請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83132完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳凱風 | zh_TW |
| dc.contributor.advisor | Kai-Feng Chen | en |
| dc.contributor.author | 陳溥生 | zh_TW |
| dc.contributor.author | Pu-Sheng Chen | en |
| dc.date.accessioned | 2023-01-09T06:31:19Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-06 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-12-19 | - |
| dc.identifier.citation | HEPData record for this analysis. 2022. DOI: 10.17182/hepdata.114781.
Georges Aad et al. “Measurements of top-quark pair differential and double-differential cross-sections in the leptonn+jets channel with pp collisions at 13 TeV using the ATLAS detector”. In: Eur. Phys. J. C 79.12 (2019), p. 1028. DOI: 10.1140/epjc/s10052-019-7525- 6. arXiv: 1908.07305 [hep-ex]. S. Abdullin et al. “The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c”. In: Eur. Phys. J. C 60 (2009). [Erratum: Eur.Phys.J.C 61, 353–356 (2009)], pp. 359–373. DOI: 10.1140/epjc/s10052-009-0959-5. W. Adam et al. “The CMS Phase-1 Pixel Detector Upgrade”. In: JINST 16.02 (2021), P02027. DOI: 10 . 1088 / 1748 - 0221 / 16 / 02 / P02027. arXiv: 2012 . 14304 [physics.ins-det]. P. Adzic et al. “Energy resolution of the barrel of the CMS electromagnetic calorimeter”. In: JINST 2 (2007), P04004. DOI: 10.1088/1748-0221/2/04/P04004. S. Agostinelli et al. “GEANT4—a simulation toolkit”. In: Nucl. Instrum. Meth. A 506 (2003), p. 250. DOI: 10.1016/S0168-9002(03)01368-8. Simone Alioli et al. “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”. In: JHEP 06 (2010), p. 043. DOI: 10.1007/ JHEP06(2010)043. arXiv: 1002.2581 [hep-ph]. J. Alwall et al. “Comparative study of various algorithms for the merging of parton show- ers and matrix elements in hadronic collisions”. In: Eur. Phys. J. C 53 (2008), p. 473. DOI: 10.1140/epjc/s10052-007-0490-5. arXiv: 0706.2569 [hep-ph]. J. Alwall et al. “The automated computation of tree-level and next-to-leading order dif- ferential cross sections, and their matching to parton shower simulations”. In: JHEP 07 (2014), p. 079. DOI: 10.1007/JHEP07(2014)079. arXiv: 1405.0301 [hep-ph]. Spyros Argyropoulos and Torbjo ̈rn Sjo ̈strand. “Effects of color reconnection on tt final states at the LHC”. In: JHEP 11 (2014), p. 043. DOI: 10.1007/JHEP11(2014)043. arXiv: 1407.6653 [hep-ph]. D. Atwood et al. “CP violation in top physics”. In: Phys. Rept. 347 (2001), p. 1. DOI: 10. 1016/S0370-1573(00)00112-5. arXiv: hep-ph/0006032 [hep-ph]. Richard D. Ball et al. “Parton distributions from high-precision collider data”. In: Eur. Phys. J. C 77 (2017), p. 663. DOI: 10.1140/epjc/s10052-017-5199-5. arXiv: 1706.00428 [hep-ph]. Werner Bernreuther, Dennis Heisler, and Zong-Guo Si. “A set of top quark spin corre- lation and polarization observables for the LHC: standard model predictions and new physics contributions”. In: JHEP 12 (2015), p. 026. DOI: 10.1007/JHEP12(2015)026. arXiv: 1508.05271 [hep-ph]. Werner Bernreuther and Zong-Guo Si. “Top quark spin correlations and polarization at the LHC: standard model predictions and effects of anomalous top chromo moments”. In: Phys. Lett. B 725 (2013), p. 115. DOI: 10.1016/j.physletb.2013.06.051. arXiv: 1305.2066 [hep-ph]. Bevan, A. J. and others. “The physics of the B factories”. In: Eur. Phys. J. C 74 (2014), p. 3026. DOI: 10.1140/epjc/s10052-014-3026-9. arXiv: 1406.6311 [hep-ex]. Andy Buckley et al. “LHAPDF6: parton density access in the LHC precision era”. In: Eur. Phys. J. C 75 (2015), p. 132. DOI: 10.1140/epjc/s10052-015-3318-8. arXiv: 1412.7420 [hep-ph]. Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-kT jet clustering algo- rithm”. In: JHEP 04 (2008), p. 063. DOI: 10.1088/1126-6708/2008/04/063. arXiv: 0802.1189 [hep-ex]. Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “FASTJET user manual”. In: Eur. Phys. J. C 72 (2012), p. 1896. DOI: 10.1140/epjc/s10052-012-1896-2. arXiv: 1111.6097 [hep-ph]. John M. Campbell et al. “Top-pair production and decay at NLO matched with parton showers”. In: JHEP 04 (2015), p. 114. DOI: 10.1007/JHEP04(2015)114. arXiv: 1412.1828 [hep-ph]. Stefano Catani et al. “Top-quark pair production at the LHC: fully differential QCD pre- dictions at NNLO”. In: JHEP 07 (2019), p. 100. DOI: 10.1007/JHEP07(2019)100. arXiv: 1906.06535 [hep-ph]. Hmayakyan Chatrchyan et al. “The CMS experiment at the CERN LHC. The Compact Muon Solenoid experiment”. In: JINST 3 (2008), S08004. 361. DOI: 10.1088/1748-0221/ 3/08/S08004. URL: https://cds.cern.ch/record/1129810. S Chatrchyan et al. “Commissioning of the CMS high-level trigger with cosmic rays”. In: JINST 5 (2010), T03005. DOI: 10.1088/1748-0221/5/03/T03005. arXiv: 0911.4889 [physics.ins-det]. Serguei Chatrchyan et al. “Description and performance of track and primary-vertex re- construction with the CMS tracker”. In: JINST 9.10 (2014), P10009. DOI: 10.1088/1748- 0221/9/10/P10009. arXiv: 1405.6569 [physics.ins-det]. Serguei Chatrchyan et al. “Identification of b-quark jets with the CMS experiment”. In: JINST 8 (2013), P04013. DOI: 10.1088/1748-0221/8/04/P04013. arXiv: 1211.4462 [hep-ex]. Jesper R. Christiansen and Peter Z. Skands. “String formation beyond leading colour”. In: JHEP 08 (2015), p. 003. DOI: 10.1007/JHEP08(2015)003. arXiv: 1505.01681 [hep-ph]. CMS Collaboration. CMS luminosity measurement for the 2017 data-taking period at √s = 13TeV. CMS Physics Analysis Summary CMS-PAS-LUM-17-004. 2018. URL: https:// cds.cern.ch/record/2621960/. CMS Collaboration. CMS luminosity measurement for the 2018 data-taking period at √s = 13TeV. CMS Physics Analysis Summary CMS-PAS-LUM-18-002. 2019. URL: https:// cds.cern.ch/record/2676164/. Michal Czakon, David Heymes, and Alexander Mitov. “High-precision differential pre- dictions for top-quark pairs at the LHC”. In: Phys. Rev. Lett. 116 (2016), p. 082003. DOI: 10.1103/PhysRevLett.116.082003. arXiv: 1511.00549 [hep-ph]. Michal Czakon et al. “Top-pair production at the LHC through NNLO QCD and NLO EW”. In: JHEP 10 (2017), p. 186. DOI: 10.1007/JHEP10(2017)186. arXiv: 1705.04105 [hep-ph]. “LHC Machine”. In: JINST 3 (2008). Ed. by Lyndon Evans and Philip Bryant, S08001. DOI: 10.1088/1748-0221/3/08/S08001. V. Fanti et al. “A new measurement of direct CP violation in two pion decays of the neutral kaon”. In: Phys. Lett. B 465 (1999), p. 335. DOI: 10.1016/S0370-2693(99)01030-8. arXiv: hep-ex/9909022. Rikkert Frederix and Stefano Frixione. “Merging meets matching in MC@NLO”. In: JHEP 12 (2012), p. 061. DOI: 10.1007/JHEP12(2012)061. arXiv: 1209.6215 [hep-ph]. Stefano Frixione, Paolo Nason, and Carlo Oleari. “Matching NLO QCD computations with parton shower simulations: the POWHEG method”. In: JHEP 11 (2007), p. 070. DOI: 10.1088/1126-6708/2007/11/070. arXiv: 0709.2092 [hep-ph]. R. Fruhwirth. “Application of Kalman filtering to track and vertex fitting”. In: Nucl. In- strum. Meth. A 262 (1987), p. 444. DOI: 10.1016/0168-9002(87)90887-4. R. Fruhwirth, W. Waltenberger, and P. Vanlaer. “Adaptive vertex fitting”. In: J. Phys. G 34 (2007), N343. DOI: 