請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83136完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬 | zh_TW |
| dc.contributor.advisor | Chii-Wann Lin | en |
| dc.contributor.author | 徐瑋良 | zh_TW |
| dc.contributor.author | Wei-Liang Hsu | en |
| dc.date.accessioned | 2023-01-09T17:02:02Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-06 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-12-16 | - |
| dc.identifier.citation | [1] J. G. Webster, Medical instrumentation: application and design. John Wiley & Sons, 2009.
[2] K. Entesari, A. A. Helmy, and M. Moslehi-Bajestan, "Integrated systems for biomedical applications: Silicon-based rf\/microwave dielectric spectroscopy and sensing," IEEE Microwave Magazine, vol. 18, no. 5, pp. 57-72, 2017. [3] Y.-J. Huang, H.-C. Wu, P.-S. Chen, H.-T. Shen, S.-Y. Peng, and C.-W. Lin, "A non-invasive material sensing system and its integrated interface circuits," in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017: IEEE, pp. 1-4. [4] G. Smith, A. P. Duffy, J. Shen, and C. J. Olliff, "Dielectric relaxation spectroscopy and some applications in the pharmaceutical sciences," Journal of pharmaceutical sciences, vol. 84, no. 9, pp. 1029-1044, 1995. [5] P. R. Nagarajan, B. George, and V. J. Kumar, "A linearizing digitizer for wheatstone bridge based signal conditioning of resistive sensors," IEEE Sensors Journal, vol. 17, no. 6, pp. 1696-1705, 2017. [6] J. R. Macdonald and E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2018. [7] A. Manickam, A. Chevalier, M. McDermott, A. D. Ellington, and A. Hassibi, "A CMOS electrochemical impedance spectroscopy (EIS) biosensor array," IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 6, pp. 379-390, 2010. [8] A. A. Helmy et al., "A self-sustained CMOS microwave chemical sensor using a frequency synthesizer," IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2467-2483, 2012. [9] O. Elhadidy, M. Elkholy, A. A. Helmy, S. Palermo, and K. Entesari, "A CMOS fractional-N PLL-based microwave chemical sensor with 1.5% permittivity accuracy," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 9, pp. 3402-3416, 2013. [10] J.-C. Chien, M. Anwar, E.-C. Yeh, L. P. Lee, and A. M. Niknejad, "A 6.5/17.5-GHz dual-channel interferometer-based capacitive sensor in 65-nm CMOS for high-speed flow cytometry," in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 2014: IEEE, pp. 1-4. [11] J.-C. Chien, E.-C. Yeh, L. P. Lee, M. Anwar, and A. M. Niknejad, "A near-field modulation chopping stabilized injection-locked oscillator sensor for protein conformation detection at microwave frequency," in 2015 Symposium on VLSI Circuits (VLSI Circuits), 2015: IEEE, pp. C332-C333. [12] J.-C. Chien and A. M. Niknejad, "Oscillator-based reactance sensors with injection locking for high-throughput flow cytometry using microwave dielectric spectroscopy," IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 457-472, 2015. [13] T. Mitsunaka et al., "CMOS biosensor IC focusing on dielectric relaxations of biological water with 120 and 60 GHz oscillator arrays," IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2534-2544, 2016. [14] O. Elhadidy, S. Shakib, K. Krenek, S. Palermo, and