請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83105完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方俊民 | zh_TW |
| dc.contributor.advisor | Jim-Min Fang | en |
| dc.contributor.author | 洪瑋晟 | zh_TW |
| dc.contributor.author | Wei-Cheng Hung | en |
| dc.date.accessioned | 2023-01-08T17:06:31Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-06 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-11-29 | - |
| dc.identifier.citation | Daniel, T. M. The history of tuberculosis. Resp. Med. 2006, 100, 1862‒1870
Barberis, I.; Bragazzi, N. L.; Galluzzo, L.; Martini, M. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J. Prev. Med. Hyg. 2017, 58, E9‒E12 Cave, A. J. E. The evidence for the incidence of tuberculosis in ancient Egypt. Br. J. Tuberc. 1939, 33, 142‒152 Koch, R. Die aetiologie der tuberculose, a translation by Berna Pinner and Max Pinner with an introduction by Allen K. Krause. Am. Rev. Tuberc. 1932, 25, 285‒323 Daniel, T. M. Robert Koch and the pathogenesis of tuberculosis. Int. J. Tuberc. Lung. Dis. 2005, 9, 1181‒1182 Sakula, A. BCG: Who were Calmette and Guérin? Thorax, 1983, 38, 806‒812 Daniel, T. M. Leon Charles Albert Calmette and BCG vaccine. Int. J. Tuberc. Lung Dis. 2005, 9, 205‒206 Calmette, A. On preventive vaccination of the new-born against tuberculosis by B.C.G. Br. J. Tuberc. 1928, 22, 161‒165 Schatz, A.; Bugie, E.; Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Exp. Biol. Med. 1944, 55, 66‒69 Robitzek, E. H.; Selikoff, I. J.; Ornstein, G. G. Chemotherapy of human tuberculosis with hydrazine derivatives of isonicotinic acid; preliminary report of representative cases. Q. Bull. Sea View Hosp. 1952, 13, 27‒51 Robitzek, E. H.; Selikoff, I. J. Hydrazine derivatives of isonicotinic acid (Rimifon, Marsilid) in the treatment of active progressive caseous-pneumonic tuberculosis; a preliminary report. Am. Rev. Tuberc. 1952, 65, 402‒428 McKenzie, D; Malone, L.; Kushner, S.; Oleson, J. J. The effect of nicotinic acid amide on experimental tuberculosis of white mice. J. Lab. Clin. Med. 1948, 33, 1249‒1253 Muschenheim, C.; Organick, A.; Mucune, R. M. Jr.; Batten, J. Deuschle, K.; Tompsett, R.; McDermott, W. Pyrazinamide-isoniazid in tuberculosis. III. Observations with reduced dosage of pyrazinamide. Am. Rev. Tuberc. 1955, 72, 851‒855 Thomas, J. P.; Baughn, C. O.; Wilkinson, R. G.; Shepherd, R. G. A new synthetic compound with antituberculous activity in mice: ethambutol (dextro-2,2’-(ethylenediimino)-di-1-butanol). Am. Rev. Respir. Dis. 1961, 83, 891‒893 Ferebee, S. H.; Doster, B. E.; Murray, F. J. Ethambutol: a substitute for para-aminosalicyclic acid in regimens for pulmonary tuberculosis. Ann. N. Y. Acad. Sci. 1966, 135, 910‒920 Doster, B.; Murray, F. J.; Newman, R.; Woolpert, S. F. Ethambutol in the initial treatment of pulmonary tuberculosis. U.S. Public Health Service tuberculosis therapy trials. Am. Rev. Respir. Dis. 1973, 107, 177‒190 Maggi, N.; Pasqualucci, C. R.; Ballota, R.; Sensi, P. Rifampicin: a new orally active rifamycin. Chemotherapy, 1966, 11, 285‒292 Sensi, P. History of the development of rifampin. Rev. Infect. Dis., 1983, 5, S402‒S406 Global tuberculosis report 2020. Geneva: World Health Organization; 2020 Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature, 2011, 469, 483‒490 Russell, D. G. Who puts the tubercle in tuberculosis? Nat. Rev. Micobiol. 2007, 5, 39‒47 Pieters, J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host & Microbe 2008, 3, 399‒407 Gatfield, J.; Pieters, J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 2000, 288, 1647‒1651 Daffé, M.; Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 1998, 39, 131‒203 Daffé, M.; Etienne, G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber. Lung Dis. 1999, 79, 153‒169 Hett, E. C.; Rubin, E. J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 2008, 72, 126‒156 Takayama, K.; Wang, C.; Besra, G. S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 2005, 18, 81‒101 Chapman, G. B.; Hanks, J. H.; Wallace, J. H. An electron microscope study of the disposition and fine structure of Mycobacterium lepraemurium in mouse spleen. J. Bacteriol. 1959, 77, 205‒211 Hanks, J.H. Capsules in electron micrographs of Mycobacterium leprue. Int. J. Lepr.1961, 29, 84‒87 Hanks, J.H. The problem of preserving internal structures in pathogenic mycobacteria by conventional methods of fixation. Int. J. Lepr. 1961, 29, 175‒178 Hanks, J. H. Demonstration of capsules on M. leprae during carbol-fuchsin staining mechanism of the Ziehl-Neelsen stain. Int. J. Lepr. 1961, 26, 179‒182. Hanks, J. H. The origin of the capsules on Mycobacterium leprae and other tissue-grown mycobacteria. Int. J. Lepr. 1961, 26, 172‒174 Hanks, J. H.; Moore, J. T.; Michaels, J. E. Significance of capsular components of Mycobacterium leprae and other mycobacteria. Int. J. Lepr. 1961, 26, 74‒83 Ortalo-Magné, A.; Dupont, M.-A.; Lemassu, A.; Andersen, A. B.; Gounon, P.; Daffé, M. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiol. 1995, 141, 1609‒1620 Chandra, G.; Chater, K. F.; Bornemann, S. Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology, 2011, 157, 1565‒1572 Stadthagen, G.; Sambou, T.; Guerin, M.; Barilone, N.; Boudou, F.; Korduláková, J.; Charles, P.; Alzari, P. M.; Lemassu, A.; Daffé, M.; Puzo, G.; Gicquel, B.; Rivière, M.; Jackson, M. Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J. Biol. Chem. 2007, 282, 27270‒27276 Lee, Y. C. Isolation and characterization of lipopolysaccharides containing 6-O-methyl-D-glucose from Mycobacterium species. J. Biol. Chem. 1966, 241, 1899‒1908 Kaur, D.; Pham, H.; Larrouy-Maumus G.; Rivière M.; Vissa, V.; Guerin, M. E.; Puzo, G.; Brennan, P. J.; Jackson, M. Initiation of methylglucose lipopolysaccharide biosynthesis in mycobacteria. PLoS One. 2009, 4, e5447 Mendes, V.; Maranha, A.; Alarico, S.; da Costa, M. S.; Empadinhas, N. Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis. Sci. Rep. 2011, 1, 1‒8 Sambou, T.; Dinadayala, P.; Stadthagen, G.; Barilone, N.; Bordat, Y.; Constant, P.; Levillain, F.; Neyrolles, O.; Gicquel, B.; Lemassu, A.; Daffé, M.; Jackson, M. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol. Microbiol. 2008, 70, 762‒774 Elbein, A. D.; Pastuszak, I.; Tackett, A. J.; Wilson, T.; Pan, Y. T. Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen. J. Biol. Chem. 2010, 285, 9803‒9812 Kalscheuer, R.; Syson, K.; Veeraraghavan, U.; Weinrick, B.; Biermann, K. E.; Liu, Z.; Sacchettini, J. C.; Besra, G.; Bornemann, S.; Jacobs, W. R., Jr. Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha glucan pathway. Nat. Chem. Biol. 2010, 6, 376‒384 Caner, S.; Nguyen, N.; Aguda, A.; Zhang, R.; Pan, Y. T.; Withers, S. G.; Brayer, G. D. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology, 2013, 23, 1075‒1083 Li, J.; Guan, X.; Shaw, N.; Chen, W.; Dong, Y.; Xu, X.; Li, X.; Rao, Z. Homotypic dimerization of a maltose kinase for molecular scaffolding. Sci. Rep. 2014, 4, 1‒8 Pal, K.; Kumar, S.; Sharma, S.; Garg, S. K.; Alam, M. S.; Xu, H. E.; Agrawal, P.; Swaminathan, K. Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal β-sandwich in substrate specificity and enzymatic activity. J. Biol. Chem. 2010, 285, 20897‒20903 Syson, K.; Stevenson, C. E. M.; Rejzek, M.; Fairhurst, S. A.; Nair, A.; Bruton, C. J.; Field, R. A.; Chater, K. F.; Lawson, D. M.; Bornemann, S. Structure of Streptomyces maltosyltransferase GlgE, a homologue of a genetically validated anti-tuberculosis target. J. Biol. Chem. 2011, 286, 38298‒38310 Lindenberger, J. J.; Veleti, S. K.; Wilson, B. N.; Sucheck, S. J.; Ronning, D. R. Crystal structures of Mycobacterium tuberculosis GlgE and complexes with non-covalent inhibitors. Sci. Rep. 2015, 5, 12830 Veleti, S. K.; Lindenberger, J. J.; Ronning, D. R.; Sucheck, S. J. Synthesis of a C-phosphonate mimic of maltose-1-phosphate and inhibition studies on Mycobacterium tuberculosis GlgE. Bioorg. Med. Chem. 2014, 22, 1404‒1411 Veleti, S. K.; Lindenberger, J. J.; Thanna, S.; Ronning, D. R.; Sucheck, S. J. Synthesis of a poly-hydroxypyrolidine-based inhibitor of Mycobacterium tuberculosis GlgE. J. Org. Chem. 2014, 79, 9444‒9450 Veleti, S. K.; Petit, C.; Lindenberger, J. J.; Ronning, D. R.; Sucheck, S. J. Zwitterionic pyrrolidene-phosphonates: inhibitors of glycoside hydrolase-like phosphorylase Streptomyces coelicolor GlgEI-V279S. Org. Biomol. Chem. 2017, 15, 3884‒3891 Syson, K.;Stevenson, C. E. M.; Rashid, A. M.; Saalbach, G.; Tang, M.; Tuukkanen, A.; Svegun, D. I.; Withers, S. G.; Lawson, D. M.; Bornemann, S. Structural insight into how Streptomyces coelicolor maltosyl transferase GlgE binds α-maltose 1-phosphate and forms a maltosyl-enzyme intermediate. Biochemistry, 2014, 53, 2494‒2504 Billones, J. B.; Valle, A. M. F. Structure-based design of inhibitors against maltosyltransferase GlgE. Orient. J. Chem. 2014, 30, 1137‒1145 Sengupta, S.; Roy, D.; Bandyopadhyay, S. Modeling of a new tuberculosis maltosyl tranferase, GlgE, study of its binding sites and virtual screening. Mol. Biol. Rep. 2014, 41, 3549‒3560 Sengupta, S.; Roy, D.; Bandyopadhyay, S. Structural insight into Mycobacterium tuberculosis maltosyl transferase inhibitors: pharmacophore-based virtual screening, docking, and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2015, 33, 2655‒2666 Ishida, N.; Kumagai, K.; Niida, T.; Tsuruoka, T.; Yumoto, H. Nojirimycin, a new antibiotic. II. Isolation, characterization and biological activity. J. Antibiot. 1967, 20, 66‒71 Inouye, S.; Tsuruoka, T.; Ito, T.; Niida, T. Structure and synthesis of nojirimycin. Tetrahedron 1968, 24, 2125‒2144 Fleet, G. W.; Smith, P. W.; Evans, S. V.; Fellows, L. E. Design, synthesis and preliminary evaluation of a potent α-mannosidase inhibitor: 1,4-dideoxy-1,4-imino-D-mannitol. J. Chem. Soc. Chem. Commun. 