Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83160
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宏昀zh_TW
dc.contributor.advisorHung-Yun Hsiehen
dc.contributor.author洪健豪zh_TW
dc.contributor.authorChien-Hao Hungen
dc.date.accessioned2023-01-10T17:03:04Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-07-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationQuigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y., & others. (2009). ROS: an open-source Robot Operating System. ICRA Workshop on Open Source Software, 3(3.2), 5.
Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34–46.
Hess, W., Kohler, D., Rapp, H., & Andor, D. (2016). Real-time loop closure in 2D LIDAR SLAM. 2016 IEEE International Conference on Robotics and Automation (ICRA), 1271–1278.
Amsters, R., & Slaets, P. (2019). Turtlebot 3 as a robotics education platform. International Conference on Robotics in Education (RiE), 170–181.
Ulversoy, T. (2010). Software defined radio: Challenges and opportunities. IEEE Communications Surveys & Tutorials, 12(4), 531–550.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. ArXiv Preprint ArXiv:1412.3555.
Wang, Y., Yao, Q., Kwok, J. T., & Ni, L. M. (2020). Generalizing from a few examples: A survey on few-shot learning. ACM Computing Surveys (Csur), 53(3), 1–34.
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43–76.
Dai, W., Yang, Q., Xue, G.-R., & Yu, Y. (2007). Boosting for Transfer Learning. Proceedings of the 24th International Conference on Machine Learning, 193–200.
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., & Lempitsky, V. (2016). Domain-adversarial training of neural networks. The Journal of Machine Learning Research, 17(1), 2096–2030.
Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41–75.
Duong, L., Cohn, T., Bird, S., & Cook, P. (2015). Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), 845–850.
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? Advances in Neural Information Processing Systems, 27.
Hoang, M. T., Yuen, B., Dong, X., Lu, T., Westendorp, R., & Reddy, K. (2019). Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet of Things Journal, 6(6), 10639–10651.
Bai, S., Yan, M., Wan, Q., He, L., Wang, X., & Li, J. (2019). DL-RNN: An accurate indoor localization method via double RNNs. IEEE Sensors Journal, 20(1), 286–295.
Nabati, M., Navidan, H., Shahbazian, R., Ghorashi, S. A., & Windridge, D. (2020). Using Synthetic Data to Enhance the Accuracy of Fingerprint-Based Localization: A Deep Learning Approach. IEEE Sensors Letters, 4(4), 1–4.
Schmidt, E., Inupakutika, D., Mundlamuri, R., & Akopian, D. (2019). SDR-Fi: Deep-learning-based indoor positioning via software-defined radio. IEEE Access, 7, 145784–145797.
Peng, X., Chen, R., Yu, K., Ye, F., & Xue, W. (2020). An improved weighted K-nearest neighbor algorithm for indoor localization. Electronics, 9(12), 2117.
Zhang, Y., Qu, C., & Wang, Y. (2020). An indoor positioning method based on CSI by using features optimization mechanism with LSTM. IEEE Sensors Journal, 20(9), 4868–4878.
Wang, X., Gao, L., & Mao, S. (2016). CSI phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet of Things Journal, 3(6), 1113–1123.
Pecoraro, G., Di Domenico, S., Cianca, E., & De Sanctis, M. (2018). CSI-based fingerprinting for indoor localization using LTE signals. EURASIP Journal on Advances in Signal Processing, 2018(1), 49.
Yin, Y., Yang, X., Li, P., Zhang, K., Chen, P., & Niu, Q. (2021). Localization with Transfer Learning Based on Fine-Grained Subcarrier Information for Dynamic Indoor Environments. Sensors, 21(3), 1015.
Liu, K., Zhang, H., Ng, J. K.-Y., Xia, Y., Feng, L., Lee, V. C., & Son, S. H. (2017). Toward low-overhead fingerprint-based indoor localization via transfer learning: Design, implementation, and evaluation. IEEE Transactions on Industrial Informatics, 14(3), 898–908.
Wu, C., Yang, Z., Liu, Y., & Xi, W. (2012). WILL: Wireless indoor localization without site survey. IEEE Transactions on Parallel and Distributed Systems, 24(4), 839–848.
Liang, Q., & Liu, M. (2019). An automatic site survey approach for indoor localization using a smartphone. IEEE Transactions on Automation Science and Engineering, 17(1), 191–206.