K. Entesari, "A 0.18-μm CMOS fully integrated 0.7–6 GHz PLL-based complex dielectric spectroscopy system," in Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, 2014: IEEE, pp. 1-4. [15] O. Elhadidy, S. Shakib, K. Krenek, S. Palermo, and K. Entesari, "A wide-band fully-integrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 8, pp. 1940-1949, 2015. [16] S. O. Kasap, Principles of electronic materials and devices. McGraw-Hill New York, 2006. [17] A. R. Barron, "Physical methods in chemistry and nano science," 2015. [18] J.-C. Chien, M. Anwar, E.-C. Yeh, L. P. Lee, and A. M. Niknejad, "A 1–50 GHz dielectric spectroscopy biosensor with integrated receiver front-end in 65nm CMOS," in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2013: IEEE, pp. 1-4. [19] M. M. Bajestan, A. A. Helmy, H. Hedayati, and K. Entesari, "A 0.62–10 GHz complex dielectric spectroscopy system in CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 3522-3537, 2014. [20] M. Bakhshiani, M. A. Suster, and P. Mohseni, "A broadband sensor interface IC for miniaturized dielectric spectroscopy from MHz to GHz," IEEE Journal of Solid-State Circuits, vol. 49, no. 8, pp. 1669-1681, 2014. [21] M. Bakhshiani, M. A. Suster, and P. Mohseni, "21.4 A microfluidic-CMOS platform with 3D capacitive sensor and fully integrated transceiver IC for palmtop dielectric spectroscopy," in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, 2015: IEEE, pp. 1-3. [22] I. Nasr, J. Nehring, K. Aufinger, G. Fischer, R. Weigel, and D. Kissinger, "Single-and dual-port 50-100-GHz integrated vector network analyzers with on-chip dielectric sensors," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 2168-2179, 2014. [23] C. Samori, "Understanding phase noise in LC VCOs: A key problem in RF integrated circuits," IEEE Solid-State Circuits Magazine, vol. 8, no. 4, pp. 81-91, 2016. [24] T. H. Lee, The design of CMOS radio-frequency integrated circuits. Cambridge university press, 2003. [25] B. Razavi, "A study of phase noise in CMOS oscillators," IEEE journal of Solid-State circuits, vol. 31, no. 3, pp. 331-343, 1996. [26] B. Razavi, RF microelectronics. Prentice hall New York, 2012. [27] A. Hajimiri and T. H. Lee, "Design issues in CMOS differential LC oscillators," IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, 1999. [28] A. Liscidini, L. Fanori, P. Andreani, and R. Castello, "A power-scalable DCO for multi-standard GSM/WCDMA frequency synthesizers," IEEE Journal of Solid-State Circuits, vol. 49, no. 3, pp. 646-656, 2014. [29] M. Babaie et al., "A fully integrated Bluetooth low-energy transmitter in 28 nm CMOS with 36% system efficiency at 3 dBm," IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1547-1565, 2016. [30] Z. Wang, S. Diao, L. He, X. Jiang, and F. Lin, "Analysis of Current Efficiency for CMOS Class-B LC Oscillators," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 5, pp. 1345-1352, 2015. [31] E. Hegazi and A. A. Abidi, "Varactor characteristics, oscillator tuning curves, and AM-FM conversion," IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 1033-1039, 2003. [32] A. D. Berny, A. M. Niknejad, and R. G. Meyer, "A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration," IEEE