smeds, L. & Ellegren, H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol. Ecol. 25, 1058–1072 (2016). 39. Yoshida, K. K., Hasegawa, K., Mochiji, N. & Miwa, J. Early embryogenesis and anterior-posterior axis formation in the white-tip Nematode Aphelenchoides besseyi (Nematoda: Aphelenchoididae). J. Nematol. 41, 17–22 (2009). 40. Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplots: Reference-free profiling of polyploid genomes. bioRxiv 747568 (2019). doi:10.1101/747568 41. The Evolution and Diversity of DNA Transposons in the Genome of the Lizard Anolis carolinensis. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014272/. (Accessed: 24th April 2020) 42. Thomas, J. & Pritham, E. J. Helitrons, the Eukaryotic Rolling-circle Transposable Elements. Microbiol. Spectr. 3, (2015). 43. Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. (2008). doi:10.1101/gr.6743907 44. Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Research (2014). doi:10.1093/nar/gkt1223 45. Kikuchi, T., Eves-Van Den Akker, S. & Jones, J. T. Genome Evolution of Plant-Parasitic Nematodes. Annu. Rev. Phytopathol. (2017). doi:10.1146/annurev-phyto-080516-035434 46. Mitreva, M. et al. The draft genome of the parasitic nematode Trichinella spiralis. Nat. Genet. (2011). doi:10.1038/ng.769 47. Tcherepanova, I., Bhattacharyya, L., Rubin, C. S. & Freedman, J. H. Aspartic proteases from the nematode Caenorhabditis elegans: Structural organization and developmental and cell-specific expression of asp-1. J. Biol. Chem. 275, 26359–26369 (2000). 48. McKerrow, J. H. et al. Strongyloides stercoralis: Identification of a protease that facilitates penetration of skin by the infective larvae. Exp. Parasitol. 70, 134–143 (1990). 49. Koch, B. J., Ryan, J. F. & Baxevanis, A. D. The Diversification of the LIM Superclass at the Base of the Metazoa Increased Subcellular Complexity and Promoted Multicellular Specialization. doi:10.1371/journal.pone.0033261 50. Dall, E. & Brandstetter, H. Structure and function of legumain in health and disease. Biochimie 122, 126–150 (2016). 51. Holm Viborg, A. et al. A subfamily roadmap for functional glycogenomics of the evolutionarily diverse Glycoside Hydrolase Family 16 (GH16). doi:10.1074/jbc.RA119.010619 52. Coconi Linares, N., Dilokpimol, A., Stålbrand, H., Mäkelä, M. R. & de Vries, R. P. Recombinant production and characterization of six novel GH27 and GH36 α-galactosidases from Penicillium subrubescens and their synergism with a commercial mannanase during the hydrolysis of lignocellulosic biomass. Bioresour. Technol. (2020). doi:10.1016/j.biortech.2019.122258 53. Wu, G. L., Kuo, T. H., Tsay, T. T., Tsai, I. J. & Chen, P. J. Glycoside hydrolase (gh) 45 and 5 candidate cellulases in aphelenchoides besseyi isolated from bird’s-nest fern. PLoS One 11, (2016). 54. Wang, F. et al. Transcriptomic analysis of the rice white tip nematode, phelenchoides besseyi (Nematoda: Aphelenchoididae). PLoS One 9, (2014). 55. Stevens, L. et al. The Genome of Caenorhabditis bovis. Curr. Biol. 30, 1023-1031.e4 (2020). 56. Xu, X. et al. Population structure and species delimitation of rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae), in China. Plant Pathol. 69, 159–167 (2020). 57. Fradin, H. et al. Genome Architecture and Evolution of a Unichromosomal Asexual Nematode. Curr. Biol. 27, 2928-2939.e6 (2017). 