請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83139
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳亮嘉 | zh_TW |
dc.contributor.advisor | Liang-Chia Chen | en |
dc.contributor.author | 楊浩麾 | zh_TW |
dc.contributor.author | Haohui Yang | en |
dc.date.accessioned | 2023-01-09T17:03:08Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-01-06 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2022-12-09 | - |
dc.identifier.citation | [1]T. S. Tkaczyk, Field Guide to Microscopy. SPIE Press, 2010. https://doi.org/10.1117/3.798239 PDF ISBN: 9780819478917 | Print ISBN:9780819472465,Published: 2010
[2]E. Bratke and E. Waetzmann, “Interferenzmethode zur PrüFung Optischer systeme,” Die Naturwissenschaften, vol. 11, no. 12, pp. 225–228, 1923. https://doi.org/10.1007/BF01551522 [3]Y. S. Ghim, H. G. Rhee, A. Davies, H. S. Yang, and Y. W. Lee, “3D surface mapping of freeform optics using wavelength scanning lateral shearing interferometry,” Optics Express, vol. 22, no. 5, p. 5098, 2014. [4]R. P. Shukla and D. Malacara, “Some applications of the murty interferometer: a review,” Optics and Lasers in Engineering, vol. 26, no. 1, pp. 1-42, 1997. [5]W. Lang, Nomarski differential interference-contrast microscopy. Zeiss,1968 [6]H.X. Trinh, S.T. Lin, L.C. Chen, S.L. Yeh, C.S. Chen, and H.H. Hoang, “Shearing interference microscope for step-height measurements,” Journal of Microscopy, vol. 266, no. 2, pp. 178–185, 2017. [7]J. Chen, Y. Xu, X. Lv, X. Lai, and S. Zeng, “Super-resolution differential interference contrast microscopy by structured illumination,” Optics Express, vol. 21, no. 1, p. 112, 2013. [8]“Technology:Polarsens|Image Sensor:industry|products|Sony Semiconductor Solutions Group,” Sony Semiconductor Solutions Group. [Online]. Available: https://www.sony-semicon.co.jp/e/products/IS/industry/technology/polarization.html. [Accessed: 18-May-2022]. [9]Y. B. Seo, H. B. Jeong, H.G. Rhee, Y.S. Ghim, and K.N. Joo, “Single-shot freeform surface profiler,” Optics Express, vol. 28, no. 3, p. 3401, 2020. [10]V. Ronchi, “Forty years of history of a grating interferometer,” Applied Optics, vol. 3, no. 4, p. 437, 1964. [11]V. Arrizón and D. Sánchez-de-la-Llave, “Common-path interferometry with one-dimensional periodic filters,” Optics Letters, vol. 29, no. 2, p. 141, 2004. [12]S. Velghe, J. Primot, N. Guérineau, R. Haïdar, S. Demoustier, M. Cohen, and B. Wattellier, “Advanced wavefront sensing by quadri-wave lateral shearing interferometry,” Interferometry XIII: Techniques and Analysis, 2006. [13]D. Malacara-Hernández and D. Malacara-Doblado, “What is a hartmann test?,” Applied Optics, vol. 54, no. 9, p. 2296, 2015. [14]J. Primot and N. Guérineau, “Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard,” Applied Optics, vol. 39, no. 31, p. 5715, 2000. [15]S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, "Visible and infrared wave-front metrology by quadri-Wave lateral shearing interferometry," Optical Fabrication, Testing, and Metrology II, vol. 5965, pp. 331-338, 2005.SPIE. [16]P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Optics Express, vol. 17, no. 15, p. 13080, 2009. [17]R. W. Ziolkowski, “Metamaterials: The early years in the USA,” EPJ Applied Metamaterials, vol. 1, p. 5, 2014. [18]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. [19]N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333–337, 2011. [20]D. Wang, L. Zhang, Y. Gu, M. Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, and M. Hong, “Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface,” Scientific Reports, vol. 5, no. 1, 2015. [21]H. Kwon, E. Arbabi, S. M. Kamali, M. S. Faraji-Dana, and A. Faraon, “Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces,” Nature Photonics, vol. 14, no. 2, pp. 109–114, 2019. [22]“Optical shop testing,” 2007.Print ISBN:9780471484042 Online ISBN:9780470135976 DOI:10.1002/9780470135976 Copyright © 2007 John Wiley & Sons, Inc. [23]M. Takeda, “Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [invited],” Applied Optics, vol. 52, no. 1, p. 20, 2012. [24]T. R. Judge and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Optics and Lasers in Engineering, vol. 21, no. 4, pp. 199–239, 1994. [25]D. C. Ghiglia and M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software. New York, NY : Wiley, 1998. [26]H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Optics Communications, vol. 162, no. 4-6, pp. 205–210, 1999. . [27]S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge: Cambridge University Press, 2022. [28]Ted Pella Inc. "Pelcotec™ cdms & pelcotec™ cdms-XY critical dimension magnification standards." [Online]. Available: https://www.tedpella.com/calibration_html/CDMS-Critical_Dimension_Magnification_Standards.aspx. [Accessed: 18-May-2022]. [29]Texas Instruments Inc, DLP® LightCrafter™ 6500 and 9000 Evaluation Module (EVM) User's Guide. 2019. Available: https://www.ti.com/lit/ug/dlpu028d/dlpu028d.pdf?ts=1657038512620&ref_url=https%253A%252F%252Fwww.google.com%252F. [Accessed: 19-May-2022]. [30]“FLIR Blackfly S BFS-U3-51S5P-C camera: Edmund optics,” Edmund Optics Worldwide. [Online]. Available: https://www.edmundoptics.com.tw/p/bfs-u3-51s5p-c-usb3-blackflyreg-s-polarization-camera/41357/. [Accessed: 19-May-2022]. [31]Basler AG. “Basler acA1600-20um.” [Online]. Available: https://www.baslerweb.com/fp-1489067421/media/downloads/documents/emva_data/BD00076501_Basler_acA1600-20um_EMVA_Standard_1288.pdf. [Accessed: 19-May-2022]. [32]IDS Imaging Development Systems GmbH.“IDs list of supported features - en.ids-imaging.com.” [Online]. Available: https://en.ids-imaging.com/tl_files/downloads/STORE/genapi/ids-list-of-supported-features-usb3-vision.pdf. [Accessed: 19-May-2022]. [33]Keyence Corporation.“3D surface profiler VK-X3000 series,” [Online]. Available:https://www.keyence.com/products/microscope/laser-microscope/vk-x3000/. [Accessed: 19-May-2022]. [34]“B.Halle: Polarizers,”B.Halle | Polarizers. [Online]. Available: http://www.b-halle.de/products/polarizers.html. [Accessed: 21-Jul-2022]. [35]Edmund Optics Inc. "20X Mitutoyo Plan Apo Infinity Corrected Long WD Objective." [Online]. Available:https://www.edmundoptics.com.tw/p/20x-mitutoyo-plan-apo-infinity-corrected-long-wd-objective/6625/ [Accessed 26-Jul, 2022]. [36]Edmund Optics Inc. "MT-L Accessory Tube Lens." [Online].Available:https://www.edmundoptics.com.tw/p/mt-l-accessory-tube-lens/12903/ [Accessed 26-Jul, 2022]. [37]Thorlabs Inc. "LPVISE100-A - Ø1" Linear Polarizer with N-BK7 Windows, 400-700 nm "[Online].Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=LPVISE100-A [accessed 26-Jul.-2022]. [38]Thorlabs Inc. "CRM1/M Cage Rotation Mount for Ø1" Optics, SM1 Threaded, M4 Tap " [Online].Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=CRM1/M#ad-image-0 [Accessed 26-Jul., 2022]. [39]Thorlabs Inc. "CDA1 Drop-In 30 mm to 60 mm Cage System Adapter, Qty. 1."[Online].Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=CDA1 [Accessed 26-Jul.-2022]. [40]Thorlabs Inc. "LCP360R Pivoting, Quick-Release, Ø2" Optic Mount for 60 mm Cage System." [Online].Available:https://www.thorlabs.com/thorproduct.cfm?partnumber=LCP360R [Accessed 26-Jul.-2022]. [41]Thorlabs Inc. "SM2A6 Adapter with External SM2 Threads and Internal SM1 Threads." [Online].Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=SM2A6 [Accessed 26-Jul.-2022]. [42]Edmund Optics Inc. "45° 532nm Crystalline Quartz Polarization Rotator." [Online].Available:https://www.edmundoptics.com/p/45deg-532nm-crystalline-quartz-polarization-rotator/3693/ [Accessed 26-Jul.- 2022]. [43]ISO. "ISO 5436-2:2001/COR 1:2006 Geometrical Product Specifications (GPS) — Surface texture: Profile method; Measurement standards — Part 2: Software measurement standards — Technical Corrigendum 1." https://www.iso.org/standard/45308.html [accessed 26-Jul., 2022]. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83139 | - |
dc.description.abstract | 光學量測作爲一種便捷的觀測、量測方式,具有非接觸式量測、可快速檢測等優點,被廣範用於生物科學觀測、工業產品量測等領域。其中微分干涉對比顯微術(Differential interference contrast microscopy)由於其自參照、共路徑光路架設的系統特性,具有較強的抗振、抗環境擾動能力,在實際工業中尤其是對於半導體製造中對階高的量測上有著廣泛的應用。然而在傳統DIC干涉儀中,需要進行兩次正交方向上的剪切干涉量測,通過這兩次量測來獲得兩正交方向上的梯度變化資訊,再藉由相位展開、相位積分演算法進行三維形貌還原,系統結構複雜且两次成像间待测物局域坐標需要对正,耗費較多時間。
為了增加檢測速度,簡化系統結構,本研究旨在通過四波橫向剪切干涉的概念,通過剪切稜鏡對待測物四個方向剪切波前的干涉,同時獲得對兩個正交方向的梯度資訊。結合傅立葉條紋分析演算法,將干涉相位資訊通過沿梯度方向積分獲得待測物的三維表面形貌,實現在不改變光機系統結構、不需改變成像系統與待測物相對位置即可快速獲取表面形貌資訊的DIC光學量測系統。 | zh_TW |
dc.description.abstract | As a convenient method of observation and measurement, optical measurement has the advantages of non-contact measurement and rapid detection. It is widely used in the fields of biological science observation and industrial product measurement. Among them, differential interference contrast microscopy has strong anti-vibration capability and environmental disturbance capability due to its self-referencing and common path optical path erection system characteristics. It is used in the actual industry, especially for high-order measurements in semiconductor manufacturing. Wide range of applications. However, in the traditional DIC interferometer, it is necessary to perform two orthogonal shearing interference measurements. Through these two measurements, the gradient change information in the two orthogonal directions is obtained, and then the phase expansion and phase integral calculation are used. The method is used to restore the three-dimensional topography. The system structure is complex and the local coordinates of the object need to be aligned between two images, which takes a lot of time.