journal of solid-state circuits, vol. 40, no. 4, pp. 909-917, 2005. [33] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, "A 114GHz VCO in 0.13 µm CMOS technology," ISSCC Dig. Tech. Papers, pp. 404-405, 2005. [34] K. Bult and G. J. Geelen, "An inherently linear and compact MOST-only current division technique," IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1730-1735, 1992. [35] C. M. Hammerschmied and Q. Huang, "Design and implementation of an untrimmed MOSFET-only 10-bit A/D converter with-79-dB THD," IEEE Journal of Solid-State Circuits, vol. 33, no. 8, pp. 1148-1157, 1998. [36] M. Van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. Klumperink, and B. Nauta, "A 10-bit Charge-Redistribution ADC Consuming 1.9 uW at 1 MS/s," IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, 2010. [37] Q. Huang and R. Rogenmoser, "Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks," IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 456-465, 1996. [38] M. Kossel et al., "LC PLL with 1.2-octave locking range based on mutual-inductance switching in 45-nm SOI CMOS," IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 436-449, 2009. [39] J. Savoj and B. Razavi, "A CMOS interface circuit for detection of 1.2 Gb/s RZ data," in 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No. 99CH36278), 1999: IEEE, pp. 278-279. [40] J. Yuan and C. Svensson, "High-speed CMOS circuit technique," IEEE journal of solid-state circuits, vol. 24, no. 1, pp. 62-70, 1989. [41] B. J. LaMeres, Introduction to logic circuits & logic design with VHDL. Springer, 2019. [42] P. Wang and A. Anderko, "Computation of dielectric constants of solvent mixtures and electrolyte solutions," Fluid Phase Equilibria, vol. 186, no. 1-2, pp. 103-122, 2001. [43] L. Neumaier, J. Schilling, A. Bardow, and J. Gross, "Dielectric constant of mixed solvents based on perturbation theory," Fluid Phase Equilibria, vol. 555, p. 113346, 2022. [44] P. D. Muley and D. Boldor, "Investigation of microwave dielectric properties of biodiesel components," Bioresource technology, vol. 127, pp. 165-174, 2013. [45] A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, "Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials," Scientific reports, vol. 5, no. 1, pp. 1-9, 2015. [46] M. Shahghasemi and K. M. Odame, "A Constant gm Current Reference Generator with Purely Off-Chip Resistor," in 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), 2020: IEEE, pp. 309-312. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83136 | - |
| dc.description.abstract | 近年來越來越多研究將先進的互補式金屬氧化物半導體(CMOS)技術應用於感測器。相較於常規以微機構技術製成的感測器,基於CMOS技術的感測器具有微小化、造價便宜及數位訊號處理的優點,並可以實現可攜式、植入式……等功能,而本研究目的在於使用CMOS技術應用於生醫感測器上,實現一個可攜式、低功耗與低成本的感測器,以取代龐大且昂貴的實驗室儀器。
本研究提出了以CMOS技術應用於生醫量測的介電常數感測器,透過設計具有特定功能的積體電路晶片,將介電常數的實部與虛部的相關數值數位化並讀出,最後再經由外部微控制器控制晶片訊號,以及將相關數值傳送到電腦運算。本研究量測不同濃度的甲醇及乙醇的介電常數,並與商用向量網路分析儀量測到的介電常數進行比較,其中量測甲醇的百分比誤差為0.1%到17.8%。因為我們的感測平台具有低檢測極限和基於物理的感測機制,且其具有微小化及高靈敏度的特性,所以可以針對各種應用進行調整和整合,我們相信這樣的感測平台將為未來的生醫應用找到更多新的機會。本文中的主要電路包含了LC振盪器、數位類比轉換器、比較器、除頻器。 | zh_TW |
