請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83142完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良正 | zh_TW |
| dc.contributor.advisor | Liang-Jenq Leu | en |
| dc.contributor.author | 楊晏瑜 | zh_TW |
| dc.contributor.author | Yen-Yu Yang | en |
| dc.date.accessioned | 2023-01-09T17:04:11Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-06 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Bakir, P. G. (2011). “Evaluation of optimal sensor placement techniques for parameter identification in buildings.” Mathematical and Computational Applications, 16(2), 456-466. Bandara, R. P., Chan, T. H. T., & Thambiratnam, D. P. (2014). “Frequency response function based damage identification using principal component analysis and pattern recognition technique.” Engineering Structures, 66, 116-128. Bao, Y., Tang, Z., Li, H., & Zhang, Y. (2018). “Computer vision and deep learning–based data anomaly detection method for structural health monitoring.” Structural Health Monitoring, 18(2), 401-421. Bendat, J. S., & Piersol, A. G. (2011). Random Data: Analysis and Measurement procedures.”NewYork, NY: John Wiley & Sons. Brincker, R., & Andersen, P. (2006). “Understanding stochastic subspace identification.” Paper presented at the Conference Proceedings: IMAC-XXIV: A Conference & Exposition on Structural Dynamics. Celebi, M., & Liu, H.-P. (1998). “Before and after retrofit–response of a building during ambient and strong motions.” Journal of Wind Engineering and Industrial Aerodynamics, 77, 259-268. Chang, J., Limin, S. U. N., & Qi, W. (2007). “Identified method of arch bridge modal parameters based on stochastic subspace combined with stabilization diagram.” Journal of Architecture and Civil Engineering, 24(1), 21-25. Chen, J.-D., & Loh, C.-H. (2017). “Tracking modal parameters of building structures from experimental studies and earthquake response measurements.” Structural Health Monitoring, 16(5), 551-567. Chen, J.-D., & Loh, C.-H. (2018). “Two-stage damage detection algorithms of structure using modal parameters identified from recursive subspace identification.” Earthquake Engineering & Structural Dynamics, 47(3), 573-593. Cho, S., Yun, C.-B., Lynch, J. P., Zimmerman, A. T., Spencer Jr, B. F., & Nagayama, T. (2008). “Smart wireless sensor technology for structural health monitoring of civil structures.” Steel Structures, 8(4), 267-275. Concha, A., & Alvarez-Icaza, L. (2018). “Parameter and State Estimation of Shear Buildings Using Spline Interpolation and Linear Integral Filters.” Shock and Vibration, 2018, 1-21. Conforto, S., & D'Alessio, T. (1999). “Optimal estimation of power spectral density by means of a time-varying autoregressive approach.” Signal Processing, 72(1), 1-14. Deraemaeker, A., Reynders, E., De Roeck, G., & Kullaa, J. (2008). “Vibration-based structural health monitoring using output-only measurements under changing environment.” Mechanical Systems and Signal Processing, 22(1), 34-56. Doebling, S. W., Farrar, C. R., & Prime, M. B. (1998). “A summary review of vibration-based damage identification methods.” Shock and vibration digest, 30(2), 91-105. Elmer, W., Stafsudd, J. Z., & Taciroglu, E. (2010). “Performance of equilibrium-based system identification algorithms with incomplete state data.” Engineering Structures, 32(2), 483-497. Fan, K. Q., Ni, Y., & Gao, Z. M. (2004). “Improved stochastic system identification approach with its application in bridge condition monitoring.” Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 17(4), 70-78. Farrar, C. R., Doebling, S. W., & Nix, D. A. (2001). “Vibration–based structural damage identification.” Philosophical Transactions of the Royal Society of London. Series A, 359(1778), 131-149. Farrar, C. R., Park, G., Allen, D. W., & Todd, M. D. (2006). “Sensor network paradigms for structural health monitoring.” Structural Control and Health Monitoring, 13(1), 210-225. Gao, Y., Spencer, B. F., & Ruiz-Sandoval, M. (2006). “Distributed computing strategy for structural health monitoring.” Structural Control and Health Monitoring, 13(1), 488-507. Giraldo, D. F., Song, W., Dyke, S. J., & Caicedo, J. M. (2009). “Modal identification through ambient vibration: comparative study.” Journal of Engineering Mechanics, 135(8), 759-770. Godfrey, K., McCormack, A., & Flower, J. (1994). “Applying system identification using commercially available software and hardware.” Control Engineering Practice, 3, 1081-1086. Guo, H. Y., Zhang, L., Zhang, L. L., & Zhou, J. X. (2004). “Optimal placement of sensors for structural health monitoring using improved genetic algorithms.” Smart Materials and Structures, 13(3), 528-534. Hackmann, G., Sun, F., Castaneda, N., Lu, C., & Dyke, S. (2012). “A holistic approach to decentralized structural damage localization using wireless sensor networks.” Computer Communications, 36(1), 29-41. Hegde, G., & Sinha, R. (2008). “Method of modal identification of torsionally-coupled buildings using earthquake responses.” Paper presented at the Proceedings of the The 14th World Conference on Earthquake Engineering. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. USA : University of Michigan Press Jezequel, L., & Argoul, P. (1986). “A new integral transform for linear systems identification.” Journal of Sound and Vibration, 111(2), 261-278. Kammer, D. C. (1991). “Sensor placement for on-orbit modal identification and correlation of large space structures.” Journal of Guidance, Control, and Dynamics, 14(2), 251-259. Kang, J. S., Park, S.-K., Shin, S., & Lee, H. S. (2005). “Structural system identification in time domain using measured acceleration.” Journal of Sound and Vibration, 288(1-2), 215-234. Kasper, K., Mathelin, L., & Abou-Kandil, H. (2015). “A machine learning approach for constrained sensor placement.” Paper presented at the 2015 American Control Conference (ACC). Kaya, Y., Kocakaplan, S., & Şafak, E. (2015). “System identification and model calibration of multi-story buildings through estimation of vibration time histories at non-instrumented floors.” Bulletin of Earthquake Engineering, 13(11), 3301-3323. Koh, C. G., Hong, B., & Liaw, C. Y. (2003). “Substructural and progressive structural identification methods.” Engineering Structures, 25(12), 1551-1563. Hong, L. L., Huang, L.H., & Jhou, W. Y. (2009). “Identification and variation of story lateral stiffness in buildings.” Structural Control and Health Monitoring, 16(2), 200-222. Limongelli, M. P. (2003). “Optimal location of sensors for reconstruction of seismic responses through spline function interpolation.” Earthquake Engineering & Structural Dynamics, 32(7), 1055-1074. Limongelli, M. P. (2004). “Modeling of unknown seismic responses of partially instrumented bridge structure.” Paper presented at the 13th world conference on earthquake engineering, Vancouver, Canada. Liu, W., Gao, W. C., Sun, Y., & Xu, M. J. (2008). “Optimal sensor placement for spatial lattice structure based on genetic algorithms.” Journal of Sound and Vibration, 317(1-2), 175-189. Liu, Y.