10.1088/0954-3899/34/12/N01. S. L. Glashow, J. Iliopoulos, and L. Maiani. “Weak interactions with lepton-hadron sym- metry”. In: Phys. Rev. D 2 (1970), p. 1285. DOI: 10.1103/PhysRevD.2.1285. S. K. Gupta, A. S. Mete, and G. Valencia. “CP-violating anomalous top-quark couplings at the LHC”. In: Phys. Rev. D 80 (2009), p. 034013. DOI: 10.1103/PhysRevD.80.034013. arXiv: 0905.1074 [hep-ph]. Sudhir Kumar Gupta and G. Valencia. “CP-odd correlations using jet momenta from tt events at the Tevatron”. In: Phys. Rev. D 81 (2010), p. 034013. DOI: 10.1103/PhysRevD.81. 034013. arXiv: 0912.0707 [hep-ph]. Alper Hayreter and German Valencia. “T-odd correlations from top-quark CEDM in lepton plus jets top-pair events”. In: Phys. Rev. D 93 (2016), p. 014020. DOI: 10.1103/ PhysRevD.93.014020. arXiv: 1511.01464 [hep-ph]. Andreas Hoecker and Zoltan Ligeti. “CP violation and the CKM matrix”. In: Ann. Rev. Nucl. Part. Sci. 56 (2006), p. 501. DOI: 10.1146/annurev.nucl.56.080805.140456. arXiv: hep-ph/0605217 [hep-ph]. Vardan Khachatryan et al. “Event generator tunes obtained from underlying event and multiparton scattering measurements”. In: Eur. Phys. J. C 76 (2016), p. 155. DOI: 10.1140/ epjc/s10052-016-3988-x. arXiv: 1512.00815 [hep-ex]. Vardan Khachatryan et al. “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”. In: JINST 12 (2017), P02014. DOI: 10.1088/1748-0221/12/02/P02014. arXiv: 1607.03663 [hep-ex]. Vardan Khachatryan et al. “Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV”. In: Phys. Rev. D 95.9 (2017), p. 092001. DOI: 10.1103/PhysRevD.95.092001. arXiv: 1610. 04191 [hep-ex]. Vardan Khachatryan et al. “Measurements of the tt production cross section in lep- ton+jets final states in pp collisions at 8 TeV and ratio of 8 to 7 TeV cross sections”. In: Eur. Phys. J. C 77 (2017), p. 15. DOI: 10.1140/epjc/s10052-016-4504-z. arXiv: 1602.09024 [hep-ex]. Vardan Khachatryan et al. “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at √s = 8 TeV”. In: JINST 10 (2015), P06005. DOI: 10.1088/1748-0221/10/06/P06005. arXiv: 1502.02701 [physics.ins-det]. Vardan Khachatryan et al. “Search for CP violation in tt production and decay in proton- proton collisions at √s = 8 TeV”. In: JHEP 03 (2017), p. 101. DOI: 10.1007/JHEP03(2017) 101. arXiv: 1611.08931 [hep-ex]. Vardan Khachatryan et al. “The CMS trigger system”. In: JINST 12 (2017), P01020. DOI: 10.1088/1748-0221/12/01/P01020. arXiv: 1609.02366 [physics.ins-det]. Nikolaos Kidonakis. “NNLL threshold resummation for top-pair and single-top produc- tion”. In: Phys. Part. Nucl. 45 (2014), p. 714. DOI: 10.1134/S1063779614040091. arXiv: 1210.7813 [hep-ph]. Makoto Kobayashi and Toshihide Maskawa. “CP violation in the renormalizable theory of weak interaction”. In: Progress of Theoretical Physics 49 (1973), p. 652. ISSN: 0033-068X. DOI: 10.1143/PTP.49.652. URL: https://doi.org/10.1143/PTP.49.652. Louis Lyons, Duncan Gibaut, and Peter Clifford. “How to combine correlated estimates of a single physical quantity”. In: Nucl. Instrum. Meth. A 270 (1988), p. 110. DOI: 10.1016/ 0168-9002(88)90018-6. “Measuring Electron Efficiencies at CMS with Early Data”. In: (Dec. 2008). Paolo Nason. “A new method for combining NLO QCD with shower Monte Carlo al- gorithms”. In: JHEP 11 (2004), p. 040. DOI: 10.1088/1126-6708/2004/11/040. arXiv: hep-ph/0409146 [hep-ph]. T. Pajero. “CP violation in charm at LHCb”. In: Nuovo Cim. C 42 (2020), p. 250. DOI: 10. 