請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83155完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃誌川 | zh_TW |
| dc.contributor.advisor | Jr-Chuan Huang | en |
| dc.contributor.author | 劉大京 | zh_TW |
| dc.contributor.author | Da-Jing Liu | en |
| dc.date.accessioned | 2023-01-10T17:01:13Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-07 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Asadollahi, M., Stumpp, C., Rinaldo, A., & Benettin, P. (2020). Transport and Water Age Dynamics in Soils: A Comparative Study of Spatially Integrated and Spatially Explicit Models. Water Resources Research, 56(3). Benettin, P., & Bertuzzo, E. (2018). tran-SAS v1.0: a numerical model to compute catchment-scale hydrologic transport using StorAge Selection functions. Geoscientific Model Development, 11(4): 1627-1639. Benettin, P., Rinaldo, A., & Botter, G. (2015). Tracking residence times in hydrological systems: forward and backward formulations. Hydrological Processes, 29(25): 5203-5213. Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., & Rinaldo, A. (2017). Using SAS functions and high-resolution isotope data to unravel travel time distributions in headwater catchments. Water Resources Research, 53(3): 1864-1878. Berghuijs, W. R., & Kirchner, J. W. (2017). The relationship between contrasting ages of groundwater and streamflow. Geophysical Research Letters, 44(17): 8925-8935. Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3): 279-298. Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Bulletin, 24(1): 43-69. Beven*, K. (2001). How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences, 5(1): 1-12. Birkel, C., Soulsby, C., & Tetzlaff, D. (2011). Modelling catchment-scale water storage dynamics: reconciling dynamic storage with tracer-inferred passive storage. Hydrological Processes, 25(25): 3924-3936. Bolin, B., & Rodhe, H. (2017). A note on the concepts of age distribution and transit time in natural reservoirs. Tellus, 25(1): 58-62. Botter, G., Bertuzzo, E., & Rinaldo, A. (2010). Transport in the hydrologic response: Travel time distributions, soil moisture dynamics, and the old water paradox. Water Resources Research, 46(3): n/a-n/a. Botter, G., Bertuzzo, E., & Rinaldo, A. (2011). Catchment residence and travel time distributions: The master equation. Geophysical Research Letters, 38(11): n/a-n/a. Cain, M. R., Ward, A. S., & Hrachowitz, M. (2019). Ecohydrologic separation alters interpreted hydrologic stores and fluxes in a headwater mountain catchment. Hydrological Processes, 33(20): 2658-2675. Calabrese, S., Parolari, A. J., & Porporato, A. (2017). Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering. Journal of Geophysical Research: Earth Surface, 122(10): 2016-2032. Calabrese, S., & Porporato, A. (2015). Linking age, survival, and transit time distributions. Water Resources Research, 51(10): 8316-8330. Calabrese, S., & Porporato, A. (2017). Multiple outflows, spatial components, and nonlinearities in age theory. Water Resources Research, 53(1): 110-126. Cole, S. J., & Moore, R. J. (2009). Distributed hydrological modelling using weather radar in gauged and ungauged basins. Advances in Water Resources, 32(7): 1107-1120. Danesh-Yazdi, M., Klaus, J., Condon, L. E., & Maxwell, R. M. (2018). Bridging the gap between numerical solutions of travel time distributions and analytical storage selection functions. Hydrological Processes, 32(8): 1063-1076. Danesh‐Yazdi, M., Foufoula‐Georgiou, E., Karwan, D. L., & Botter, G. (2016). Inferring changes in water cycle dynamics of intensively managed landscapes via the theory of time‐variant travel time distributions. Water Resources Research, 52(10): 7593-7614. Devia, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A Review on Hydrological Models. Aquatic Procedia, 4: 1001-1007. Fang, Z., Carroll, R. W. H., Schumer, R., Harman, C., Wilusz, D., & Williams, K. H. (2019). Streamflow partitioning and transit time distribution in snow-dominated basins as a function of climate. Journal of Hydrology, 570: 726-738. Freeze, R. A., & Harlan, R. L. (1969). Blueprint for a physically-based, digitally-simulated hydrologic response model. Journal of Hydrology, 9(3): 237-258. Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1): 80-91. Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1998). Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resources Research, 34(4): 751-763. Harman, C. J. (2015). Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a watershed. Water Resources Research, 51(1): 1-30. Harman, C. J. (2019). Age‐Ranked Storage‐Discharge Relations: A Unified Description of Spatially Lumped Flow and Water Age in Hydrologic Systems. Water Resources Research, 55(8): 7143-7165. Harman, C. J., Ward, A. S., & Ball, A. (2016). How does reach‐scale stream‐hyporheic transport vary with discharge? Insights from rSAS analysis of sequential tracer injections in a headwater mountain stream. Water Resources Research, 52(9): 7130-7150. Hrachowitz, M., Benettin, P., van Breukelen, B. M., Fovet, O., Howden, N. J. K., Ruiz, L., . . . Wade, A. J. (2016). Transit times-the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 3(5): 629-657. Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., & Soulsby, C. (2013). What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrology and Earth System Sciences, 17(2): 533-564. Kaandorp, V. P., Louw, P. G. B., Velde, Y., & Broers, H. P. (2018). Transient Groundwater Travel Time Distributions and Age‐Ranked Storage‐Discharge Relationships of Three Lowland Catchments. Water Resources Research, 54(7): 4519-4536. Kim, M., Pangle, L. A., Cardoso, C., Lora, M., Volkmann, T. H. M., Wang, Y., . . . Troch, P. A. (2016). Transit time distributions and StorAge Selection functions in a sloping soil lysimeter with time-varying flow paths: Direct observation of internal and external transport variability. Water Resources Research, 52(9): 7105-7129. Kim, M., & Troch, P. A. (2020). Transit Time Distributions Estimation Exploiting Flow‐Weighted Time: Theory and Proof‐of‐Concept. Water Resources Research, 56(12). Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425: 264-277. Knighton, J., Souter‐Kline, V., Volkmann, T., Troch, P. A., Kim, M., Harman, C. J., . . . Walter, M. T. (2019). Seasonal and Topographic Variations in Ecohydrological Separation Within a Small, Temperate, Snow‐Influenced Catchment. Water Resources Research, 55(8): 6417-6435. Lamb, R., & Beven, K. (1997). Using interactive recession curve analysis to specify a general catchment storage model. Hydrol. Earth Syst. Sci., 1(1): 101-113. Lee, J.-Y., Shih, Y.-T., Lan, C.-Y., Lee, T.-Y., Peng, T.-R., Lee, C.-T., & Huang, J.-C. (2020). Rainstorm Magnitude Likely Regulates Event Water Fraction and Its Transit Time in Mesoscale Mountainous Catchments: Implication for Modelling Parameterization. Water, 12(4): 1169. Lewis, S., & Nir, A. (2016). On tracer theory in geophysical systems in the steady and non-steady state Part II. Non-steady state–theoretical introduction. Tellus, 30(3): 260-271. Li, G., Chen, X., Zhang, Z., Wang, L., & Soulsby, C. (2021). Effects of passive storage on modelling hydrological function and isotope dynamics in a karst flow system in southwest China. Hydrol. Earth Syst. Sci. Discuss., 2021: 1-47. Liu,K.-K., (1984). Hydrogen And Oxygen Isotopic Compositions Of Meteoric Waters From The Tatun Shan Area, Northern Taiwan. Bulletin of the Institute of Earth Sciences, Academia Sinica., 4:159-175. McDonnell, J. J., & Beven, K. (2014). Debates-The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 50(6): 5342-5350. McDonnell, J. J., McGuire, K., Aggarwal, P., Beven, K. J., Biondi, D., Destouni, G., . . . Wrede, S. (2010). How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrological Processes, 24(12): 1745-1754. McGuire, K. J., & McDonnell, J. J. (2006). A review and evaluation of catchment transit time modeling. Journal of Hydrology, 330(3-4): 