-C., Loh, C.-H. and Ni, Y.-Q. (2013), “Stochastic subspace identification for output-only modal analysis: application to super high-rise tower under abnormal loading condition.” Earthquake Engineering Structure Dynamic, 42, 477-498. Loh, C. H., & Chen, J. D. (2017). “Tracking modal parameters from building seismic response data using recursive subspace identification algorithm.” Earthquake Engineering & Structural Dynamics, 46(13), 2163-2183. Loh, C. H., J. H. Weng, C. H. Chen, and K. C. Lu. (2013). “System Identification of Mid Story Isolation Building Using `Both Ambient and Earthquake Response Data.” Structural Control and Health Monitoring 20 (2): 139-155. Loh, C. H., & Tou, I. C. (1995). “A system identification approach to the detection of changes in both linear and non‐linear structural parameters.” Earthquake Engineering & Structural Dynamics, 24(1), 85-97. López‐Almansa, F., Barbat, A., & Rodellar, J. (1988). “SSP algorithm for linear and non‐linear dynamic response simulation.” International Journal for Numerical Methods in Engineering, 26(12), 2687-2706. Meo, M., & Zumpano, G. (2005). “On the optimal sensor placement techniques for a bridge structure.” Engineering Structures, 27(10), 1488-1497. Minami, Y., Yoshitomi, S., & Takewaki, I. (2013). “System identification of super high-rise buildings using limited vibration data during the 2011 Tohoku (Japan) earthquake.” Structural Control and Health Monitoring, 20(11), 1317-1338. Papadimitriou, C. (2004). “Optimal sensor placement methodology for parametric identification of structural systems.” Journal of Sound and Vibration, 278(4-5), 923-947. Papadopoulos, M., & Garcia, E. (1998). “Sensor Placement Methodologies for Dynamic Testing.” AIAA Journal, 36(2), 256-263. Park, S., Ahmad, S., Yun, C. B., & Roh, Y. (2006). “Multiple Crack Detection of Concrete Structures Using Impedance-based Structural Health Monitoring Techniques.” Experimental Mechanics, 46(5), 609-618. Peeters, B., & De Roeck, G. (1999). “Reference-based stochastic subspace identification for output-only modal analysis.” Mechanical Systems and Signal Processing, 13(6), 855-878. Peeters, B. (2000), System Identification and Damage Detection in Civil Engineering, Katholieke Universiteit Leuven, Leuven. Pintelon, R., & Schoukens, J. (2012). System Identification: a Frequency Domain Approach. NewYork, NY: John Wiley & Sons. Rama Mohan Rao, A., Lakshmi, K., & Krishnakumar, S. (2014). “A Generalized Optimal Sensor Placement Technique for Structural Health Monitoring and System Identification.” Procedia Engineering, 86, 529-538. Rao, S. S. (2019). Engineering Optimization: Theory and Practice. NewYork, NY: John Wiley & Sons. Reynders, E., & Roeck, G. D. (2008). “Reference-based combined deterministic–stochastic subspace identification for experimental and operational modal analysis.” Mechanical Systems and Signal Processing, 22(3), 617-637. Richards, J. A., & Richards, J. A. (1999). Remote Sensing Digital Image Analysis. Berlin, Germany: springer. Shin R., Okada Y., Yamamoto K. (2022) “Application of C-LSTM Networks to Automatic Labelling of Vehicle Dynamic Response Data for Bridges.” Sensors, 22, 3486. Shin R., Okada Y. and Yamamoto K. (2021) “Field Experiments and Predicting using C-LSTM Networks of Bridge Position Estimation.”, Proceeding of World Congress on Engineering 2021, July 7-9, London, U.K., pp.351-355. Şafak, E. (1991). “Identification of linear structures using discrete-time filters.” Journal