To increase the detection speed and simplify the system structure, this research aims to use the concept of Quadriwave lateral shearing interference through the shearing prism to interfere with the shear wavefront of the object to be measured in four directions and to obtain gradient information in two orthogonal directions simulataneously. Combined with the Fourier fringe analysis algorithm, the interference phase information can be integrated along the gradient direction to obtain the three-dimensional surface topography of the test object so that the optical-mechanical system structure and the relative position between the imaging system and the object can remain unchanged. A DIC optical measurement was successfully developed for reconstructing surface topography in an one-shot manner. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T17:03:07Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-01-09T17:03:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 目錄
1. 論文口試委員審定書 i 2. 誌謝 ii 摘要 iv Abstract v 目錄 vii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目標 7 1.4 論文架構 8 第二章 文獻回顧 9 2.1 微分干涉對比術(DIC)原理 9 2.1.1 剪切干涉術 9 2.1.2 Normarski 微分干涉對比顯微鏡 10 2.1.3 基於邁克生干涉儀架構的微分干涉對比顯微鏡 15 2.1.4 白光掃描微分干涉對比顯微鏡 16 2.1.5 基於結構光投影顯微(SIM)的微分干涉對比顯微鏡 17 2.1.6 基於PCMOS元件的單次快速空間相移DIC成像 19 2.2 四波橫向剪切干涉術原理 21 2.2.1 繞射光柵 21 2.2.2 三波橫向剪切干涉術 24 2.2.3 哈特曼光罩 25 2.2.4 四波橫向剪切干涉術 26 2.3 基於超表面原理的繞射元件進行剪切差分的干涉術 29 2.3.1 超表面元件 29 2.3.2 基於超表面繞射元件的DIC干涉系統 31 2.4 相位資訊處理演算法 33 2.4.1 相位移法 33 2.4.2 傅立葉條紋分析 34 2.4.3 相位掃描法 38 2.4.4 相位展開演算法 39 2.4.5 DIC的相位時域積分還原 43 2.4.6 傅立葉法相位頻域積分 44 2.5 總結 55 第三章 研究方法 57 3.1 研究方法與流程 57 3.2 實驗原理與設計 64 3.2.1 光路設計 64 3.2.2 偏振態分析 73 3.2.3 波前分析 83 3.2.4 MATLAB傅立葉條紋分析演算法設計 90 3.2.5 MATLAB傅立葉法積分進行頻域積分相位還原演算法設計 99 3.3 光學系統模擬與設計 103 3.3.1 ZEMAX成像系統模擬 103 第四章 量測系統架構與實驗流程 106 4.1 CAD成像光機系統設計 106 4.2 量測實驗所用樣品介紹 119 4.2.1 Pelcotec™儀器校正片 119 4.2.2 微透鏡陣列 121 4.3 基於PCMOS元件單次快速空間相移微分干涉系統的實現 122 4.3.1 成像與照明系統的初步架構 122 4.3.2 Savart prism規格 125 4.3.3 數位微鏡裝置 126 4.3.4 偏振態相機 128 4.3.5 量測實驗過程 129 4.4 基於四波橫向剪切干涉術與傅立葉條紋分析的兩正交方向微分干涉系統 134 4.4.1 光學系統的最終架構 135 4.4.2 相機參數 135 4.4.3 數位微鏡裝置投影結構光 139 4.4.4 量測實驗過程 140 第五章 實驗結果與討論 146 5.1 實驗結果總結 146 5.1.1 對儀器校正片上標準階高的不同光學量測結果比對 146 5.1.2 對微鏡陣列的不同光學量測結果比對 154 5.2 實驗誤差分析 165 5.2.1 系統誤差分析 165 5.2.2 其他誤差分析 170 第六章 結論與展望 172 6.1 結論 172 6.2 未來展望 175 參考文獻 178 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於四波橫向剪切干涉術與結構光調制之微分干涉對比顯微術之研究 | zh_TW |
dc.title | Research on Differential Interference Contrast(DIC)Microscopy Based on Quadriwave Lateral Shearing Interferometry and Structured-Light Modulation | en |
dc.title.alternative | Research on Differential Interference Contrast(DIC)Microscopy Based on Quadriwave Lateral Shearing Interferometry and Structured-Light Modulation | - |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李朱育;林世聰;葉勝利 | zh_TW |
dc.contributor.oralexamcommittee | Ju-Yi Lee;Shyh-Tsong Lin;Sheng-Lih Yeh | en |
dc.subject.keyword | 微分干涉對比,結構光,快速量測,四波橫向剪切干涉,三維形貌量測,傅立葉條紋分析, | zh_TW |
dc.subject.keyword | Differential interference contrast (DIC),Structured-light,3D surface measurement,Quadri-wave lateral shearing interferometry,3-dimensional profiling,Fourier fringe analysis, | en |
dc.relation.page | 182 | - |
dc.identifier.doi | 10.6342/NTU202210117 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-12-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1256221208262736.pdf | 13.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。