Belmonte-Hernández, A., Hernández-Peñaloza, G., Gutiérrez, D. M., & Álvarez, F. (2019). SWiBluX: Multi-Sensor Deep Learning Fingerprint for precise real-time indoor tracking. IEEE Sensors Journal, 19(9), 3473–3486.
Wang, X., Yang, C., & Mao, S. (2017). PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), 1230–1239.
Xie, Y., Li, Z., & Li, M. (2018). Precise power delay profiling with commodity Wi-Fi. IEEE Transactions on Mobile Computing, 18(6), 1342–1355.
Speth, M., Fechtel, S. A., Fock, G., & Meyr, H. (1999). Optimum receiver design for wireless broad-band systems using OFDM. I. IEEE Transactions on Communications, 47(11), 1668–1677.
“feature selection algorithm:Mutual information classify, Classify” Online Available at: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
“feature selection algorithm:Mutual information classify, Regression” Online Available at: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html
廖俊翔. (2021). An indoor localization system for cellular networks based on transfer learning with reduced cost on site survey / Jun-Xiang Liao. In 基於遷移學習降低新環境訓練成本的行動通訊網路室內定位系統. 國立臺灣大學電信工程學研究所.
Njima, W., Chafii, M., & Shubair, R. M. (2021). Gan based data augmentation for indoor localization using labeled and unlabeled data. 2021 International Balkan Conference on Communications and Networking (BalkanCom), 36–39.
Njima, W., Bazzi, A., & Chafii, M. (2022). DNN-based Indoor Localization Under Limited Dataset using GANs and Semi-Supervised Learning. IEEE Access, 10, 69896–69909.
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. ArXiv Preprint ArXiv:1312.6114.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27.
Bengio, Y., Laufer, E., Alain, G., & Yosinski, J. (2014). Deep generative stochastic networks trainable by backprop. International Conference on Machine Learning, 226–234.
Hinton, G. E. (2007). Boltzmann machine. Scholarpedia, 2(5), 1668.
Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. ArXiv Preprint ArXiv:1411.1784.
Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). Infogan: Interpretable representation learning by information maximizing generative adversarial nets. Advances in Neural Information Processing Systems, 29.
Odena, A., Olah, C., & Shlens, J. (2017). Conditional image synthesis with auxiliary classifier gans. International Conference on Machine Learning, 2642–2651.
Nabati, M., Navidan, H., Shahbazian, R., Ghorashi, S. A., & Windridge, D. (2020). Using Synthetic Data to Enhance the Accuracy of Fingerprint-Based Localization: A Deep Learning Approach. IEEE Sensors Letters, 4(4), 1–4.
H. yi Lee. Ml lecture 19: Transfer learning. Online Available at: https://youtu.be/qD6iD4TFsdQ
Aljundi, R. (2019). Continual learning in neural networks. ArXiv Preprint ArXiv:1910.02718.
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., & others. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13), 3521–3526.
MacKay, D. J. (1992). A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3), 448–472.
Xu, R., Luo, F., Zhang, Z., Tan, C., Chang, B., Huang, S., & Huang, F. (2021). Raise a child in large language model: Towards effective and generalizable fine-tuning. ArXiv Preprint ArXiv:2109.05687.
Zhang, W., Deng, L., Zhang, L., & Wu, D. (2020). A survey on negative transfer. ArXiv Preprint ArXiv:2009.00909.
Ahsan, M. M., Mahmud, M. P., Saha, P. K., Gupta, K. D., & Siddique, Z. (2021). Effect of data scaling methods on machine learning algorithms and model performance. Technologies, 9(3), 52.
Li, Q., Qu, H., Liu, Z., Zhou, N., Sun, W., Sigg, S., & Li, J. (2019). AF-DCGAN: Amplitude feature deep convolutional GAN for fingerprint construction in indoor localization systems. IEEE Transactions on Emerging Topics in Computational Intelligence, 5(3), 468–480.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.
Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11).