of Structural Engineering, 117(10), 3064-3085. Serhat Erdogan, Y., Necati Catbas, F., & Gundes Bakir, P. (2014). “Structural identification (St-Id) using finite element models for optimum sensor configuration and uncertainty quantification.” Finite Elements in Analysis and Design, 81, 1-13. Soyoz, S., Taciroglu, E., Orakcal, K., Nigbor, R., Skolnik, D., Lus, H., & Safak, E. (2013). “Ambient and Forced Vibration Testing of a Reinforced Concrete Building before and after Its Seismic Retrofitting.” Journal of Structural Engineering, 139(10), 1741-1752. Su, W.-C., & Huang, C.-S. (2017). “Identification of structural stiffness parameters via wavelet packet from seismic response.” Procedia Engineering, 199, 1032-1037. Ta, M.-N., Lardies, J., & Marc, B. (2006). “Natural frequencies and modal damping ratios identification of civil structures from ambient vibration data.” Shock and Vibration, 13(4, 5), 429-444. Tan, R., & Cheng, W. (1993). “System identification of a non-classically damped linear system.” Computers & Structures, 46(1), 67-75. Tomizuka, M., Liu, Y.-C., & Loh, C.-H. (2011). “Stochastic subspace identification for output-only modal analysis: accuracy and sensitivity on modal parameter estimation.” Paper presented at the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011. Tomizuka, M., Lu, K.-C., Loh, C.-H., & Weng, J. H. (2010). “Development of smart sensing system for structural health monitoring.” Paper presented at the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010. Udwadia, F. E. (1994). “Methodology for optimum sensor locations for parameter identification in dynamic systems.” Journal of Engineering Mechanics, 120(2), 368-390. Van Overschee, P., & De Moor, B. (1996). Subspace Identification for Linear Systems: Theory—Implementation—Applications. Berlin/Heidelberg, Germany: Springer Science & Business Media. Welch, P. (1967). “The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms.” IEEE Transactions on audio and electroacoustics, 15(2), 70-73. Worden, K., Cross, E. J., Dervilis, N., Papatheou, E., & Antoniadou, I. (2015). “Structural health monitoring: from structures to systems-of-systems.” IFAC-papersonline, 48(21), 1-17. Xiao, H., Bruhns, O. T., Waller, H., & Meyers, A. (2001). “An Input/Output-Based Procedure for Fully Evaluating and Monitoring Dynamic Properties of Structural Systems Via a Subspace Identification Method.” Journal of Sound and Vibration, 246(4), 601-623. Yang, J. N., Lei, Y., Pan, S., & Huang, N. (2003a). “System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes.” Earthquake Engineering & Structural Dynamics, 32(9), 1443-1467. Yang, J. N., Lei, Y., Pan, S., & Huang, N. (2003b). “System identification of linear structures based on Hilbert-Huang spectral analysis. Part 2: Complex modes.” Earthquake Engineering & Structural Dynamics, 32(10), 1533-1554. Yi, T.-H., & Li, H.-N. (2012). “Methodology Developments in Sensor Placement for Health Monitoring of Civil Infrastructures.” International Journal of Distributed Sensor Networks, 8(8). Yi, T.-H., Li, H.-N., & Gu, M. (2011a). “Optimal Sensor Placement for Health Monitoring of High-Rise Structure Based on Genetic Algorithm.” Mathematical Problems in Engineering, 2011, 1-12. Yi, T.-H., Li, H.-N., & Gu, M. (2011b). “Optimal sensor placement for structural health monitoring based on multiple optimization strategies.” The Structural Design of Tall and Special Buildings, 20(7), 881-900. Yu, D.-J., & Ren, W.