請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83111完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟 | zh_TW |
| dc.contributor.advisor | Guo-Dung Su | en |
| dc.contributor.author | 鄧佳瑜 | zh_TW |
| dc.contributor.author | Chia-Yu Teng | en |
| dc.date.accessioned | 2023-01-08T17:08:37Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-01-06 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-11-21 | - |
| dc.identifier.citation | V. C. Su, C. H. Chu, G. Sun, and D. P. Tsai, "Advances in optical metasurfaces: fabrication and applications [invited]," Optics Express, vol. 26, no. 10, pp. 13148-13182, May 14 2018.
P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, "Recent advances in planar optics: from plasmonic to dielectric metasurfaces," Optica, vol. 4, no. 1, pp. 139-152, Jan 20 2017. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, vol. 352, no. 6290, pp. 1190-1194, Jun 3 2016. N. F. Yu et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," Science, vol. 334, no. 6054, pp. 333-337, Oct 21 2011. S. M. Wang et al., "Broadband achromatic optical metasurface devices," Nature Communicaions, vol.8, Aug 4 2017. S. Colburn, A. Zhan, and A. Majumdar, "Varifocal zoom imaging with large area focal length adjustable metalenses," Optica, vol. 5, no. 7, pp. 825-831, Jul 20 2018. C. Y. Fan, T. J. Chuang, K. H. Wu, and G. D. J. Su, "Electrically modulated varifocal metalens combined with twisted nematic liquid crystals," Optica Express, vol. 28, no. 7, pp. 10609-10617, Mar 30 2020. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, "Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations," Nature Communicaions, vol. 7, Nov 28 2016. M. H. Chen, W. N. Chou, V. C. Su, C. H. Kuan, and H. Y. Lin, "High-performance gallium nitride dielectric metalenses for imaging in the visible," Scientific Reports, vol. 11, no. 1, Mar 22 2021. J. S. Park et al., "All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography," Nano Letters, vol. 19, no. 12, pp. 8673-8682, Dec 2019. Y. J. Wang et al., "High-efficiency broadband achromatic metalens for near-IR biological imaging window," Nature Communicaions, vol. 12, no. 1, Sep 21 2021. W. L. Hsu, Y. C. Chen, S. P. Yeh, Q. C. Zeng, Y. W. Huang, and C. M. Wang, "Review of Metasurfaces and Metadevices: Advantages of Different Materials and Fabrications," Nanomaterials- Basel, vol. 12, no. 12, Jun 2022. Y. F. Chen, "Nanofabrication by electron beam lithography and its applications: A review,"Microelectronic Engineering, vol. 135, pp. 57-72, Mar 5 2015. A. N. Broers, A. C. F. Hoole, and J. M. Ryan, "Electron beam lithography - Resolution limits,"Microelectronic Engineering, vol. 32, no. 1-4, pp. 131-142, Sep 1996. L. B. Chang, S. S. Liu, and M. J. Jeng, "Etching selectivity and surface profile of GaN in the Ni, SiO2 and photoresist masks using an inductively coupled plasma," Japanese Journal of Applied Physics 1, vol. 40, no. 3a, pp. 1242-1243, Mar 2001. S. A. Rosli, A. A. Aziz, and M. R. Hashim, "ICP-RIE Dry Etching Using Cl2-based on GaN," Sains Malaysiana, vol. 40, no. 1, pp. 79-82, Jan 2011. N. Okada et al., "Formation of distinctive structures of GaN by inductively-coupled-plasma and reactive ion etching under optimized chemical etching conditions," Aip Advances, vol. 7, no. 6, Jun 2017. S. M. Wang et al., "A broadband achromatic metalens in the visible," Nature Nanotechnology, vol. 13, no. 3, pp. 227-232, Mar 2018, doi: 10.1038/s41565-017-0052-4. N. F. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, vol. 13, no. 2, pp. 139-150, Feb 2014, doi: 10.1038/nmat3839. S.Molesky, Z.Lin, A.Y. Piggott, W.L. Jin, J. Vuckovic and A.W. Rodriguez, "Inverse design in nanophotonics," Nature Photonics, vol. 12, no. 11, pp. 659-670, Nov 2018, doi: 10.1038/s41566- 018-0246-9. T. Tanemura et al., "Multiple-Wavelength Focusing of Surface Plasmons with a Nonperiodic Nanoslit Coupler," Nano Letters, vol. 11, no. 7, pp. 2693-2698, Jul 2011, doi: 10.1021/nl200938h. N. F. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nat Mater, vol. 13, no. 2, pp. 139-150, Feb 2014, doi: 10.1038/nmat3839. Nano Letters, vol. 11, no. 7, pp. 2693-2698, Jul 2011, doi: 10.1021/nl200938h. F. Aieta, P. Genevet, N. F. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-Plane Reflection and Refraction of Light by Anisotropic Optical Antenna Metasurfaces with Phase Discontinuities,"Nano Letters, vol. 12, no. 3, pp. 1702-1706, Mar 2012, doi: 10.1021/nl300204s. Z. H. Wang, Y. L. Wu, D. F. Qi, W. H. Yu, and H. Y. Zheng, "Progress in the design, nanofabrication, and performance of metalenses," Journal of Optics-Uk, vol. 24, no. 3, Mar 1 2022, doi: ARTN 03300110.1088/2040-8986/ac44d8. R. X. Wang et al., "Metalens for Generating a Customized Vectorial Focal Curve," (in English), Nano Letters, vol. 21, no. 5, pp. 2081-2087, Mar 10 2021, doi: 10.1021/acs.nanolett.0c04775. N. F. Yu et al., "Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction," (in English), Science, vol. 334, no. 6054, pp. 333-337, Oct 21 2011, doi: 10.1126/science.1210713. Y. L. He, B. X. Song, and J. Tang, "Optical metalenses: fundamentals, dispersion manipulation, and applications," (in English), Frontiers Optoelectron, vol. 15, no. 1, Dec 2022, doi: ARTN 2410.1007/s12200-022-00017-4. G. Yoon, J. Jang, J. Mun, K. T. Nam, and J. Rho, "Metasurface zone plate for light manipulation in vectorial regime," (in English), Communications Physics-Uk, vol. 2, Dec 12 2019, doi: ARTN 15610.1038/s42005-019-0258-x. Z. Y. Zhang et al., "Hybrid-level Fresnel zone plate for diffraction efficiency enhancement," (in English), Optics Express, vol. 25, no. 26, pp. 33676-33687, Dec 25 2017, doi: 10.1364/Oe.25.033676. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83111 | - |
| dc.description.abstract | 超穎介面為平面次波長尺寸的人造奈米結構,透過操控空間區域內的電磁波特性如相位、偏振、振幅等結構去滿足所需的光學應用,可避免傳統透鏡常受限於自然界中折射率而無法達到極小尺寸的情況,且效率的提高與改善使得越來越多相關微型化光電元件的應用。
製造超穎透鏡的技術中,微影為主要且具有較成熟的製程技術,本篇論文透過E-beam電子束直寫出奈米等級的圖案,無須使用任何光罩,其最小線寬可達50 nm,進而製造出深寬比將近13的奈米柱結構,另外我們運用雙光阻塗佈對光敏感度的差異,經過曝光顯影後去呈現上寬下窄的mushroom結構,這個做法有利於後續金屬在保留所需線寬下,不易鍍到下層側壁,在lift-off時可有效剝離金屬層。此外藉由結合扭曲向列型液晶(TN-LC)去變換入射光的極化方向,我們也量測不同極化方向下分別的聚焦能力,再結合1951 USAF空間分辨率測試版以測試經過超穎透鏡後的成像品質。在實驗中驗證了兩個焦點的焦距和聚焦效率皆與模擬結果十分相近,未來也期待能運用在更多光學範疇上。 | zh_TW |
| dc.description.abstract | Metasurfaces are planar nanostructured interfaces that have used increasingly as miniature optical devices since their efficiency has recently been improved. Conventional lighting devices are often limited by refractive index of the natural material while their distribution is determined by the lens shape [25]. Metalens provide a new opportunity for optical applicaions due to the strong capability in manipulating the propagation of light by its phase, polarization and amplitude at a subwavelength scale, metalenses can control the electromagnetic waves to achieve an entire 2π phase shift.