Rosenstein, M. T., Marx, Z., Kaelbling, L. P., & Dietterich, T. G. (2005). To transfer or not to transfer. In NIPS’05 Workshop, Inductive Transfer: 10 Years Later.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83160-
dc.description.abstract對室內定位的需求急劇增加,許多應用都需要高精度的室內定位技術,如智能工廠、智能配送、智能旅遊等。和基於測距的室內定位技術相比,基於學習的室內定位技術更能適應環境限制,基於學習的室內定位定位技術對設備的要較低。然而,基於學習的室內定位通常需要耗費人力和耗費時間來建立指紋數據集。此外,隨著時間、季節和溫度的變化,需要對模型進行實時調整。在這兩種情況下,都需要重建指紋數據集來訓練模型,這增加建立系統的成本。我們應用該機器人構建了一個可以邊走邊採集LTE無線電特徵的系統,並利用 SLAM演算法計算出的軌跡數據來輔助無線電特徵的標註。我們提出了MICNN+RNN串接模型,串接模型的性能可以達到0.879 m,實現了亞米級室內定位。對於 MICNN 模型,我們提出應用基於參數的遷移學習方法將從源域系統學到的知識遷移到目標域,該方法可以將 MICNN 的模型性能提高6.7%平均距離誤差 (MDE)。分析不同縮放器對模型性能的影響,我們發現 MinMax 縮放器有助於目標模型性能和微調模型性能。zh_TW
dc.description.abstractThe demand for indoor positioning has increased dramatically. Many applications require high-precision indoor localization technology, such as smart factories, smart deliveries, smart tours, etc. Compared with ranged-based indoor localization technologies, learning-based indoor localization technologies are more adaptable to environmental constraints, and learning-based indoor positioning technologies have lower requirements for instruments. However, learning-based indoor localization is often labor-intensive and time-consuming to build a fingerprint dataset. Also, with the change in time, season and temperature, the model needs to be adjusted in real-time. In both cases, the fingerprint dataset needs to be rebuilt to train the model, which increases the cost of building the system. We applied the robot to build a system that can collect LTE radio features while walking, and use the trajectory data calculated by the SLAM algorithm to assist in radio feature annotation. We propose the MICNN+RNN cascaded model, and the performance of the cascaded model can reach 0.879 m, which achieves sub-meter indoor localization. For the MICNN model, we propose to apply the parameter-based transfer learning method to transfer the knowledge learned from the source domain system to the target domain, and this method can improve the model performance of MICNN by 6.7% for mean distance error (MDE). Analyzing the effect of different scalers on model performance, we found that the MinMax scaler is helpful for the target model performance and fine-tuned model performance.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:03:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-10T17:03:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . vii
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . 1
CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . 4
2.1 System Introduction . . . . . . . . . . . . . . 4
2.1.1 Problem Formulation . . . . . . . . . . . . . 4
2.2 Robot Setup . . . . . . . . . . . . . . . . . . 6
2.2.1 Robot Operating System (ROS) . . . . . . . . . 6
2.2.2 Simultaneous Localization and Mapping . . . . . 7
2.2.3 Turtlebot3 . . . . . . . . . . . . . . . . . . 7
2.3 LTE Setup . . . . . . . . . . . . . . . . . . . 7
2.3.1 Software Defined Radio . . . . . . . . . . . 7
2.3.2 OpenAirInterface . . . . . . . . . . . . . . 7
2.4 Related Work about Machine Learning . . . . . . 8
2.4.1 Recurrent neural network . . . . . . . . . . . 8
2.4.2 Generative Adversarial Network . . . . . . . . 10
2.4.3 Transfer Learning . . . . . . . . . . . . . . . 13
2.5 Related Work . . . . . . . . . . . . . . . . . . . 13
2.5.1 Indoor Localization . . . . . . . . . . . . . . . 13
CHAPTER 3 LEARNING-BASED INDOOR LOCALIZATION . . . . . . 16
3.1 Feature . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 LTE Subcarrier Amplitude . . . . . . . . . . . . . 16
3.1.2 LTE Phase Difference . . . . . . . . . . . . . . . 17