543-563. McMillan, H. (2020). Linking hydrologic signatures to hydrologic processes: A review. Hydrological Processes, 34(6): 1393-1409. Meira Neto, A. A., Kim, M., & Troch, P. A. (2022). Physical interpretation of time‐varying StorAge Selection functions in a bench‐scale hillslope experiment via geophysical imaging of ages of water. Water Resources Research. Nguyen, T. V., Kumar, R., Lutz, S. R., Musolff, A., Yang, J., & Fleckenstein, J. H. (2021). Modeling Nitrate Export From a Mesoscale Catchment Using StorAge Selection Functions. Water Resources Research, 57(2). Nir, A., & Lewis, S. (1975). On tracer theory in geophysical systems in the steady and non-steady state. Part I. Tellus, 27(4): 372-383. Pangle, L. A., Kim, M., Cardoso, C., Lora, M., Meira Neto, A. A., Volkmann, T. H. M., . . . Harman, C. J. (2017). The mechanistic basis for storage‐dependent age distributions of water discharged from an experimental hillslope. Water Resources Research, 53(4): 2733-2754. Pechlivanidis, I. G., Jackson, B. M., McIntyre, N. R., & Wheater, H. S. (2011). Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global Nest Journal, 13(3): 193-214. Plummer, L. N., Busenberg, E., Böhlke, J. K., Nelms, D. L., Michel, R. L., & Schlosser, P. (2001). Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chemical Geology, 179(1-4): 93-111. Porporato, A., & Calabrese, S. (2016). Comment on “Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes” by R inaldo et al. Water Resources Research, 52(1): 613-615. Remondi, F., Kirchner, J. W., Burlando, P., & Fatichi, S. (2018). Water Flux Tracking With a Distributed Hydrological Model to Quantify Controls on the Spatiotemporal Variability of Transit Time Distributions. Water Resources Research, 54(4): 3081-3099. Rigon, R., Bancheri, M., & Green, T. R. (2016). Age-ranked hydrological budgets and a travel time description of catchment hydrology. Hydrology and Earth System Sciences, 20(12): 4929-4947. Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., Van Der Velde, Y., . . . Botter, G. (2015). Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes. Water Resources Research, 51(6): 4840-4847. Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., van der Velde, Y., . . . Botter, G. (2016). Reply to comment by Porporato and Calabrese on "Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes''. Water Resources Research, 52(1): 616-618. Rodriguez, N. B., Benettin, P., & Klaus, J. (2020). Multimodal water age distributions and the challenge of complex hydrological landscapes. Hydrological Processes, 34(12): 2707-2724. Rodriguez, N. B., & Klaus, J. (2019). Catchment Travel Times From Composite StorAge Selection Functions Representing the Superposition of Streamflow Generation Processes. Water Resources Research, 55(11): 9292-9314. Rodriguez, N. B., McGuire, K. J., & Klaus, J. (2018). Time‐Varying Storage–Water Age Relationships in a Catchment With a Mediterranean Climate. Water Resources Research, 54(6): 3988-4008. Rodriguez, N. B., Pfister, L., Zehe, E., & Klaus, J. (2021). A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions. Hydrology and Earth System Sciences, 25(1): 401-428. Rorabaugh, M. I. (1964). Estimation changes in bank storage and ground-water contribution to Streamflow. International Association of Scientific Hydrology, 63: 432-441. Scott, J. (2014). Stable isotope mass balance of the Laurentian Great Lakes. Journal of Great Lakes research, v. 40: pp. 336-346-2014 v.2040. Seibert, J., & Vis, M. J. P. (2012). Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrology and Earth System Sciences, 16(9): 3315-3325. Singh, V. P., & Woolhiser, D. A. (2002). Mathematical Modeling of Watershed Hydrology. Journal of Hydrologic Engineering, 7(4): 270-292. Sitterson, J., Knightes, C., Parmar, R., Wolfe, K., Avant, B., & Muche, M. (2018). An Overview of Rainfall-Runoff Model Types. Smith, A. A., Tetzlaff, D., & Soulsby, C. (2018). On the Use of StorAge Selection Functions to Assess Time‐Variant Travel Times in Lakes. Water Resources Research, 54(7): 5163-5185. Smith, A. A., Tetzlaff, D., & Soulsby, C. (2020). Using storage selection functions to assess mixing patterns and water ages of soil water, evaporation and transpiration. Advances in Water Resources, 141: 103586. Spence, C. (2007). On the relation between dynamic storage and runoff: A discussion on thresholds, efficiency, and function. Water Resources Research, 43(12). Sprenger, M., Stumpp, C., Weiler, M., Aeschbach, W., Allen, S. T., Benettin, P., . . . Werner, C. (2019). The Demographics of Water: A Review of Water Ages in the Critical Zone. Reviews of Geophysics, 57(3): 800-834. Stewart, M. K., Morgenstern, U., & Cartwright, I. (2021). Comment on "A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions" by Rodriguez et al. (2021). Hydrology and Earth System Sciences, 25(12): 6333-6338. Todini, E. (2007). Hydrological catchment modelling: past, present and future. Hydrology and Earth System Sciences, 11(1): 468-482. van der Velde, Y., Heidbüchel, I., Lyon, S. W., Nyberg, L., Rodhe, A., Bishop, K., & Troch, P. A. (2015). Consequences of mixing assumptions for time-variable travel time distributions. Hydrological Processes, 29(16): 3460-3474. van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. A. T. M., & Uijlenhoet, R. (2012). Quantifying catchment-scale mixing and its effect on time-varying travel time distributions. Water Resources Research, 48(6). Visser, A., Thaw, M., Deinhart, A., Bibby, R., Safeeq, M., Conklin, M., . . . Van Der Velde, Y. (2019). Cosmogenic Isotopes Unravel the Hydrochronology and Water Storage Dynamics of the Southern Sierra Critical Zone. Water Resources Research, 55(2): 1429-1450. Ward, Kurz, Schmadel, Knapp, Blaen, Harman, . . . Zarnetske. (2019). Solute Transport and Transformation in an Intermittent, Headwater Mountain Stream with Diurnal Discharge Fluctuations. Water, 11(11): 2208. Weill, S., Lesparre, N., Jeannot, B., & Delay, F. (2019). Variability of Water Transit Time Distributions at the Strengbach Catchment (Vosges Mountains, France) Inferred Through Integrated Hydrological Modeling and Particle Tracking Algorithms. Water, 11(12): 2637. Wilusz, D. C., Harman, C. J., & Ball, W. P. (2017). Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates. Water Resources Research, 53(12): 10231-10256. Wilusz, D. C., Harman, C. J., Ball, W. P., Maxwell, R. M., & Buda, A. R. (2020). Using Particle Tracking to Understand Flow Paths, Age Distributions, and the Paradoxical Origins of the Inverse Storage Effect in an Experimental Catchment. Water Resources Research, 56(4). Yang, J., Heidbüchel, I., Musolff, A., Reinstorf, F., & Fleckenstein, J. H. (2018). Exploring the Dynamics of Transit Times and Subsurface Mixing in a Small Agricultural Catchment. Water Resources Research, 54(3): 2317-2335. Yang, J., Heidbuchel, I., Musolff, A., Xie, Y. Q., Lu, C. H., & Fleckenstein, J. H. (2021). Using nitrate as a tracer to constrain age selection preferences in catchments with strong seasonality. Journal of Hydrology, 603: 13. Zhang, Z. C., Chen, X., Cheng, Q. B., & Soulsby, C. (2021). Using StorAge Selection (SAS) functions to understand flow paths and age distributions in contrasting karst groundwater systems. Journal of Hydrology, 602: 14. 林錦源.(2006),應用土壤含水量觀測推估蒸發散量之研究.國立成功大學水利及海洋工程研究所碩士論文。 童慶斌.(2000,2001),台灣地區合理之蒸發散折算係數與區域蒸發散量推估方法之建立(1/2,2/2),經濟部水資源局。 夏禹九, 黃正良, & 陳明杰. (1996),福山試驗集水區量水堰之設計-分段複式量水堰. [Design of Two-Section Compound Weirs on Fushan Experimental Watersheds]. 臺灣林業科學, 11(2): 113-122。 夏禹九, 王立志, 黃正良, & 金恆鑣. (1996),森林集水區坡地逕流路徑之研究. [Pathways of Hillslope Runoff in the Fushan Watershed No.1]. 臺灣林業科學, 11(4): 481-486。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83155 | - |