-X. (2005). “EMD-based stochastic subspace identification of structures from operational vibration measurements.” Engineering Structures, 27(12), 1741-1751. Yuan, P., Wu, Z., & Ma, X. (1998). “Estimated mass and stiffness matrices of shear building from modal test data.” Earthquake Engineering & Structural Dynamics, 27(5), 415-421. Yuen, K.-V., & Kuok, S.-C. (2010). “Ambient interference in long-term monitoring of buildings.” Engineering Structures, 32(8), 2379-2386. Yun, C.-B., & Shinozuka, M. (2007). “Identification of Nonlinear Structural Dynamic Systems.” Journal of Structural Mechanics, 8(2), 187-203. Zhu, S., Zhang, X.-H., Xu, Y.-L., & Zhan, S. (2013). “Multi-type sensor placement for multi-scale response reconstruction.” Advances in Structural Engineering, 16(10), 1779-1797. 李宗憲(2016),「反應量測為主之結構動態特性識別與損傷檢驗」,國立臺灣大學土木工程學研究所碩士論文,台北市。 李育謙(2011),「濾波技巧於橋梁頻率間接量測法之應用」,國立臺灣大學土木工程學研究所碩士論文,台北市。 林珮涓(2014),「應用子空間識別法於長期結構物之地震反應解析」,國立臺灣大學土木工程學研究所碩士論文,台北市。 林智勇(2004),「利用微振實驗資料識別橋梁及建築物之動力參數」,國立臺灣大學土木工程學研究所碩士論文,台北市。 唐嘉明(2010),「隨機子空間識別方法在結構損壞預警之應用」,國立臺灣大學土木工程學研究所碩士論文,台北市。 翁健煌(2010),「子空間識別法於系統識別及結構損壞診斷之應用」,國立臺灣大學土木工程學研究所博士論文,台北市。 馬俊強 (1979),「樓房微動之自然頻率」,國立台灣大學土木工程學研究所碩士論文碩士論文,台北市。 許維廷(2015),「自動型操作模態分析應用於隨機子空間識別法」,國立臺灣大學土木工程學研究所碩士論文,台北市。 郭采蓉(2018),「應用隨機子空間識別法於結構健康診斷:結合穩態圖穩定標準與頻域分解法」,國立臺灣大學土木工程學研究所碩士論文,台北市。 陳易瑞 (2002),「鋼筋混凝土建築物之基本周期:利用ETABS修正微震回歸周期」,國立台灣大學土木工程學研究所碩士論文,台北市。 陳威誠(2005),「由光達覆蓋模型萃取數值高程模型之研究」,國立交通大學土木工程系所碩士論文,新竹市。 黃謝恭(2007),「運用適應性卡氏過濾理論即時系統損壞識別」,國立臺灣大學土木工程學研究所碩士論文,台北市。 曾紫銘 (1977),「鋼結構高樓之微動特性研究」,國立台灣大學土木工程學研究所碩士論文,台北市。 楊永斌、高健章、呂良正、張國緯、吳世雄、杜偉民 (1995),「模板倒塌預警系統研究—模板支撐架縮小模型自然頻率量測及理論分析」,行政院勞委會勞工安全衛生季刊,台北市。 葉祥海、呂良正、陶其駿、劉醇宇、張光甫、林士傑、林智勇 (2002),以微振量測探討鋼筋混凝土建築物之補強成效,內政部建築研究所報告,台北市。 葉祥海、呂良正、楊永斌、劉醇宇、黃仲偉、唐瑢書 (2001),以微振量測探討鋼構造建築物之基本振動周期及阻尼比,內政部建築研究所報告,台北市。 劉奕成(2011),「協方差型隨機子空間識別法之應用」,國立臺灣大學土木工程學研究所碩士論文,台北市。 劉醇宇 (2003),「學校建築結構耐震行為詳細評估」,國立台灣大學土木工程研究所博士論文,台北市。 劉勛仁(2008),「依唯結構反應量測之系統模態參數識別」,國立中興大學土木工程學系所碩士論文,台中市。 謝柏翰(2011),「應用狀態空間DLV法在扭轉耦合結構之地震損傷探測」,國立交通大學土木工程系所碩士論文,新竹市。 鍾天欣(2004),「南部科學園區環境振動之研究」,國立成功大學土木工程學系碩士論文,台南市。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83142 | - |
| dc.description.abstract | 台灣位屬多地震區域,由於地震頻繁,為了結構物之安全性,需於定期進行結構物健康檢測,尤其是災害發生後能確保結構物之安全。設置感測器極為耗成本且耗時,故本文所提出之最佳化配置為減少再次檢測同棟結構物時所需之感測器顆數,並且提高判斷結構物模態頻率的精度。為此目的,本文結合了四種方法進行最佳化配置,分別為隨機子空間識別法、三次樣條內插法、K-means演算法與基因演算法等方法判斷出加速度感測器配置之最佳樓層位置。提出各種不同模型,並與模態頻率解析解相互比較,驗證此法能以少數層樓之時間歷時,得到整體結構物的模態頻率,以確保結構物之安全性。為了驗證此方法之可行性,於數值模擬上,本研究建立幾個不同勁度折減之模型,再次驗證結構物災害發生前以及災害發生後,最佳配置差異;在現地實驗方面,本研究以六棟真實結構物進行實驗,分別為國立台灣大學土木研究大樓、國立台灣大學醫學院附設癌醫中心、淡水施工中20層樓建築物、板橋兩棟20與21層樓建築物及國家地震工程研究中心等建築,並以傅立葉快速轉換法來驗證此本文方法之可行性,由各種數值模擬以及實驗上證明。故本文最主要的貢獻在於提出之感測器最佳配置法,可以大幅減少第二次檢測時所使用之感測器數量與獲得較為精準之中高模態頻率,作為日後檢測之重要相關依據,當建築物受到損害時,即時檢測以瞭解建築物之受損情形。 | zh_TW |
| dc.description.abstract | Taiwan is located in the seismic zone with high frequency earthquake occurrences. In order to increase structure safety, it needs to monitor the structural health before and after disaster occurs. This study proposes a method to obtain the optimal sensors placements (OSP), which could reduce the number of sensors for building monitoring. In additions, the method could find out the higher modal frequencies for structures. First, collect the real time-histories and use Cubic spline interpolation method to obtain simulated time-histories for each floor. Second, use Stochastic Subspace Identification to generate stabilization diagrams. Third, K-means clustering method is used to obtain modal frequencies. Finally, use Genetic Algorithm method to find OSP. In this study, created some model to proved this