3.1.3 Feature Analysis . . . . . . . . . . . . . . . . . 19
3.1.4 Feature Normalization . . . . . . . . . . . . . . 19
3.2 Model for Snapshot Features . . . . . . . . . . . . 21
3.2.1 Support Vector Machine . . . . . . . . . . . . . 22
3.2.2 K Nearest Neighbors Algorithm . . . . . . . . . 22
3.2.3 Fully Connected Neural Network . . . . . . . . . 23
3.2.4 One-Dimensional Convolutional Neural Network . . 24
3.2.5 Proposed Model . . . . . . . . . . . . . . . . . 26
3.3 Time Domain Data Fusing method . . . . . . . . . . 26
3.3.1 Fusion Network . . . . . . . . . . . . . . . . . 27
3.3.2 Recurrent Neural Networks . . . . . . . . . . . 29
3.3.3 Stack RNN . . . . . . . . . . . . . . . . . . . 31
3.3.4 DL-RNN . . . . . . . . . . . . . . . . . . . . . 31
3.4 Evaluation Results . . . . . . . . . . . . . . . . 32
3.4.1 Evaluation Criteria . . . . . . . . . . . . . . 32
3.4.2 Cross Validation Method . . . . . . . . . . . . 33
3.4.3 Platform . . . . . . . . . . . . . . . . . . . . 33
3.4.4 Experimental environment one . . . . . . . . . . 35
3.4.5 Feature Extraction Model Comparison . . . . . . 36
3.4.6 Loss Function Comparison . . . . . . . . . . . 36
3.4.7 Label Smoothing Method . . . . . . . . . . 39
3.4.8 Considering the Phase Difference as Model Input . . 40
3.4.9 Cascaded Model Comparison . . . . . . . . . . . 41
3.4.10 Cascaded Models Comparison for Different Input Features . 43
3.5 Summary . . . . . . . . . . . . . . . . . . . . . 44
CHAPTER 4 LOCALIZATION DEPLOYMENT OF MODEL PERFORMANCE IMPROVEMENT . . . . . . 45
4.1 Data Augmentation . . . . . . . . . . . . . . . . 45
4.1.1 Problem and Viewpoints . . . . . . . . . . . . . . 45
4.1.2 Generative Adversarial Network . . . . . . . . . 46
4.1.3 Variational Auto-encoder . . . . . . . . . . . . 46
4.2 Transfer Learning Methods . . . . . . . . . . . . 47
4.2.1 Model Fine-tuning . . . . . . . . . . . . . . . 47
4.2.2 Model Generalization . . . . . . . . . . . . . . 51
4.3 Data Scaler . . . . . . . . . . . . . . . . . . . 53
4.4 Summary . . . . . . . . . . . . . . . . . . . . . 54
CHAPTER 5 PERFORMANCE EVALUATION . . . . . . . . . . 56
5.1 Datasets . . . . . . . . . . . . . . . . . . . . 56
5.1.1 Domain 1 Dataset . . . . . . . . . . . . . . . 56
5.1.2 Domain 2 Dataset . . . . . . . . . . . . . . . 56
5.1.3 Domain 3 Dataset . . . . . . . . . . . . . . . 60
5.2 Evaluation of Data augmentation . . . . . . . . 62
5.2.1 Considering Data Augmentation with GAN . . . 62
5.2.2 Considering Data Augmentation with VAE . . . 63
5.3 Evaluation of Transfer Learning . . . . . . . 64
5.3.1 Domain 1 and Domain 2 Case . . . . . . . . 66
5.3.2 Domain 1 and Domain 3 case . . . . . . . . 74
5.4 Evaluation of Data Scaler . . . . . . . . . .77
5.4.1 Consider the Different Scaler . . . . . . . 77
5.4.2 Consider Scaling Range . . . . . . . . . . 78
5.5 Summary and Cross Validation . . . . . . . . 81
CHAPTER 6 CONCLUSION AND FUTURE WORK . . . . . . 85
REFERENCES . . . . . . . . . . . . . . . . . . . 86
-
dc.language.isoen-
dc.title利用自走車輔助學習以改善行動網路室內定位效能zh_TW
dc.titleImproving Indoor Localization for Cellular Networks with Robot-Assisted Learningen
dc.title.alternativeImproving Indoor Localization for Cellular Networks with Robot-Assisted Learning-
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林澤;高榮鴻zh_TW
dc.contributor.oralexamcommitteeChe Lin;Rung-Hung Gauen
dc.subject.keyword室內定位,行動網路,自走車,通道狀態資訊,zh_TW
dc.subject.keywordIndoor localization,LTE,Channel state information,CSI,Robot,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202203944-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-27-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2309202220284100.pdf7.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved