請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83173完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡韶逸 | zh_TW |
| dc.contributor.advisor | Shao-Yi Chien | en |
| dc.contributor.author | 林哲嶔 | zh_TW |
| dc.contributor.author | Che-Chin Lin | en |
| dc.date.accessioned | 2023-01-10T17:07:47Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-07 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-12-13 | - |
| dc.identifier.citation | K. Seetharaman and R. Ragupathy, “Iris recognition for personal identification system,” Procedia Engineering, vol. 38, pp. 1531–1546, 2012, iNTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S1877705812021029
J. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1148–1161, 1993. K. W. Bowyer, K. P. Hollingsworth, and P. J. Flynn, A Survey of Iris Biometrics Research: 2008–2010. London: Springer London, 2013, pp. 15–54. [Online]. Available: https://doi.org/10.1007/978-1-4471-4402-1 2 K. Miyazawa, K. Ito, T. Aoki, K. Kobayashi, and H. Nakajima, “An effective approach for iris recognition using phase-based image matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 10, pp. 1741–1756, 2008. Y. Zhou and A. Kumar, “Personal identification from iris images using localized radon transform,” in 2010 20th International Conference on Pattern Recognition, 2010, pp. 2840–2843. D. M. Monro, S. Rakshit, and D. Zhang, “Dct-based iris recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 4, pp. 586–595, 2007. N. Liu, M. Zhang, H. Li, Z. Sun, and T. Tan, “Deepiris: Learning pairwise filter bank for heterogeneous iris verification,” Pattern Recognition Letters, vol. 82, pp. 154–161, 2016, an insight on eye biometrics. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S016786551500327X Z. Zhao and A. Kumar, “Towards more accurate iris recognition using deeply learned spatially corresponding features,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 3829–3838. W. Aydi, N. Fadhel, N. Masmoudi, and L. Kamoun, “A robust feature extraction method based on monogenic filter for iris recognition system,” in 2014 World Congress on Computer Applications and Information Systems (WCCAIS), 2014, pp. 1–4. R. Ramkumar and S. Arumugam, “Improved iris segmentation algorithm without normalization phase,” International Journal of Engineering and Technology, vol. 5, pp. 5107–5113, 01 2013. S. Thavalengal, “Contributions to practical iris biometrics on smartphones,” Ph.D. dissertation, 05 2016. D. M. Monro, S. Rakshit, and D. Zhang, “Dct-based iris recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, pp. 586– 595, 2007. K. Nguyen, C. Fookes, A. Ross, and S. Sridharan, “Iris recognition with off-the-shelf cnn features: A deep learning perspective,” IEEE Access, vol. 6, pp. 18 848–18 855, 2018. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations, May 2015. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. K. Nguyen, C. Fookes, A. Ross, and S. Sridharan, “Iris recognition with off-the-shelf cnn features: A deep learning perspective,” IEEE Access, vol. 6, pp. 18 848–18 855, 2018. H. Proenc¸a and J. C. Neves, “Segmentation-less and non-holistic deeplearning frameworks for iris recognition,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, pp. 2296–2305. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer International Publishing, 2015, pp. 234–241. V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. S. Lian, Z. Luo, Z. Zhong, X. Lin, S. Su, and S. Li, “Attention guided u-net for accurate iris segmentation,” J. Vis. Comun. Image Represent., vol. 56, no. C, p. 296–304, oct 2018. [Online]. Available: https://doi.org/10.1016/j.jvcir.2018.10.001 C. Wang, J. Muhammad, Y. Wang, Z. He, and Z. Sun, “Towards complete and accurate iris segmentation using deep multi-task attention network for noncooperative iris recognition,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2944–2959, 2020. Z. Zhao and A. Kumar, “Towards more accurate iris recognition using deeply learned spatially corresponding features,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 3829–3838. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips. cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., 2018. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking Atrous Convolution for Semantic Image Segmentation,” arXiv e-prints, p. arXiv:1706.05587, Jun. 2017. K. Yang, Z. Xu, and J. Fei, “Dualsanet: Dual spatial attention network for iris recognition,” in 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), 2021, pp. 888–896. L. Omelina, J. Goga, J. Pavlovicova, M. Oravec, and B. Jansen, “A survey of iris datasets,” Image and Vision Computing, vol. 108, p. 104109, 01 2021. C. for Biometrics and S. Research. (2018) Casia iris database v4. [Online]. Available: http://biometrics.idealtest.org/dbDetailForUser.do?id=14 A. Kumar and A. Passi, “Comparison and combination of iris matchers for reliable personal authentication,” Pattern Recognition, vol. 43, no. 3, pp. 1016–1026, 2010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320309003343 H. Proenc¸a and J. C. Neves, “Irina: Iris recognition (even) in inaccurately segmented data,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6747–6756. Z. Sun and T. Tan, “Ordinal measures for iris recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2211–2226, 2009. G. Yang, H. Zeng, P. Li, and L. Zhang, “High-order information for robust iris recognition under less controlled conditions,” in 2015 IEEE International Conference on Image Processing (ICIP), 2015, pp. 4535–4539. N. Othman, B. Dorizzi, and S. Garcia-Salicetti, “Osiris: An open source iris recognition software,” Pattern Recognition Letters, vol. 82, pp. 124–131, 2016, an insight on eye biometrics. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167865515002986 C. Belcher and Y. Du, “Region-based sift approach to iris recognition,” Optics and Lasers in Engineering, vol. 47, no. 1, pp. 139–147, 2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0143816608001644 L. Masek, “Recognition of human iris patterns for biometric identification,” 01 2003. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83173 | - |