58. de la Rosa, P. M. G. et al. A telomere-to-telomere assembly of Oscheius tipulae and the evolution of rhabditid nematode chromosomes. G3 Genes, Genomes, Genet. (2021). doi:10.1093/G3JOURNAL/JKAA020 59. Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: A tool for mining segmental genome duplications and synteny. Bioinformatics (2004). doi:10.1093/bioinformatics/bth397 60. Pedersen, B. S. & Quinlan, A. R. Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics (2018). doi:10.1093/bioinformatics/btx699 61. Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics (2010). doi:10.1093/bioinformatics/btq033 62. Shinya, R. et al. Possible stochastic sex determination in Bursaphelenchus nematodes. Nat. Commun. 2022 131 13, 1–14 (2022). 63. Woodruff, G. C. Patterns of putative gene loss suggest rampant developmental system drift in nematodes. bioRxiv 627620 (2019). doi:10.1101/627620 64. Meier, B. et al. The MRT-1 nuclease is required for DNA crosslink repair and telomerase activity in vivo in Caenorhabditis elegans. EMBO J. 28, 3549–3563 (2009). 65. Shtessel, L. et al. Caenorhabditis elegans POT-1 and POT-2 repress telomere maintenance pathways. G3 Genes, Genomes, Genet. 3, 305–313 (2013). 66. Ren, L., Huang, W., Cannon, E. K. S., Bertioli, D. J. & Cannon, S. B. A mechanism for genome size reduction following genomic rearrangements. Front. Genet. (2018). doi:10.3389/fgene.2018.00454 67. Cicconardi, F. et al. Chromosome Fusion Affects Genetic Diversity and Evolutionary Turnover of Functional Loci but Consistently Depends on Chromosome Size. Mol. Biol. Evol. 38, 4449–4462 (2021). 68. Wang, J. et al. Comparative genome analysis of programmed DNA elimination in nematodes. Genome Res. 27, 2001–2014 (2017). 69. Yin, D. et al. Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science (80-. ). 359, 55–61 (2018). 70. Ali, M. A., Azeem, F., Li, H. & Bohlmann, H. Smart parasitic nematodes use multifaceted strategies to parasitize plants. Frontiers in Plant Science 8, 1699 (2017). 71. Danchin, E. G. J., Guzeeva, E. A., Mantelin, S., Berepiki, A. & Jones, J. T. Horizontal Gene Transfer from Bacteria Has Enabled the Plant-Parasitic Nematode Globodera pallida to Feed on Host-Derived Sucrose. Mol. Biol. Evol. 33, 1571–1579 (2016). 72. Danchin, E. G. J. et al. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc. Natl. Acad. Sci. U. S. A. 107, 17651–17656 (2010). 73. Jones, J. T., Furlanetto, C. & Kikuchi, T. Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology (2005). doi:10.1163/156854105775142919 74. Grynberg, P. et al. Comparative genomics reveals novel target genes towards specific control of plant-parasitic nematodes. (2020). doi:10.20944/preprints202010.0449.v1 75. Schiffer, P. H. et al. Signatures of the Evolution of Parthenogenesis and Cryptobiosis in the Genomes of Panagrolaimid Nematodes. iScience 21, 587–602 (2019). 76. Rancurel, C., Legrand, L. & Danchin, E. G. J. Alienness: Rapid detection of candidate horizontal gene transfers across the tree of life. Genes (Basel). 8, (2017). 77. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nature Methods (2014). doi:10.1038/nmeth.3176 78. Campoy, E. & González-Martín, A. The Geography as a Regulator of Genetic Flow and Genetic Structure in Andorra. Adv. Anthropol. (2017). doi:10.4236/aa.2017.72008 79. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics (2009). doi:10.1093/bioinformatics/btp348 80. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. (2015). doi:10.1093/molbev/msu300 81. Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for Gene Ontology. R Packag. version 2.26.0. R Packag. version 2.26.0 (2016). 82. Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. (2017). doi:10.1093/molbev/msx148 83. Reijnders, M. J. M. F. & Waterhouse, R. M. Summary Visualizations of Gene Ontology Terms With GO-Figure! Front. Bioinforma. (2021). doi:10.3389/fbinf.2021.638255 84. Szitenberg, A. et al. Comparative genomics of apomictic root-knot nematodes: Hybridization, ploidy, and dynamic genome change. Genome Biol. Evol. 9, 2844–2861 (2017). 85. Elling, A. A. et al. Sequence mining and transcript profiling to explore cyst nematode parasitism. BMC Genomics 10, (2009). 86. Morais, M. A. B. et al. Two distinct catalytic pathways for GH43 xylanolytic enzymes unveiled by X-ray and QM/MM simulations. Nat. Commun. 2021 121 12, 1–13 (2021). 87. Kooliyottil, R., Rao Gadhachanda, K., Solo, N. & Dandurand, L. M. ATP-Binding Cassette (ABC) Transporter Genes in Plant-Parasitic Nematodes: An Opinion for Development of Novel Control Strategy. Front. Plant Sci. (2020). doi:10.3389/fpls.2020.582424 88. Atanasova, L. et al. Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiol. 18, 1–19 (2018). 89. PATHOGENICITY OF CURTOBACTERIUM FLACCUMFACIENS pv. FLACCUMFACIENS TO SEVERAL PLANT SPECIES on JSTOR. Available at: https://www.jstor.org/stable/45156052#metadata_info_tab_contents. (Accessed: 26th August 2022) 90. Jagdale, G. B. & Grewal, P. S. Infection behavior and overwintering survival of foliar nematodes, Aphelenchoides fragariae, on Hosta. J. Nematol. 38, 130 (2006). 91. Wan, X. et al. The Aphelenchus avenae genome highlights evolutionary adaptation to desiccation. Commun. Biol. 4, 1–8 (2021). 92. Haegeman, A., Jones, J. T. & Danchin, E. G. J. Horizontal Gene Transfer in Nematodes: A Catalyst for Plant Parasitism? http://dx.doi.org/10.1094/MPMI-03-11-0055 24, 879–887 (2011). 93. Holterman, M., Schratzberger, M. & Helder, J. Nematodes as evolutionary commuters between marine, freshwater and terrestrial habitats. Biol. J. Linn. Soc. 128, 756–767 (2019). 94. Brown, A. M. V. et al. Comparative genomics of wolbachia-cardinium dual endosymbiosis in a plant-parasitic nematode. Front. Microbiol. 9, 2482 (2018). 95. Ma, J. et al. Major episodes of horizontal gene transfer drove the evolution of land plants. Mol. Plant 15, 857–871 (2022). 96. Li, Y. et al. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 185, 2975-2987.e10 (2022). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83176 | - |
dc.description.abstract | 葉芽線蟲文為一種植物寄生線蟲屬於Aphelenchoidea總科,宿主範圍超過兩百多種植物,研究顯示不同植物分離的葉芽對於宿主的範圍有所分別,證實葉芽線蟲可能為複合種。論文第一章裡,我們研究葉芽線蟲複合種的不同,四隻屬於此複合種的線蟲基因被定序組裝成基因體,44-47 Mb 大小的基因體幾乎為clade IV線蟲中最小的存在,我們發現葉芽線蟲基因體變小主要是因為轉座子(Transposable elements)在近期演化過程中快速消失有關,隨著葉芽基因體的解序,複合種可以成功的被分成A. oryzae以及A. pseudobesseyi,並且能在28S分子序列得到驗證,僅存的三條染色體顯示葉芽線蟲基因體經歷過染色體融合。
論文第二章,我們探討葉芽線蟲染色體的演化,同線性的基因體研究證實葉芽的三個染色體可能源自於多種染色體融合及裂解,此外我們找出葉芽線蟲的染色體同源片段但雄性葉芽基因序列回貼結果顯示葉芽性別決定機制可能不由單一性染色體決定。我們發現葉芽複合種染色體上重複序列的密集程度也有很大的分別,顯示此複合種正持續分化中。 論文第三章中,植物線蟲生活型態的轉變可能由水平轉移基因造成,因此我們研究線蟲水平轉移基因的演化過程,我比較了Clade IV線蟲的水平轉移基因發現目前植物線蟲的水平轉移基因主要是從兩個演化分支點而來。這些基因大多從細菌轉移而來並且隨著時間推進演化出不同基因數量。水平轉移事件結合物種演化樹使我們能夠了解線蟲水平轉移基因的演化。 | zh_TW |
dc.description.abstract | Aphelenchoides besseyi is a plant-parasitic nematode (PPN) in the Aphelenchoidea lineage that can infect nearly 200 plant species. Research has shown that nematode strains isolated from different plants exhibit varying host range, suggesting that they may be species complex.
In chapter 1, I investigated the differences within A. besseyi species complex. I generated the assemblies belonging to A. besseyi species complex. The assemblies of Aphelenchoides ranged from 44.7-47.4 Mb which is amongst the smallest in the clade IV nematodes. This genome reduction was mainly due to the rapid reduction in transposable elements. Phylogenomic analysis successfully delimited the species complex strains into A. oryzae and A. pseudobesseyi which was consistent with the 28S phylogeny. In chapter 2, we investigated the chromosome evolution in A. besseyi. Synteny analyses between nematodes suggested that the three chromosomes in A. besseyi may be a result of multiple fission and fusion events. In addition, features enriched in nematode sex chromosome were identified in A. besseyi despite the male reads coverage of A. besseyi were even amongst the three chromosomes suggesting it might possess stochastic sex determination system similar to Bursaphelenchus species. To investigate the differences within A. besseyi species complex, I identified their differential repeat abundance along chromosomes, indicating ongoing genetic differentiation. In chapter 3, the acquirement of horizontal gene transfer (HGT) genes was proposed to lead the lifestyle changes of PPNs from free-living. We sought to pinpoint the HGT evolution in PPNs. I compared the inferred HGT families across clade IV nematodes, revealing that HGT genes retained in PPNs were mostly acquired from two major episodes. These genes were mainly originated from bacteria but differentially lost between clades. The combination of HGT events and species phylogeny allowed us to pinpoint the HGT evolution in nematodes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:08:56Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-01-10T17:08:56Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 ii
中文摘要 iv ABSTRACT v TABLE OF CONTENTs vi LIST OF FIGUREs vii LIST OF TABLEs ix CHAPTER 1. 1 1.1 Introduction 1 1.2 Materials and Methods 2 1.3 Results 6 1.4 Discussion 11 CHAPTER 2. 13 2.1 Introduction 13 2.2 Materials and Methods 13 2.3 Results 14 2.3.6 Discussion 16 CHAPTER 3. 18 3.1 Introduction 18 3.2 Materials and Methods 19 3.3 Results 20 3.4 Discussion 24 Figures 26 Tables 58 References 69 | - |
dc.language.iso | en | - |
dc.title | 比較基因體學區分葉芽線蟲複合種並探討線蟲水平轉移基因 | zh_TW |
dc.title | Comparative genomics delimit Aphelenchoides besseyi species complex and pinpoint horizontal gene transfer events in clade IV nematodes | en |
dc.title.alternative | Comparative genomics delimit Aphelenchoides besseyi species complex and pinpoint horizontal gene transfer events in clade IV nematodes | - |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 王忠信;薛雁冰;莊樹諄;陳珮臻 | zh_TW |
dc.contributor.oralexamcommittee | John Wang;Yen-Ping Hsueh;Trees-Juen Chuang;Pei-Chen Chen | en |
dc.subject.keyword | 葉芽線蟲,植物寄生線蟲,基因體比較,水平轉移基因, | zh_TW |
dc.subject.keyword | Aphelenchoides besseyi,Plant-parasitic nematodes,Comparative genomics,Horizontal gene transfer, | en |
dc.relation.page | 76 | - |
dc.identifier.doi | 10.6342/NTU202210184 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-12-30 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 基因體與系統生物學學位學程 | - |
dc.date.embargo-lift | 2023-02-28 | - |
顯示於系所單位: | 基因體與系統生物學學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf | 6.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。