method that can obtained the high accuracy modal frequency, and then created some model which stiffness decrease to proved that used OSP method to obtain modal frequency before and after stiffness decrease which similar with real modal frequency. There are six in-situ experiments for the method verifying. The six in-situ building are NTU Civil Engineering Research Building, NTU Cancer Center, Tamsui building (under construction), two apartment complex in Banqiao and National Center for Research on Earthquake Engineering, respectively. The OSP method can obtained great result from these in-situ experiments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T17:04:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-09T17:04:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄 致謝 I 摘要 III ABSTRACT V 目錄 i 圖目錄 iv 表目錄 viii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 文章架構 4 第二章 系統識別方法 6 2.1 微振量測 6 2.2 快速傅立業轉換(Fast Fourier Transform) 7 2.3 狀態空間 8 2.3.1 連續時間狀態空間方程式 9 2.3.2 離散時間狀態空間方程式 10 2.3.3 隨機狀態空間方程式 11 2.4 隨機過程 12 2.5 隨機子空間識別法 13 2.5.1協方差隨機子空間識別法 14 2.6 系統模態參數 16 2.7 穩態圖 17 2.7.1穩態圖實例 17 2.8 三次樣條內插法 20 2.8.1 CSI曲線演算法原理 21 2.8.2 CSI可行性探討 22 2.9 小結 28 第三章 分群與最佳化演算法 30 3.1 K-means演算法 30 3.2 基因演算法 34 3.2.1基因演算法原理與操作 35 3.2.2適應函數 36 3.2.3基因演算法流程 37 3.3 最佳感測器配置流程 38 第四章 最佳化感測器配置-利用模擬試驗數據 42 4.1 直接積分Newmark-β 法 42 4.2 數值模擬-外力形式 43 4.2.1 自由振動 44 4.2.2 白噪音外力 49 4.3 濾波與重新取樣 52 4.3.1 濾波 52 4.3.2 重新取樣 54 4.4 不同樓高模擬 55 4.4.1 20層樓模擬 57 4.4.2 頻率分解法 59 4.4.3 不同樓高模擬 64 4.5 特殊分配法 68 4.5.1 使用與不使用CSI之差異探討 68 4.5.2 加權配置法 (Weighting Sensors Placement, WSP ) 70 4.5.3 模態振型配置法(Modal Shape Sensor Placement, MSSP) 78 4.5.4 特殊分配法小結 84 4.6 勁度折減前後分析 86 4.7 小結 90 第五章 最佳化感測器配置-利用現地實驗數據 92 5.1實驗儀器介紹 92 5.2台灣大學土木研究大樓 94 5.3台灣大學醫學院附屬癌醫中心 103 5.4淡水20層樓施工中建築物 107 5.5板橋區A棟20層與B棟21層社區大樓 111 5.6國家地震工程研究中心 117 5.7小結 122 第六章 結論與未來展望 124 6.1結論 124 6.2未來展望 127 6.2.1方法改進 127 6.2.2未來展望 127 參考文獻 129 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 系統識別 | zh_TW |
| dc.subject | 感測器最佳配置 | zh_TW |
| dc.subject | K-means分群法 | zh_TW |
| dc.subject | 三次樣條內插法 | zh_TW |
| dc.subject | 頻率域分解法 | zh_TW |
| dc.subject | 隨機子空間識別法 | zh_TW |
| dc.subject | 結構健康監測 | zh_TW |
| dc.subject | Stochastic subspace identification | en |
| dc.subject | Cubic-spline interpolation | en |
| dc.subject | Optimal sensor placements | en |
| dc.subject | K-means clustering | en |
| dc.subject | System identification | en |
| dc.subject | Structural health monitoring | en |
| dc.subject | Frequency domain decomposition | en |
| dc.title | 建築物微振量測之最佳感測器配置 | zh_TW |
| dc.title | Optimal Sensor Placements for Ambient-Vibration Monitoring of Building | en |
| dc.title.alternative | Optimal Sensor Placements for Ambient-Vibration Monitoring of Building | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 羅俊雄;張國鎮;韓仁毓;宋裕祺;黃仲偉 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Hsiung Loh;Kuo-Chun Chang;Jen-Yu Han;Yu-Chi Sung;Chang-Wei Huang | en |
| dc.subject.keyword | 系統識別,結構健康監測,隨機子空間識別法,頻率域分解法,三次樣條內插法,K-means分群法,感測器最佳配置, | zh_TW |
| dc.subject.keyword | System identification,Structural health monitoring,Stochastic subspace identification,Frequency domain decomposition,Cubic-spline interpolation,K-means clustering,Optimal sensor placements, | en |
| dc.relation.page | 135 | - |
| dc.identifier.doi | 10.6342/NTU202200895 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-10-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0906202211162500.pdf | 22.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