1393/ncc/i2019-19250-3. Particle Data Group, P. A. Zyla, et al. “Review of particle physics”. In: Prog. Theor. Exp. Phys. 2020 (2020), p. 083C01. DOI: 10.1093/ptep/ptaa104. A. M. Sirunyan et al. “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13TeV”. In: JINST 13 (2018), P05011. DOI: 10.1088/1748-0221/13/05/ P05011. arXiv: 1712.07158. Albert M Sirunyan et al. “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”. In: JINST 16 (2021), P05014. DOI: 10.1088/1748- 0221/16/05/P05014. arXiv: 2012.06888 [hep-ex]. Albert M Sirunyan et al. “Extraction and validation of a new set of CMS P Y T H I A 8 tunes from underlying-event measurements”. In: Eur. Phys. J. C 80 (2020), p. 4. DOI: 10.1140/ epjc/s10052-019-7499-4. arXiv: 1903.12179 [hep-ex]. Albert M Sirunyan et al. “Measurement of the inelastic proton-proton cross section at √s = 13 TeV”. In: JHEP 07 (2018), p. 161. DOI: 10.1007/JHEP07(2018)161. arXiv: 1802. 02613 [hep-ex]. Albert M Sirunyan et al. “Measurement of the top quark polarization and tt spin corre- lations using dilepton final states in proton-proton collisions at √s = 13 TeV”. In: Phys. Rev. D 100 (2019), p. 072002. DOI: 10.1103/PhysRevD.100.072002. arXiv: 1907.03729 [hep-ex]. Albert M Sirunyan et al. “Particle-flow reconstruction and global event description with the CMS detector”. In: JINST 12 (2017), P10003. DOI: 10.1088/1748-0221/12/10/P10003. arXiv: 1706.04965 [physics.ins-det]. Albert M Sirunyan et al. “Performance of the CMS Level-1 trigger in proton-proton colli- sions at √s = 13 TeV”. In: JINST 15.10 (2020), P10017. DOI: 10.1088/1748-0221/15/10/ P10017. arXiv: 2006.10165 [hep-ex]. Albert M Sirunyan et al. “Performance of the CMS muon detector and muon reconstruc- tion with proton-proton collisions at √s = 13TeV”. In: JINST 13 (2018), P06015. DOI: 10.1088/1748-0221/13/06/P06015. arXiv: 1804.04528 [physics.ins-det]. Albert M Sirunyan et al. “Pileup mitigation at CMS in 13 TeV data”. In: JINST 15.09 (2020), P09018. DOI: 10.1088/1748-0221/15/09/P09018. arXiv: 2003.00503 [hep-ex]. Albert M Sirunyan et al. “Precision luminosity measurement in proton-proton collisions at √s = 13TeV in 2015 and 2016 at CMS”. In: Eur. Phys. J. C 81 (2021), p. 800. DOI: 10. 1140/epjc/s10052-021-09538-2. arXiv: 2104.01927 [hep-ex]. Torbjo ̈rn Sjo ̈strand et al. “An introduction to PYTHIA 8.2”. In: Comput. Phys. Commun. 191 (2015), p. 159. DOI: 10.1016/j.cpc.2015.01.024. arXiv: 1410.3012 [hep-ph]. German Valencia. “CP violation in top-quark physics”. In: Nuovo Cim. C 033 (2010). Ed. by J. D’Hondt et al., p. 263. DOI: 10.1393/ncc/i2010-10673-2. arXiv: 1007.4765 [hep-ph]. Jorg Wenninger. “Operation and Configuration of the LHC in Run 2”. In: (2019). URL: https://cds.cern.ch/record/2668326. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83132 | - |
| dc.description.abstract | 此論文透過頂夸克對的半輕子衰變態尋找電荷宇稱破壞。此測量使用從2016年到2018年,藉由緊湊緲子線圈收集的質心能量十三兆電子伏特的質子對撞事件,其總和亮度達到一百三十七逆飛靶。此分析方法使用線性獨立的終態粒子的四維動量所建立的可觀測量來測量可能的宇稱破壞。藉由觀測到的不對稱量所測量到的無因次色電偶極矩量為0.04±0.10(stat)±0.07(syst),此結果顯示沒有電荷宇稱破壞的徵兆,並吻合標準模型的預測。 | zh_TW |
| dc.description.abstract | Results are presented on a search for CP violation in the production and decay of top quark-antiquark pairs in the lepton+jets channel. The search is based on data from proton-proton collisions at 13TeV, collected with the CMS detector, corresponding to an integrated luminosity of 138 inverse fb. Possible CP violation effects are evaluated by measuring asymmetries in observables constructed from linearly independent four-momentum vectors of the final-state particles. The dimensionless chromoelectric dipole moment of the top quark obtained from the observed asymmetries is measured to be 0.04±0.10(stat)±0.07(syst), and the asymmetries exhibit no evidence for CP-violating effects, consistent with expectations from the standard model. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-09T06:31:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-09T06:31:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 III