| dc.description.abstract | In recent years, more and more researches have adopted advanced complementary metal-oxide-semiconductor (CMOS) technology for sensors. In comparison with conventional micro-mechanism sensors, CMOS sensors have the advantages of miniaturization, low manufacturing cost and signal digitization, thus realizing state of the art technologies such as portable, wearable, and implantable devices. The purpose of this research is to apply CMOS technology to realize a portable, low-power and low-cost biomedical sensor to replace bulky and expensive laboratory instruments.
In this study, we proposed a CMOS permittivity sensor for biomedical measurements. By designing an integrated circuit chip with specialized functions, the readouts of the real and imaginary parts of permittivity are digitized. The chip signal is controlled by an external microcontroller unit, which transmits the digitized data to a computer for calculation. In the evaluation, the permittivity of various concentrations of methanol and ethanol were measured using the proposed CMOS sensor, and compared to the measurements of a benchmark commercial vector network analyzer. The percent error for methanol ranged from 0.1% to 17.8%. In conclusion, the proposed sensing platform has a low limit of detection, physics-based sensing mechanism, miniaturization and high sensitivity, thus can be adapted and integrated to a wide range of applications. We believe that such a sensing platform will create new opportunities for biomedical applications in the future. The main circuit in this article includes LC oscillator, digital to analog converter, comparator, and frequency divider. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T17:02:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-09T17:02:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌 謝 i
摘 要 iii ABSTRACT iv 目 錄 v 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 文獻回顧 2 1.4 論文架構 9 第二章 原理 10 2.1 物質的極化與介電常數 10 2.2 介電常數的應用 17 2.3 基於CMOS電路的介電常數感測器 19 2.4 LC振盪器 20 第三章 設計考量及方法 25 3.1 LC振盪器的設計考量 25 3.2 訊號分析 36 3.3 模擬與參數設置 45 3.4 實驗方法 51 第四章 量測及結果 56 第五章 結論 80 參考文獻 81 圖目錄 圖 1-1 向量網路分析儀(來源: Keysight Technologies) 2 圖 1-2 Quarter-bridge電路[5] 3 圖 1-3 (a)待測物的等校電路 (b)奈奎斯圖[6] 3 圖 1-4 I/Q解調變電路[7] 4 圖 1-5 使用頻率合成器的CMOS微波化學感測器[8] 5 圖 1-6 基於鎖相迴路的化學感測器[9] 6 圖 1-7 電容式流式細胞儀感測器架構[10] 7 圖 1-8 基於LC振盪器的感測器陣列[13] 8 圖 2-1 (a)對真空平行電板施加電壓 (b) 對含介電質的平行電板施加電壓[16] 10 圖 2-2 電偶極矩[16] 11 圖 2-3 水分子的偶極矩向量 12 圖 2-4 複數介電常數頻譜[16] 15 圖 2-5 對待測物施加交流電壓[16] 17 圖 2-6 介電常數頻譜與極化的關係[17] 18 圖 2-7 乙醇與甲醇的介電常數頻譜[2] 18 圖 2-8 (A)介電物質 (B)等效電路[4] 19 圖 2-9 實際的RLC振盪器等效電路[23] 20 圖 2-10 LC振盪器振幅[23] 21 圖 2-11 Q的頻寬定義[25] 22 圖 2-12 Q的相位定義[25] 23 圖 2-13 指叉型電容與待測物質,及其等效電路[3] 24 圖 3-1 LC振盪器分析(a)LC振盪器 (b)LC振盪器等校電路 (c)交叉耦合對等校電路[26] 26 圖 3-2 (a) 互補式交叉耦合對LC振盪器以及電流流向 (b) 等效電路[27] 26 圖 3-3 電流限制區域[27] 27 圖 3-4 電壓限制區域[27] 27 圖 3-5 不同的偏壓電壓的I-V曲線[27] 28 圖 3-6 電流與相位雜訊的關係圖[27] 29 圖 3-7 電壓電流與相位雜訊的關係圖[27] 29 圖 3-8 只有NMOS的LC振盪器的電流與相位雜訊關係圖[28] 30 圖 3-9 電流與Figure-of-merit的關係圖[28] 32 圖 3-10 (a)只有NMOS的LC振盪器 (b)互補式LC振盪器[29] 33 圖 3-11 (a)NMOS LC振盪器 (b)互補式LC振盪器[23] 34 圖 3-12 MOS Varactor的小訊號電容值[31] 35 圖 3-13 不同的振盪振幅與varactor的電容值[32] 35 圖 3-14 振盪波型的變化 36 圖 3-15 波的振幅處理 36 圖 3-16 低通濾波器 37 圖 3-17 MOSFET的電流分流[34] 38 圖 3-18 MOSFET-only R-2R I-DAC的片段架構[35] 38 圖 3-19 MOSFET-only R-2R I-DAC的完整架構[35] 39 圖 3-20 動態比較器[36] 40 圖 3-21 波的頻率處理 40 圖 3-22 Tank voltage-to-CMOS converter [38, 39] 41 圖 3-23 TSPC電路[37] 42 圖 3-24 高速TSPC電路[37] 43 圖 3-25 低頻除頻器架構及其時脈圖[41] 44 圖 3-26 3-bit漣波計數器[41] 45 圖 3-27 LC振盪器核心電路等效圖 47 圖 3-28 on-chip單端電感layout 47 圖 3-29 時域波形圖,tank_right為振盪器輸出電壓,buffer_in為整流後電壓 48 圖 3-30 振盪器輸出電壓頻域圖 48 圖 3-31 低通濾波器輸出電壓時域圖 49 圖 3-32 振盪波形時域圖,tank_right為振盪器的振盪波形,v_cmos為轉換成方波的振盪波形,v_tspc為TSPC的輸出波形 49 圖 3-33 振盪器方波頻域圖,v_cmos為轉換成方波的振盪電壓,v_tspc為TSPC的輸出電壓 50 圖 3-34 量測平台 51 圖 3-35 量測平台與待測溶液 52 圖 3-36 量測實驗設置 53 圖 3-37 量測用探頭及待測溶液 53 圖 3-38 網路分析儀及介電常數分析軟體 54 圖 4-1 第二版晶片。透過光學顯微鏡拍攝的裸晶照片 56 圖 4-2 整體系統架構 58 圖 4-3 Chip1量測不同濃度的乙醇的實部(頻率)與虛部(振幅) 60 圖 4-4 Chip2量測不同濃度的乙醇的實部(頻率)與虛部(振幅) 61 圖 4-5 Chip3量測不同濃度的乙醇的實部(頻率)與虛部(振幅) 62 圖 4-6 Chip2量測不同濃度的乙醇的實部(頻率)與虛部(振幅)的平均值 63 圖 4-7 Chip3量測不同濃度的乙醇的實部(頻率)與虛部(振幅)的平均值 64 圖 4-8 不同濃度的乙醇的介電常數[42] 65 圖 4-9 不同濃度的甲醇的介電常數[43] 65 圖 4-10 Chip2量測不同濃度的甲醇的實部(頻率)與虛部(振幅)的平均值 66 圖 4-11 Chip3量測不同濃度的甲醇的實部(頻率)與虛部(振幅)的平均值 67 圖 4-12 Chip2量測水、乙醇和甲醇 68 圖 4-13 Chip3量測水、乙醇和甲醇 69 圖 4-14 (a)甲醇和乙醇的介電常數 (b)乙醇的介電損耗(c)甲醇的介電損耗[44] 70 圖 4-15 水的介電常數頻譜[45] 71 圖 4-16 第三版晶片Layout 72 圖 4-17 第三版晶片PCB 72 圖 4-18 第三版晶片(a)不同濃度的乙醇頻率分布 (b)不同濃度的乙醇損耗分布 74 圖 4-19 第三版晶片(a)不同濃度的甲醇頻率分布 (b)不同濃度的乙醇損耗分布 75 圖 4-20 第三版晶片甲醇實部迴歸分析 77 圖 4-21 第三版晶片甲醇虛部迴歸分析 77 圖 4-22 第三版晶片乙醇實部迴歸分析 78 圖 4-23 第三版晶片乙醇虛部迴歸分析 78 表目錄 表 3-1 LC振盪器架構的電流效率[29] 33 表 4-1 第二版晶片的三種不同頻率版本 58 表 4-2 Chip1量測純水乙醇混合液 59 表 4-3 Chip2量測純水乙醇混合液 59 表 4-4 Chip3量測純水乙醇混合液 59 表 4-5 第三版晶片量測甲醇與乙醇結果 73 表 4-6 第三版晶片量測校正值與向量網路儀量測數據比較 79 表 4-7 晶片量測結果 79 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微波電路 | zh_TW |
| dc.subject | 指叉型電容 | zh_TW |
| dc.subject | 感測器 | zh_TW |
| dc.subject | 介電損耗 | zh_TW |
| dc.subject | 介電常數 | zh_TW |
| dc.subject | 數位類比轉換器 | zh_TW |
| dc.subject | 類比IC設計 | zh_TW |
| dc.subject | LC振盪器 | zh_TW |
| dc.subject | 混合訊號電路 | zh_TW |
| dc.subject | 生醫晶片 | zh_TW |
| dc.subject | digital to analog converter | en |
| dc.subject | permittivity | en |
| dc.subject | dielectric loss | en |
| dc.subject | LC oscillator | en |
| dc.subject | sensor | en |
| dc.subject | analog IC design | en |
| dc.subject | mixed signal circuit | en |
| dc.subject | biomedical chip | en |
| dc.subject | microwave circuit | en |
| dc.subject | interdigitated capacitor | en |
| dc.title | 用於感測介電常數的CMOS微波生醫感測器 | zh_TW |
| dc.title | A CMOS Biosensor for Sensing Permittivity at Microwave Frequencies | en |
| dc.title.alternative | A CMOS Biosensor for Sensing Permittivity at Microwave Frequencies | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 彭盛裕 | zh_TW |
| dc.contributor.coadvisor | Sheng-Yu Peng | en |
| dc.contributor.oralexamcommittee | 林致廷 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ting Lin | en |
| dc.subject.keyword | 介電常數,介電損耗,LC振盪器,感測器,類比IC設計,混合訊號電路,生醫晶片,微波電路,指叉型電容,數位類比轉換器, | zh_TW |
| dc.subject.keyword | permittivity,dielectric loss,LC oscillator,sensor,analog IC design,mixed signal circuit,biomedical chip,microwave circuit,interdigitated capacitor,digital to analog converter, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202210129 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-12-19 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1036221213578042.pdf 未授權公開取用 | 4.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