1984, 1240‒1241 Karpf, M.; Trussardi, R. Efficient access to oseltamivir phosphate (Tamiflu) via the O-trimesylated of shikimic acid ethyl ester. Angew. Chem. Int. Ed. 2009, 48, 5760‒5762 Nie, L. D.; Shi, X. X.; Ko, K. H.; Lu, W. D. A short and practical synthesis of oseltamivir phosphate (Tamiflu) from (‒)-shikimic acid. J. Org. Chem. 2009, 74, 3970‒3973 Nie, L. D.; Shi, X. X. A novel asymmetric synthesis of oseltamivir phosphate (Tamiflu) from (‒)-shikimic acid. Tetrahedron: Asymmetry 2009, 20, 124‒129 Nie, L. D.; Shi, X. X.; Quan, N.; Wang, F. F.; Lu, X. Novel asymmetric synthesis of oseltamivir phosphate (Tamiflu) from (‒)-shikimic acid via cyclic sulfite intermediates. Tetrahedron: Asymmetry 2011, 22, 1692‒1699 Nie, L. D.; Ding, W; Shi, X. X.; Quan, N.; Lu, X. A novel and high-yielding asymmetric synthesis of oseltamivir phosphate (Tamiflu) starting from (‒)-shikimic acid. Tetrahedron: Asymmetry 2012, 23, 742‒747 Abdel-Magid, A. F.; Carson, K. G.; Harris, D. H.; Maryanoff, C. A.; Shah, R. D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures. J. Org. Chem. 1996, 61, 3849‒3862 Adams, H.; Bailey, N. A.; Brettle, R.; Cross, R.; Frederickson, M.; Haslam, E.; MacBeath, F. S.; Davies, G. M. The shikimate pathway. Part 8. Synthesis of (‒)-3(R)-amino-4(R), 5(R)-dihydroxy-1-cyclohexene-1-carboxylic acid: The 3(R)-amino analogue of (‒)-shikimic acid. Tetrahedron 1996, 52, 8565‒8580 Webb, M. R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 4884‒4887 Ueda, S.; Sakasegawa, S.-I. Development of an enzyme cycling method by a purine nucleoside phosphorylase for assaying inorganic phosphate. Anal. Methods, 2017, 9, 6235‒6239 Chao, C.-S.; Chen, M.-C.; Lin, S.-C.; Mong, K.-K. T. Versatile acetylation of carbohydrate substrates with bench-top sulfonic acids and application to one-pot syntheses of peracetylated thioglycosides. Carbohydr. Res. 2008, 343, 957‒964 Chao, C.-S.; Lin, C.-Y.; Mulani, S.; Hung, W.-C.; Mong, K.-K. T. Neighboring-group participation by C-2 ether functions in glycosylations directed by nitrile solvents. Chem. Eur. J. 2011, 17, 12193−12202 Ren, B.; Wang, M.; Liu, J.; Ge, J.; Zhang, X.; Dong, H. Zemplen transesterifciation: a name reaction that has misled us for 90 years. Green Chem. 2015, 17, 1390‒1394 Ziegler, T.; Kováč, P.; Glaudemans, C. P. J. Transesterification during glycosylation promoted by silver trifluoromethanesulfonate. Liebigs Ann. Chem. 1990, 613‒615 Simao, A. C.; Tatibouët, A.; Rauter, A. P.; Rollin, P. Selective iodination of vicinal cis-diols on ketopyranose templates. Tetrahedron Lett. 2010, 51, 4602‒4604 Simao, A.-C.; Silva, S.; Rauter, A. P.; Rollin, P.; Tatibouët, A. Controlled Garegg conditions for selective iodination on pyranose templates. Eur. J. Org. Chem. 2011, 2286‒2292 Vogensen, S. B.; Strømgaard, K.; Shindou, H.; Jaracz, S.; Suehiro, M.; Ishii, S.; Shimizu, T.; Nakanishi, K. Preparation of 7-substituted ginkgolide derivatives: potent platelet activating factor (PAF) receptor antagonists. J. Med. Chem. 2003, 46, 601‒608 Choubdar, N.; Bhat, R. G.; Stubbs, K. A.; Yuzwa, S.; Pinto, B. M. Synthesis of 2-amido, 2-amino, and 2-azido derivatives ofthe nitrogen analogue of the naturally occurring glycosidase inhibitor salacinol and their inhibitory activities against O-GlcNAcase and NagZ enzymes. Carbohydr. Res. 2008, 343, 1766‒1777 Fields, E. K. The synthesis of esters of substituted amino phosphonic acids. J. Am. Chem. Soc. 1952, 74, 1528‒1531 Cherkasov, R. A.; Galkin, V. I. The Kabachnik-Fields reaction: synthetic potential and the problem of the mechanism. Russ. Chem. Rev. 1998, 67, 857‒882 Unruh, D. A.; Pastine, S. J.; Moreton, J. C.; Frechét, M. J. Thermally activated, single component epoxy systems. Macromolecules, 2011, 44, 6318‒6325 Jayaprakash, S. H.; Krishna, B. S.; Prasad, S. S.; Sudha, S. S.; Reddy, C. S. Sodium perborate: a facile catalyst allylation for active centers. Synth. Commun. 2015, 45, 355‒362 Tam, P.-H.; Lowary, T. L. Synthesis of deoxy and methoxy analogs of octyl α-D-mannopyranosyl-(1→6)-α-D-mannopyranoside as probes for mycobacterial lipoarabinomannan biosynthesis. Carbohydr. Res. 2007, 342, 1741‒1772 Meng, S.; Zhong, W.; Yao, W.; Li, Z. Stereoselective phenylselenoglycosylation of glycals bearing a fused carbonate moiety toward the synthesis of 2‑deoxy-β-galactosides and β‑mannosides. Org. Lett. 2020, 22, 2981‒2986 Spicer, C. D.; Davis, B. G. Rewriting the bacterial glycocalyx via Suzuki–Miyaura cross-coupling. Chem. Commun. 2013, 49, 2747‒2749 Voronkov, M. G.; Deryagina, E. N. Thermal reactions of thiyl radicals. Russ. Chem. Rev. 1990, 59, 778‒791 Torrents, E.; Aloy, P.; Gibert, I.; Rodríguez-Trelles, F. Ribonucleotide reductases: divergent evolution of an ancient enzyme. J. Mol. Evol. 2002, 55, 138‒152 Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Thiyl radicals in organic synthesis. Chem. Rev. 2014, 114, 2587‒2693 Baldock, R. W.; Hudson, P.; Katritzky, A. R.; Soti, F. Stable free radicals. part I. a new principle governing the stability of organic free radicals. J. Chem. Soc., Perkin Trans. 