致謝 V 摘要 VII Abstract IX 1 Introduction 1 2 Experimental Apparatus 3 2.1 Large hadron collider 3 2.1.1 Proton injection and operational cycle 4 2.1.2 Machine design 4 2.1.3 Luminosity and pileup 6 2.2 Compact muon solenoid 9 2.2.1 Coordinate system 9 2.2.2 Trackingsystem 11 2.2.3 Electromagnetic calorimeter(ECAL) 14 2.2.4 Hadronic calorimeter(HCAL) 16 2.2.5 Magnet configuration 17 2.2.6 Muon detectors 18 2.3 Trigger 20 2.3.1 Level1 trigger 20 2.3.2 High level trigger 22 3 Physical object reconstruction 24 3.1 Particle flow ingredients 25 3.1.1 Track 25 3.1.2 Vertex 26 3.1.3 Calorimeter clustering 28 3.2 Muon 28 3.2.1 Muon reconstruction 28 3.2.2 Muon identification and isolation 29 3.3 Electron 31 3.3.1 Electron reconstruction 31 3.3.2 Electron identification and isolation 33 3.4 Jet 34 3.4.1 Jet reconstruction 36 3.4.2 Jet corrections 36 3.4.3 Jet identification 37 3.4.4 Jet flavor tagging 37 4 Data and simulated samples 53 4.1 Data samples 41 4.2 Simulated samples 41 4.3 Corrections to simulation 46 4.3.1 Jet energy smearing 47 4.3.2 Efficiency scale factor 47 4.3.3 Pileup re-weighting 48 5 Event selection 50 5.1 Trigger 50 5.2 Physical object selection 50 6 Asymmetries extraction 60 6.1 Fitting procedure 60 6.2 Experimental sensitivity 71 7 Systematic uncertainties 74 7.1 Detector and reconstruction effects 74 7.1.1 Background-enriched method 74 7.1.2 Event-mixing method 75 7.1.3 Asymmetries in simulated samples 75 7.2 Other experimental and theoretical systematic uncertainties 76 7.2.1 Other experimental systematic uncertainties 76 7.2.2 Theoretical systematic uncertainties 86 8 Results 89 8.1 Asymmetry measurements 89 8.2 Constraint on the dimensionless CEDM 89 9 Conclusion 94 A Electron trigger study 95 A.1 Event and sample selection 95 A.2 Results of tag and probe 95 A.3 Systematic uncertainty 95 B Dilution factors 99 Bibliography 102 | - |
| dc.language.iso | en | - |
| dc.subject | 緊湊緲子線圈 | zh_TW |
| dc.subject | 大型強子對撞機 | zh_TW |
| dc.subject | 電荷宇稱破壞 | zh_TW |
| dc.subject | 頂夸克對 | zh_TW |
| dc.subject | 標準模型 | zh_TW |
| dc.subject | ttbar | en |
| dc.subject | LHC | en |
| dc.subject | CMS | en |
| dc.subject | Standard model | en |
| dc.subject | CP violation | en |
| dc.title | 於緊湊緲子線圈質心能量十三兆電子伏特透過頂夸克對的半輕子衰變態尋找電荷宇稱破壞 | zh_TW |
| dc.title | Search for CP violation using top quark-antiquark events in the lepton+jets channel in pp collisions with √s = 13 TeV at CMS | en |
| dc.title.alternative | Search for CP violation using top quark-antiquark events in the lepton+jets channel in pp collisions with √s = 13 TeV at CMS | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 呂榮祥;郭家銘;裴斯達;張寶棣;黃宇廷 | zh_TW |
| dc.contributor.oralexamcommittee | Rong-Shyang Lu;Chia-Ming Kuo;Stathes Paganis;Pao-Ti Chang;Yu-Tin Huang | en |
| dc.subject.keyword | 大型強子對撞機,緊湊緲子線圈,標準模型,電荷宇稱破壞,頂夸克對, | zh_TW |
| dc.subject.keyword | LHC,CMS,Standard model,CP violation,ttbar, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202210032 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-12-21 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0246221107362028.pdf | 41.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