For the fabrication techniques of metasurfaces, lithography is the most mature and dominant method. In this paper, we selected electron beam lithography method that producing pattern features by a serial writing without the use of masks to fabricate our metalens. The minimum physical size can be as small as 50 nm, and the maximum aspect ratio is near 13. To increase the tolerance and make the sidewall vertical and smooth, we coated the double photoresist in the process. After the exposure and development, the different light sensitivity of the photoresist presents a mushroom-type. This type is beneficial to the quality of the whole metalens since the metal layer is easier to strip while in the lift-off process. Otherwise, our experiment also demonstrates the focusing ability in different polarization of incident lights and a 1951 USAF resolution chart is used to measure the resolution and magnification of the proposed setup. Since our experiment shows that the two focuses’ focal length and focusing efficiencies are approximate to the simulation results., we also look forward to applying it to more optical fields in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-08T17:08:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-08T17:08:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii Chapter 1 Introduction 1 1.1 The background of metasurfaces 1 1.2 Lens Design 3 1.3 Motivation 6 Chapter 2 Material and parameter 7 2.1 Material of nanopillars 8 2.1.1 Substrate 10 2.2 Lithography Parameters 11 2.3 Deposition 17 2.3.1 Electron beam evaporation 19 2.4 Etching process 20 2.4.1 Dry etching 21 2.4.2 Wet Etching 22 2.4.3 The etching recipe of GaN nanopillars 23 Chapter 3 Experimental 30 3.1 Fabrication of Metalens 31 3.1.1 Process flow 31 3.1.2 Lithography-based procedure 33 3.1.3 Lift-off procedure 34 3.2 Measurement setup 37 3.2.1 Optical path structure 37 3.2.2 TN-LC 40 Chapter 4 Results and Discussion 43 4.1 Fabrication of GaN nanopillars 43 4.1.1 Electron beam lithography 43 4.1.2 Hard Mask 46 4.1.3 ICP-RIE Etching Process 48 4.2 Measurement and analysis of Metalens 49 Chapter 5 Conclusion 56 REFERENCE 58 | - |
| dc.language.iso | en | - |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 正光阻曝光顯影 | zh_TW |
| dc.subject | 1951 USAF分辨力測試圖 | zh_TW |
| dc.subject | 次波長介面 | zh_TW |
| dc.subject | 超穎透鏡 | zh_TW |
| dc.subject | 1951 USAF resolution test chart | en |
| dc.subject | metasurface | en |
| dc.subject | sub-wavelength surface | en |
| dc.subject | Gallium Nitride (GaN) | en |
| dc.subject | e-beam lithography with postive photoresist | en |
| dc.title | 變焦超穎透鏡製程技術優化與成像品質量測 | zh_TW |
| dc.title | Technological process optimization and measurement of image quality of the zoom metalenses | en |
| dc.title.alternative | Technological process optimization and measurement of image quality of the zoom metalenses | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳忠幟;蔡睿哲 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-chih Wu;Jui-che Tsai | en |
| dc.subject.keyword | 超穎透鏡,次波長介面,氮化鎵,正光阻曝光顯影,1951 USAF分辨力測試圖, | zh_TW |
| dc.subject.keyword | metasurface,sub-wavelength surface,Gallium Nitride (GaN),e-beam lithography with postive photoresist,1951 USAF resolution test chart, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202210062 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-11-22 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