1 1974, 1422‒1427 Walter, R. J. Substituent effects on the properties of stable aromatic free radicals. The criterion for non-Hammett behavior. J. Am. Chem. Soc. 1966, 88, 1923‒1930 Tanaseichuk, B. S.; Tomilin, O. B.; Butin, K. P. The effect of substituents on the relative stability of free-radicals. Zh. Org. Khim. 1982, 18, 241‒246 Borges dos Santos, R. M.; Muralha, V. S. F.; Correia, C. F.; Guedes, R. C.; Costa Cabral, B. J.; Martinho Simões, J. A. S−H bond dissociation enthalpies in thiophenols: a time-resolved photoacoustic calorimetry and quantum chemistry study. J. Phys. Chem. A 2002, 106, 9883−9889 Mulder, P.; Mozenson, O.; Lin, S.; Bernardes, C. E. S.; Minas da Piedade, M. E.; Santos, A. F. L. O. M.; Ribeiro da Silva, M. A. V.; DiLabio, G. A.; Korth, H.-G.; Ingold, K. U. Effect of ring substitution on the S−H bond dissociation enthalpies of thiophenols. An experimental and computational study. J. Phys. Chem. A 2006, 110, 9949‒9958 Ollivier, C.; Renaud, P. Organoboranes as a source of radicals. Chem. Rev. 2001, 101, 3415‒3434 Pryor, W. A.; Stanley, J. P. Reactions of the hydrogen atom in solution. IV. photolysis of deuterated thiols. J. Am. Chem. Soc. 1971, 93, 1412‒1418 Ito, O. Flash photolysis study on reversible addition reactions of thiyl radicals. Res. Chem. Intermed. 1995, 21, 69‒93 Zepp, R. G.; Wagner, P. J. Slow quenching of triplet ketones by alkyl thiols. J. Chem. Soc., Chem. Commun. 1972, 167b‒168 Tyson, E. L.; Ament, M. S.; Yoon, T. P. Transition metal photoredox catalysis of radical thiol-ene reactions. J. Org. Chem. 2013, 78, 2046‒2050 Keylor, M. H.; Park, J. E.; Wallentin, C.-J.; Stephenson, C. R. J. Photocatalytic initiation of thiol–ene reactions: synthesis of thiomorpholin-3-ones. Tetrahedron, 2014, 70, 4264‒4269 Zalesskiy, S. S.; Shlapakov, N. S.; Ananikov, V. P. Visible light mediated metal-free thiol-yne click reaction. Chem. Sci. 2016, 7, 6740–6745 Kaur, S.; Zhao, G.; Busch, E.; Wang, T. Metal-free photocatalytic thiol-ene/thiol-yne reactions. Org. Biomol. Chem. 2019, 17, 1955‒1961 Xi, Y.; Yi, Hong; Lei, A. Synthetic application of photoredox catalysis with visible light. Org. Biomol. Chem. 2013, 11, 2387‒2403 Griesbaum, K. Problems and possibilities of the free-radical addition of thiols to unsaturated compounds. Angew. Chem. Int. Ed. 1970, 9, 273‒287 Skell, P.S.; Allen, R.G. Conditions for stereospecific olefin-mercaptan radical additions. J. Am. Chem. Soc. 1960, 82, 1511‒1512 Wille, U. Radical cascades initiated by intermolecular radical addition to alkynes and related triple bond systems. Chem. Rev. 2013, 113, 813‒853 Majumdar, K. C.; Maji, P. K.; Ray, K.; Debnath, P. Thiol mediated 8-endo-trig radical cyclization: an easy access to medium-sized cyclic ethers. Tetrahedron Lett. 2007, 48, 9124‒9127 Alcaide, B.; Almendros, P.; Aragoncillo, C. Straightforward asymmetric entry to highly functionalized medium-sized rings fused to β-lactams via chemo- and stereocontrolled divergent radical cyclization of Baylis−Hillman adducts derived from 4-oxoazetidine-2-carbaldehydes. J. Org. Chem. 2001, 66, 1612‒1620 Dondoni, A.; Marra, A. Recent applications of thiol-ene coupling as a click process for glycoconjugation. Chem. Soc. Rev. 2012, 41, 573‒586 Lacombe, J. M.; Rakotomanomana, N.; Pavia, A. A. Free-radical addition of 1-thiosugars to alkenes a new general approach to the synthesis of 1-thioglycosides. Tetrahedron Lett. 1988, 29, 4293–4296 Seeventer, P. B. van; Dorst, J. A. L. M. van; Siemerink, J. F.; Kamerling, J. P.; Vliegenthart, J. F. G. Thiol addition to protected allyl glycosides: an improved method for the preparation of spacer-arm glycosides. Carbohydr. Res. 1997, 300, 369–373 Buskas, T.; Söderberg, E.; Konradsson, P.; Fraser-Reid, B. Use of n-pentenyl glycosides as precursors to various spacer functionalities. J. Org. Chem. 2000, 65, 958–963 Fiore, M.; Marra, A.; Dondoni, A. Photoinduced thiol-ene coupling as a click ligation tool for thiodisaccharide synthesis. J. Org. Chem. 2009, 74, 4422–4425 Pachamuthu, K.; Schmidt, R. R. Synthetic routes to thiooligosaccharides and thioglycopeptides. Chem. Rev. 2006, 106,160–187 Fiore, M.; Lo Conte, M.; Pacifico, S.; Marra, A.; Dondoni, A. Synthesis of S-glycosyl amino acids and S-glycopeptides via photoinduced click thiol–ene coupling. Tetrahedron Lett. 2011, 52, 444–447 Marcaurelle, L. A.; Bertozzi, C. R. New directions in the synthesis of glycopeptide mimetics. Chem. Eur. J.1999, 5, 1384–1390 Floyd,N.; Vijayakrishnan, B.; Koeppe, J. R.; Davis, B. G. Thiyl glycosylation of olefinic proteins: S-linked glycoconjugate synthesis. Angew. Chem., Int. Ed. 2009, 48, 7798–7802 Lo Conte, M.; Pacifico, S.; Chambery, A.; Marra, A.; Dondoni, A. Photoinduced addition of glycosyl thiols to alkynyl peptides: use of free-radical thiol-yne coupling for post-translational double-glycosylation of peptides. J. Org. Chem. 2010, 75, 4644‒4647 Lo Conte, M.; Staderini, S.; Marra, A.; Sanchez-Navarro, M.; Davis, B. G.; Dondoni, A. Multi-molecule reaction of serum albumin can occur through thiol-yne coupling. Chem. Commun. 