| dc.description.abstract | 虹膜圖案複雜、隨機的特性使得虹膜辨識成為一種具有高度準確性以及可靠性的身分辨識方法。跟其他生物特徵相比,虹膜的穩定特性不像指紋一樣會隨著時間磨損毀壞,而它平面幾何組成又比臉部特徵容易計算預測,因此虹膜辨識已經被廣泛應用在多種領域之中,像是資料庫存取、金融認證服務和個人穿戴式裝置上更是有很大的潛力。
自從 1993 第一個開創性的虹膜辨識膜方法問世以後,許多與之相關的研究也隨之展開。經過幾十年來的發展,對在控制條件下拍攝眼睛照片的虹膜辨識已經被廣泛地解決,因此大部分研究開始專注在增強系統的穩定性或是克服非理想情況下拍攝的照片。近幾年很多機器學習和類神經網路的方法被證明對影像處理等多媒體領域有很大的幫助,許多虹膜辨識的研究也開始使用深度學習的架構來進行研究。 有鑑於虹膜辨識在未來極大的潛力以及深度學習現今廣泛應用的背景之下,我們架設了一個基於成對特徵學習以及遮罩注意力機制的神經網路來進行虹膜辨識的任務。除此之外,為了檢驗這個系統架構在真實世界的應用價值,我們更是利用商業用穿戴式眼球追蹤眼鏡所拍攝的照片來進行驗證。總結來說,我們提出了一個可靠又準確且有實際應用價值的虹膜辨識模型。 | zh_TW |
| dc.description.abstract | Highly accurate, invariable, and robust biometric authentication on the basis of iris patterns has been widely applied to many aspects of life in recent years. Despite numerous commercialized iris recognition products on the market, more advanced techniques are developed as a result of multiple types of research in deep learning methods. However, experiments in most of the works are only conducted on established open datasets. Hence, it is worthwhile to verify the practical value of an iris recognition system when it comes to real images taken by apparatus in a realistic world. In this thesis, we present a novel neural network architecture based on a pairwise feature learning method and mask attention mechanism. Specifically, the proposed algorithm learns the similarity between different iris image pairs by their spatially according features. Moreover, mask attention mechanisms are added to achieve more reliable results and to reinforce the effectiveness of the pairwise feature extraction network. In the experiments, our framework achieves state-of-the-art performance in three well-known open datasets. Additionally, we used our own camera on a wearable device to capture a variety of iris image data under certain conditions and thus evaluate the utility of the system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:07:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-10T17:07:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract (P.i)
List of Figures (P.iv) List of Tables (P.vi) 1 Introduction (P.1) 1.1 Overview of the Iris Recognition System (P.2) 1.2 Challenges (P.4) 1.3 Contribution (P.4) 1.4 Thesis Organization (P.5) 2 Related Work (P.6) 2.1 Traditional Method (P.6) 2.2 Neural Network Method (P.9) 2.2.1 Convolutional Neural Networks (P.9) 2.2.2 Neural Networks for Segmentation (P.11) 2.3 Attention-Based Method (P.14) 2.3.1 Attention Mechanism (P.14) 2.3.2 Attention-Based Neural Networks for Iris Recognition (P.15) 3 Proposed Method (P.18) 3.1 Framework (P.19) 3.2 Segmentation Network (P.20) 3.3 Pairwise Feature Extraction Network (P.21) 3.3.1 Network backbone (P.22) 3.3.2 Evaluation Function (P.23) 3.4 Attention Block (P.25) 3.4.1 Structure of Attention Block (P.26) 3.4.2 Attention to Iris Mask (P.27) 3.4.3 Spatial Attention and Channel Attention (P.28) 3.5 Loss Function (P.29) 4 Experimental Results (P.31) 4.1 Description of Datasets (P.31) 4.2 Implementation Details (P.34) 4.3 Recognition Results (P.34) 4.3.1 Key index (P.35) 4.3.2 Results of Public datasets (P.35) 4.3.3 Comparison with Other Models (P.36) 4.3.4 Results of the Ganzin glasses dataset (P.37) 4.4 Effectiveness of the Proposed Method (P.38) 4.4.1 Effectiveness of Segmentation Net (P.38) 4.4.2 Effectiveness of Evaluation Function (P.39) 4.4.3 Effectiveness of Mask Attention (P.41) 4.5 Ablation Study (P.42) 5 Conclusion (P.46) Reference (P.47) | - |
| dc.language.iso | en | - |
| dc.subject | 成對特稱 | zh_TW |
| dc.subject | 虹膜辨識 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 注意力機制 | zh_TW |
| dc.subject | pairwise feature | en |
| dc.subject | neural network | en |
| dc.subject | attention | en |
| dc.subject | iris recognition | en |
| dc.title | 應用於虹膜辨識之成對特徵學習與遮罩注意力機制神經網路 | zh_TW |
| dc.title | Pairwise Feature Learning and Mask Attention-based Neural Network for Iris Recognition | en |
| dc.title.alternative | Pairwise Feature Learning and Mask Attention-based Neural Network for Iris Recognition | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鮑興國;李育杰;曹昱 | zh_TW |
| dc.contributor.oralexamcommittee | Hsing-Kuo Pao;Yu-Chieh Li;Yu Tsao | en |
| dc.subject.keyword | 虹膜辨識,深度學習,成對特稱,注意力機制, | zh_TW |
| dc.subject.keyword | iris recognition,neural network,attention,pairwise feature, | en |
| dc.relation.page | 51 | - |
| dc.identifier.doi | 10.6342/NTU202210122 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-12-14 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0436221209473004.pdf | 5.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