| dc.description.abstract | 集水區內水的通過時間(transit time)反映了集水區內水的流動速度和流動路徑的變化,它受到一系列水文作用及集水區特性的控制並對在集水區內的生物地球化學過程有重大影響。通過時間是研究集水區內複雜的水文過程和生物地球化學作用的基礎。蓄水選擇函數(StorAge Selection function,SAS)為近年來推估通過時間及其分佈的重要工具,目前發現在世界很多集水區存在著「逆蓄水效應」,即集水區蓄水量越高時會越偏好釋放蓄水中較年輕的部分,這可能是集水區在蓄水量變動的條件下不同的流動路徑發揮作用所造成的。本研究結合集塊式降雨逕流模式HBV和蓄水選擇函數SAS開發了HBV-SAS模式,模式可以給出集水區流量和同位素的預測,同時計算不同流動路徑的通過時間和不同儲庫蓄水的年齡,為理解集水區內發生的降雨逕流過程有更深入的理解。 研究發現在台灣的福山一號實驗集水區存在「逆蓄水效應」,但這種效應並非見於不同的流動路徑,而是集水區作為一個整體呈現出來的現象。其原因可能是集水區內佔主導的流動路徑會隨降雨強度和集水區蓄水的大小而變動,而儲存在不同儲庫的蓄水彼此之間的年齡相差極大。福山一號集水區的地下水中存在大量不直接貢獻到逕流量的被動蓄水,集水區長期釋放的水都是集水區總體蓄水中較為年輕部分。 | zh_TW |
| dc.description.abstract | The transit time of water reflects the velocity and pathway of water flow through the watershed which is controlled by a series of hydrological processes and characteris-tics of the watershed and plays an important role in biogeochemical processes. Transit time is the basis for research on complicated hydrological processes and biogeochemical processes that take place in the watershed. The StorAge Selection function is an efficient tool for estimating the transit time and its distribution which has been developed in recent years. There is an "inverse storage effect" in most of the watersheds around the world that watersheds prefer to release more young water when their storage is higher. This effect is due to the different flow paths in the watershed under fluctuating storage condi-tions. In this study, the HBV-SAS model has been developed by combining a rainfall-runoff model HBV and the StorAge Selection(SAS) function to estimate the transit time and age of different runoff and reservoirs. this study aims to infer the possible causes of the inverse storage effect. This study found that there is an "inverse storage effect" in the Fushan No.1 exper-iment watershed, a small subtropical watershed in North Taiwan. This effect, which is not shown in every pathway in the watershed, is a phenomenon when the watershed is considered a whole system. The reason is that the dominant pathway varies with rainfall intensity and water storage of the watershed, and the age of different storage reservoirs varies greatly. There is a large amount of passive storage in groundwater that does not directly contribute to runoff. The long-term runoff of the watershed comes from the younger part of the storage. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-10T17:01:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-10T17:01:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 Ⅰ 摘要 Ⅱ ABSTRACT Ⅲ 目錄 Ⅴ 圖目錄 Ⅶ 表目錄 Ⅹ 第一章 前言 1 1.1研究動機 1 1.2研究目標 4 第二章 文獻回顧 5 2.1降雨逕流模式 5 2.2水的年齡、停留時間和通過時間 8 2.3通過時間分佈 12 2.4蓄水選擇函數 15 2.5同位素示蹤劑 20 2.6被動蓄水與活躍蓄水 21 第三章 研究材料與方法 23 3.1研究區概況 23 3.2流量資料 25 3.3蒸發散計算 27 3.4同位素分析 28 3.5模式結構 32 3.6模式校準 37 3.7參數敏感性分析方法 40 第四章 結果 42 4.1流量模擬結果 42 4.2河水同位素模擬結果 44 4.3參數校準結果 48 第五章 討論 51 5.1參數敏感性 51 5.2水分通過時間 54 5.3蓄水年齡 61 5.4逆蓄水效應 64 第六章 結論 71 參考文獻 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 集水區 | zh_TW |
| dc.subject | 逆蓄水效應 | zh_TW |
| dc.subject | 降雨徑流模式 | zh_TW |
| dc.subject | 蓄水選擇函數 | zh_TW |
| dc.subject | 通過時間 | zh_TW |
| dc.subject | StorAge Selection function | en |
| dc.subject | rainfall-runoff model | en |
| dc.subject | watershed | en |
| dc.subject | inverse storage effect | en |
| dc.subject | transit time | en |
| dc.title | 結合降雨逕流模式與蓄水選擇函數探究小型集水區水分通過時間之動態變化 | zh_TW |
| dc.title | Dynamics of Water Transit Time in a Small Watershed from Rainfall-runoff Model and Storage Selection Function | en |
| dc.title.alternative | Dynamics of Water Transit Time in a Small Watershed from Rainfall-runoff Model and Storage Selection Function | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許少瑜;李宗祐 | zh_TW |
| dc.contributor.oralexamcommittee | Shao-Yiu Hsu;Tsung-Yu Lee | en |
| dc.subject.keyword | 集水區,通過時間,蓄水選擇函數,降雨徑流模式,逆蓄水效應, | zh_TW |
| dc.subject.keyword | watershed,transit time,StorAge Selection function,rainfall-runoff model,inverse storage effect, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202203556 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-28 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地理環境資源學系 | - |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1909202211574900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