2011, 47, 11086‒11088 WHO Report on Cancer: setting priorities, investing wisely and providing care for all. World Health Organization; 2020 DeVita, V. T. Jr.; Chu, E. A history of cancer chemotherapy. Cancer Res. 2008, 68, 8643–8653 Loadman, P. Anticancer drug development. Br. J. Cancer 2002, 86, 1665–1666 Gordon, M.R.; Canakci, M.; Li, L.; Zhuang, J.; Osborne, B.; Thayumanavan, S. Field guide to challenges and opportunities in antibody-drug conjugates for chemists. Bioconjug. Chem. 2015, 26, 2198–2215 Strebhardt, K.; Ullrich, A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nat. Rev. Cancer 2008, 8, 473–480 Ford, C. H.; Newman, C. E.; Johnson, J. R.; Woodhouse, C. S.; Reeder, T. A.; Rowland, G. F.; Simmonds, R. G. Localisation and toxicity study of a vindesine-anti-CEA conjugate in patients with advanced cancer. Br. J. Cancer 1983, 47, 35–42 Trail, P. A.; Willner, D.; Lasch, S. J.; Henderson, A.J.; Hofstead, S.; Casazza A. M.; Firestone, R. A.; Hellström, I.; Hellström, K. E. Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 1993, 261, 212–215 Khongorzul, P.; Ling, C. J.; Khan, F. U.; Ihsan, A. U.; Zhang, J. Antibody-drug conjugates: a comprehensive review. Mol. Cancer Res. 2020, 18, 3‒19 Chen, H.; Lin, Z.; Arnst, K. E.; Miller, D. D.; Li, W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecule, 2017, 22, 1281 Strohl, W.R. Current progress in innovative engineered antibodies. Protein Cell 2018, 9, 86–120 Damelin, M.; Zhong, W.; Myers, J.; Sapra, P. Evolving strategies for target selection for antibody-drug conjugates. Pharm. Res. 2015, 32, 3494–3507 Tipton, T. R.; Roghanian, A.; Oldham, R. J.; Carter, M. J.; Cox, K. L.; Mockridge, C. I.; Frech, R. R.; Dahal, L. N.; Duriez, P. J.; Hargreaves, P. G.; Cragg, M. S.; Beers, S. A. Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies. Blood 2015, 125, 1901–1909 Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. mAbs. 2016, 8, 659–671 Peters, C.; Brown, S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 2015, 35, e00225 Hughes, B. Antibody-drug conjugates for cancer: poised to deliver? Nat. Rev. Drug Discov. 2010, 9, 665–667 Mehrling, T.; Soltis, D. Challenges in optimising the successful construction of antibody drug conjugates in cancer therapy. Antibodies 2018, 7, 11 Payés, C. J.; DanielsWells, T. R.; Maffía, P. C.; Penichet, M. L.; Morrison, S. L.; Helguera, G. Genetic engineering of antibody molecules. Rev. Cell Biol. Mol. Med. 2015, 1, 1–52 Maynard, J.; Georgiou, G. Antibody engineering. Annu. Rev. Biomed. Eng. 2000, 2, 339–376 Panowski, S.; Bhakta, S.; Raab, H.; Polakis, P.; Junutula, J. R. Site-specific antibody drug conjugates for cancer therapy. mAbs. 2014, 6, 34–45 Carter, P. J. Potent antibody therapeutics by design. Nat. Rev. Immunol. 2006, 6, 343–357 Chalouni, C.; Doll, S. Fate of antibody-drug conjugates in cancer cells. J. Exp. Clin. Cancer Res. 2018, 37, 20 Alley, S. C.; Benjamin, D. R.; Jeffrey, S. C.; Okeley, N. M.; Meyer, D. L.; Sanderson, R. J.; Senter, P. D. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem. 2008, 19, 759–765 Nagayama, A.; Ellisen, L. W.; Chabner, B.; Bardia, A. Antibody-drug conjugates for the treatment of solid tumors: clinical experience and latest developments. Target. Oncol. 2017, 12, 719–739 Tsuchikama, K.; An, Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 2018, 9, 33–46 Ducry, L.; Stump, B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug. Chem. 2010, 21, 5–13 McCombs, J. R.; Owen, S. C. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS. J. 2015, 17, 339–351 Betella, I.; Birrer, M. J.; Moore, K. N.; Bates, R. C. Antibody-drug conjugate-based therapeutics: state of the science. J. Natl. Cancer Inst. 2019, 111, 538–549 van de Donk, N. W.; Dhimolea, E. Brentuximab vedotin. mAbs. 2012, 4, 458–465 Balendiran, G. K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct. 2004, 22, 343–352 Turell, L.; Carballal, S.; Botti, H.; Radi, R.; Alvarez, B. Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment. Brazilian J. Med. Biol. Res. 2009, 42, 305–311 Sapra, P.; Hooper, A. T.; O'Donnell, C. J.; Gerber, H. P. Investigational antibody drug conjugates for solid tumors. Expert Opin. Investig. Drugs 2011, 20, 1131–1149 Shefet-Carasso, L.; Benhar, I. Antibody-targeted drugs and drug resistance-challenges and solutions. Drug Resist. Updat. 2015, 18, 36–46 Nasiri, H.; Valedkarimi, Z.; Aghebati-Maleki, L.; Majidi, J. Antibody-drug conjugates: promising and efficient tools for targeted cancer therapy. J. Cell Physiol. 2018, 233, 6441–6457 Li, F.; Emmerton, K. K.; Jonas, M.; Zhang, X.; Miyamoto, J. B.; Setter, J. R.; Nicholas, N. D.; Okeley, N. M.; Lyon, R. P.; Benjamine, D. R.; Law, C. -L. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res. 2016, 76, 2710–2719 Bouchard, H.; Viskov, C.; Garcia-Echeverria, C. Antibody-drug conjugates - a new wave of cancer drugs. Bioorg. Med. Chem. Lett. 2014, 24, 5357–5363 Walsh, S. J.; Bargh, J. D.; Dannheim, F. M.; Hanby, A. R.; Seki, H.; Counsell, A. J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; Isidro-Llobet, A.; Parker, J. S. Carroll, J. S.; Spring, D. R. Site-selective modification strategies in antibody-drug conjugates. Chem. Soc. Rev. 2021, 50, 1305‒1353 Wang,L.; Amphlett, G.; Blättler, W. A.; Lambert, J. M.; Zhang, W. Protein Sci. 2005, 14, 2436–2446 Wilbur, D. S.; Chyan, M. K.; Nakamae, H.; Chen, Y.; Hamlin, D. K.; Santos, E. B.; Kornblit, B. T.; Sandmaier, B. M. Reagents for astatination of biomolecules. 6. An intact antibody conjugated with a maleimido-closo-decaborate(2‒) reagent via sulfhydryl groups had considerably higher kidney concentrations than the same antibody conjugated with an isothiocyanato-closo-decaborate(2‒) reagent via lysine amines. Bioconjugate Chem. 2012, 23, 409–420 Hayakawa, M.; Toda, N.; Carrillo, N.; Thornburg, N. J.; Crowe, J. E.; Barbas, C. F. A chemically programmed antibody is a long-lasting and potent inhibitor of influenza neuraminidase. ChemBioChem 2012, 13, 2191–2195 Dovgan, I.; Ursuegui, S.; Erb, S.; Michel, C.; Kolodych, S.; Cianférani, S.; Wagner, A. Acyl fluorides: fast, efficient, and versatile lysine-based protein conjugation via plug-and-play strategy. Bioconjug. Chem. 2017, 28, 1452–1457 Moreau, M.; Raguin, O.; Vrigneaud, J. M.; Collin, B.; Bernhard, C.; Tizon, X.; Boschetti, F.; Duchamp, O.; Brunotte, F.; Denat, F. DOTAGA-Trastuzumab. A new antibody conjugate targeting HER2/Neu antigen for diagnostic purposes. Bioconjug. Chem. 2012, 23, 1181–1188 Cao, M.; Mel, N. D.; Howard, J.; Parthemore, C.; Korman, S.; Thompson, C.; Wendeler, M.; Liu,D. Site-specific antibody-drug conjugate heterogeneity characterization and heterogeneity root cause analysis. mAbs. 2019, 11, 1064‒1076 Sun, M. M.; Beam, K. S.; Cerveny, C. G.; Hamblett, K. J.; Blackmore, R.S.; Torgov, M. Y.; Handley, F. G.; Ihle, N.C.; Senter, P. D.; Alley, S. C. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug. Chem. 2005, 16, 1282–1290 Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute B. L.; Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 2015, 526, 687–691 Kasper, M. -A.; Glanz, M.; Stengl, A.; Penkert, M.; Klenk, S.; Sauer, T.; Schumacher, D.; Helma, J.; Krause, E.; Cardoso, M. C.; Leonhardt, H.; Hackenberger, C. P. R. Cysteine-selective phosphonamidate electrophiles for modular protein bioconjugations. Angew. Chem., Int. Ed. 2019, 58, 11625–11630 Kasper, M.; Stengl, A.; Ochtrop, P.; Gerlach, M.; Stoschek, T.; Schumacher, D.; Helma, J.; Penkert, M.; Krause, E.; Leonhardt, H.; Hackenberger, C. P. R. Ethynylphosphonamidates for the rapid and cysteine-selective generation of efficacious antibody-drug conjugates. Angew. Chem., Int. Ed. 2019, 58, 11631–11636 Kasper, M. A.; Glanz, M.; Oder, A.; Schmieder, P.; von Kries, J. P.; Hackenberger, C. P. R. Vinylphosphonites for Staudinger-induced chemoselective peptide cyclization and functionalization. Chem. Sci. 2019, 10, 6322–6329 Tessier, R.; Nandi, R. K.; Dwyer, B. G.; Abegg, D.; Sornay, C.; Ceballos, J.; Erb S.; Cianférani, S.; Wagner, A.; Chaubet, G.; Adibekian, A.; Waser, J. Ethynylation of cysteine residues: from peptides to proteins in vitro and in living cells. Angew. Chem., Int. Ed. 2020, 59, 10961–10970 Hamblett, K. J.; Senter, P. D.; Chace, D. F.; Sun, M. M. C.; Lenox, J.; Cerveny, C. G.; Kissler, K. M.; Bernhardt, S. X.; Kopcha, A. K.; Zabinski, R. F.; Meyer, D. L.; Francisco, J. A. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 2004, 10, 7063‒7070 Beckley, N. S.; Lazzareschi, K. P.; Chih, H. W.; Sharma, V. K.; Flores, H. L. Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjug. Chem. 2013, 24, 1674–1683 Adem, Y. T.; Schwarz, K. A.; Duenas, E.; Patapoff, T. W.; Galush, W. J.; Esue, O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug. Chem. 2014, 25, 656–664 Junutula, J. R.; Raab, H.; Clark, S.; Bhakta, S.; Leipold, D. D.; Weir, S.; Chen, Y.; Simpson, M.; Tsai, S. P.; Dennis, M. S.; Lu, Y.; Meng, Y. G.; Ng, C.; Yang, J.; Lee, C. C.; Duenas, E.; Gorrell, J.; Katta, V.; Kim, A.; McDorman, K.; Flagella, K.; Venook, R.; Ross, S.; Spencer, S. D.; Wong, W. L.; Lowman, H. B.; Vandlen, R.; Sliwkowski, M. X.; Scheller, R. H.; Polakis, P.; Mallet, W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 2008, 26, 925–932 Axup, J. Y.; Bajjuri, K. M.; Ritland, M.; Hutchins, B. M.; Kim, C. H.; Kazane, S. A.; Halder, R.; Forsyth, J. S.; Santidrian, A. F.; Stafin, K.; Lu, Y. C.; Tran, H.; Seller, A. J.; Biroc, S. L.; Szydlik, A.; Pinkstaff, J. K.; Tian, F.; Sinha, S. C.; Felding-Habermann, B.; Smider, V. V.; Schultz, P. G. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. USA 2012, 109, 16101–16106 Zeglis, B. M.; Davis, C. B.; Aggeler, R.; Kang, H. C.; Chen, A.; Agnew, B. J.; Lewis, J. S. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug. Chem. 2013, 24, 1057–1067 Jeger, S.; Zimmermann, K.; Blanc, A.; Grunberg, J.; Honer, M.; Hunziker, P.; Struthers, H.; Schibli, R. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. 2010, 49, 9995–9997 Mao, H.; Hart, S. A.; Schink, A.; Pollok, B. A. Sortase-mediated protein ligation: a new method for protein engineering. J. Am. Chem. Soc. 2004, 126, 2670–2671 Qasba, P. K. Glycans of antibodies as a specific site for drug conjugation using glycosyltransferases. Bioconjug. Chem. 2015, 26, 2170–2175 Usugi, S.-I.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Disulfidation of alkynes and alkenes with gallium trichloride. Org. Lett. 2004, 6, 601‒603 Caserio, M. C.; Fisher, C. L.; Kim, J. K. Boron trifluoride catalyzed addition of disulfides to alkenes. J. Org. Chem. 1985, 50, 4390‒4393 Kitamura, T.; Matsuyuki, J.-I.; Taniguchi, H. 1,2-disulphenylation of alkenes induced by a hypervalent iodine(III) reagent [PhlO–TfOH]. J. Chem. Soc., Perkin Trans. 1 1991, 1607‒1608 Takashiro, N.; Tomoaki, Y.; Sakae, U. Metal cation-exchanged montmorillonite-catalyzed addition of organic disulfides to alkenes. Bull. Chem. Soc. Jpn. 2005, 78, 1138–1141 Yamagiwa, N.; Suto, Y.; Torisawa, Y. Convenient method for the addition of disulfides to alkenes. Bioorg. Med. Chem. Lett. 2007, 17, 6197−6201 Wang, X. R.; Chen, F. Iodine-catalyzed disulfidation of alkenes. Tetrahedron 2011, 67, 4547−4551 Matsumoto, K.; Shimazaki, H.; Sanada, T.; Shimada, K.; Hagiwara, S.; Suga, S.; Kashimura, S.; Yoshida, J.-I. Electrogenerated acid (EGA)-catalyzed addition of diaryl disulfides to carbon–carbon multiple bonds. Chem. Lett. 2013, 42, 843−845 Kondo, T.; Uenoyama, S.; Fujita, K.; Mitsudo, T. First transition-metal complex catalyzed addition of organic disulfides to alkenes enables the rapid synthesis of vicinal-dithioethers. J. Am. Chem. Soc. 1999, 121, 482−483 Kondo, T.; Uenoyama, S.; Fujita, K.; Mitsudo, T. First transition-metal complex catalyzed addition of organic disulfides to alkenes enables the rapid synthesis of vicinal-dithioethers. J. Am. Chem. Soc. 1999, 121, 482−483 Gareau, Y.; Tremblay, M.; Gauvreau, D.; Juteau, H. Preparation and reactivity studies of 1,2-bis-triisopropylsilanylsulfanyl-alkenes. Tetrahedron 2001, 57, 5739–5750 Kuniyasu, H.; Ogawa, A.; Miyazaki, S.; Ryu, I.; Kambe, N.; Sonoda, N. Palladium-catalyzed addition and carbonylative addition of diaryl disulfides and diselenides to terminal acetylenes. J. Am. Chem. Soc. 1991, 113, 9796–9803 Heiba, E. I.; Dessau, R. M. Free-radical addition of organic disulfides to acetylenes. J. Org. Chem. 1967, 32, 3837–3840 Galli, C. Radical reactions of arenediazonium ions: an easy entry into the chemistry of the aryl radical. Chem. Rev. 1988, 88, 765–792 Lampard, C.; Murphy, J. A.; Lewis, N. Tetrathiafulvalene as a catalyst for radical-polar crossover reactions. J. Chem. Soc., Chem. Commun. 1993, 295–297 Mahesh, M.; Murphy, J. A.; LeStrat, F.; Wessel, H. P. Reduction of arenediazonium salts by tetrakis(dimethylamino)ethylene (TDAE): efficient formation of products derived from aryl radicals. Beilstein J. Org. Chem. 2009, 5, 1 Murphy, J. A. Discovery and development of organic super-electron-donors. J. Org. Chem. 2014, 79, 3731–3746 Lampard, C.; Murphy, J. A.; Rasheed, F.; Lewis, N.; Hursthouse; M. B.; Hibbs, D. E. Organic electron donors as powerful single-electron transfer reducing agents in organic synthesis. Tetrahedron Lett. 1994, 35, 8675–8678 Tatunashvili, E.; Chan, B.; Nashar, P. E.; McErlean, C. S. P. σ-Bond initiated generation of aryl radicals from aryl diazonium salts. Org. Biomol. Chem. 2020, 18, 1812‒1819 Koziakov, D.; Wu, G.; Jacobi von Wangelin, A. Aromatic substitutions of arenediazonium salts via metal catalysis, single electron transfer, and weak base mediation. Org. Biomol. Chem. 2018, 16, 4942–4953 Griefs, P. Vorläufige notiz über die einwirkung von salpetriger Säure auf amidinitro- und aminitrophenylsäure. Liebigs Ann. Chem. 1858, 106, 123‒125 Koziakov, D.; Majek, M.; Jacobi von Wangelin, A. Metal-free radical thiolations mediated by very weak bases. Org. Biomol. Chem. 2016, 14, 11347‒11352 Bu, M.-J.; Lu, G.-P.; Cai, C. Ascorbic acid promoted metal-free synthesis of aryl sulfides with anilines nitrosated in situ by tert-butyl nitrite. Synlett 2015, 26, 1841−1846 Altmann, L.-M.; Zantop, V.; Wenisch, P.; Diesendorf, N.; Heinrich, M. R. Visible light promoted, catalyst-free radical carbohydroxylation and carboetherification under mild biomimetic conditions. Chem. Eur. J. 2021, 27, 2452–2462 Sunner, S. Strain in 6,8-thioctic acid. Nature 1955, 176, 217 Hoffman, M. Z.; Hayon, E. One-electron reduction of the disulfide linkage in aqueous solution. Formation, protonation, and decay kinetics of the RSSR– radical. J. Am. Chem. Soc. 1972, 94, 7950–7957 Sliwkowski, M. X.; Lofgren, J. A.; Lewis, G. D.; Hotaling, T.E.; Fendly, B. M.; Fox, J.A. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 1999, 26, 60–70 Baselga, J.; Albanell, J.; Molina, M. A.; Arribas, J. Mechanism of action of trastuzumab and scientific update. Semin. Oncol. 2001, 28, 4–11 Molina, M. A.; Codony-Servat, J.; Albanell, J.; Rojo, F.; Arribas, J.; Baselga, J. Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001, 61, 4744–4749 Nahta, R.; Esteva, F. J. Trastuzumab: triumphs and tribulations. Oncogene. 2007, 26, 3637−3643 Lane, H. A.; Beuvink, I.; Motoyama, A. B.; Daly, J. M.; Neve, R. M.; Hynes, N.bE. ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol. Cell Biol. 2000, 20, 3210–3223 Neve, R. M.; Sutterluty, H.; Pullen, N.; Lane, H. A.; Daly, J. M.; Krek, W.; Hynes, N. E. Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. Oncogene 2000, 19, 1647–1656 Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rutgers, E.; Zackrisson, S.; Cardoso, F.; ESMO Guidenlines Committee. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v8‒30 Eisen, A.; Fletcher, G. G.; Gandhi, S.; Mates, M.; Freedman, O. C.; Dent, S. F.; Trudeau, M. E.; members of the Early Breast Cancer Systemic Therapy Consensus Panel. Optimal systemic therapy for early breast cancer in women: a clinical practice guideline. Curr. Oncol. 2015, 22, S67–81 Denduluri, N.; Somerfield, M. R.; Eisen, A.; Holloway, J. N.; Hurria, A.; King, T. A.; Lyman, G. H.; Partridge, A. H.; Telli, M. L.; Trudeau, M. E.; Wolff, A. C. Selection of optimal adjuvant chemotherapy regimens for human epidermal growth factor receptor 2 (HER2)-negative and adjuvant targeted therapy for HER2-positive breast cancers: an American Society of Clinical Oncology guideline adaptation of the Cancer Care Ontario clinical practice guideline. J. Clin. Oncol. 2016, 34, 2416–2427 Wilson, F. R.; Coombes, M. E.; Brezden-Masley, C.; Yurchenko, M.; Wylie, Q.; Douma, R.; Varu, A.; Hutton, B.; Skidmore, B.; Cameron, C. Herceptin® (trastuzumab) in HER2-positive early breast cancer: a systematic review and cumulative network meta-analysis. Syst. Rev. 2018, 7, 191 Ross, J. S.; Slodkowska, E. A.; Symmans, W. F.; Pusztai, L.; Ravdin, P. M.; Hortobagyi, G. N. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009, 14, 320–368 Slamon, D. J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001, 344, 783–792 Liu, J.; Chumsae, C.; Gaza-Bulseco, G.; Hurkmans, K.; Radziejewski, C. H. Ranking the susceptibility of disulfide bonds in human IgG1 antibodies by reduction, differential alkylation, and LC-MS analysis. Anal. Chem. 2010, 82, 5219-5226 Marty, M. T. A universal score for deconvolution of intact protein and native electrospray mass spectra. Anal. Chem. 2020, 92, 4395‒4401 Meyer, J. G.; Kim, S.; Maltby, D. A.; Ghassemian, M.; Bandeira, N.; Komives E. A. Expanding proteome coverage with orthogonal-specificity α-lytic proteases. Mol. Cell Proteomics 2014, 13, 823−835 Dorta, D. A.; Deniaud, D.; Mével, M.; Gouin, S. G. Tyrosine conjugation methods for protein labeling. Chem. Eur. J. 2020, 26, 14257−14269 Alekminskaya, O. V.; Russaavskaya, N. V.; Korchevin, N. A.; Deryagina, E. N.; Trofimov, B. A. Reduction of thiokols in the system hydrazine hydrate-base as a new route to alkanedithiols. Russ. J. Gen. Chem. 2000, 70, 732‒737 Hullaert, J.; Winne, J. M. (5,6-Dihydro-1,4-dithiin-2-yl)methanol as a versatile allyl-cation equivalent in (3+2) cycloaddition reactions. Angew. Chem. Int. Ed. 2016, 55, 13254‒13258 Gosset, C.; Pellegrini, S.; Jooris, R.; Bousquet, T.; Pelinski, L. Visible-light-mediated hydroxycarbonylation of diazonium salts. Adv. Synth. Catal. 2018, 360, 3401‒3405 Krouzelka, J.; Linhart, I. Preparation of arylmercapturic acids by S-arylation of N,N'-diacetylcystine. Eur. J. Org. Chem. 2009, 36, 6336−6340 Albert, S. K.; Sivakumar, I.; Golla, M.; Thelu, H. V. P.; Krishnan, N. Joseph, L.; Ashish; Varghese, R. DNA-decorated two-dimensional crystalline nanosheets. J. Am. Chem. Soc. 2017, 139, 17799−17802 Sauer, C.; Kockenberger, J.; Heinrich, M. R. Oxidative formation of disulfide bonds by a chemiluminescent 1,2-dioxetane under mild conditions. J. Org. Chem. 2020, 85, 9331‒9338 Capperucci, A.; Petrucci, A.; Faggi, C.; Tanini, D. Click reaction of selenols with isocyanates: rapid access to selenocarbamates as peroxide-switchable reservoir of thiol-peroxidase-like catalysts. Adv. Synth. Catal. 2021, 363, 4256‒4263 Schmidt, B.; Elizarov, N. Selective arene functionalization through sequential oxidative and non-oxidative Heck reactions. Chem. Commun. 2012, 48, 4350‒4352 Dagade, S. P.; Kadam, V. S.; Dongare, M. K. Regioselective nitration of phenol over solid acid catalyst. Catal. Commun. 2002, 3, 67−70 Dagade, S. P.; Kadam, V. S.; Dongare, M. K. Regioselective nitration of phenol over solid acid catalyst. Catal. Commun. 2002, 3, 67−70 Li,W.-P.; Cheng, G.; Li, S-Y.; Lin, C.-Z.; Guan, X.-Y.; Bing, D.-X.; Cao, J.; Zhu, D.; Deng, Q.-H. Acid-free copper-catalyzed electrophilic nitration of electron-rich arenes with guanidine nitrate. J. Org. Chem. 2022, 87, 3834−3840 Temussi, P. A.; Tancredi, T.; Quadrifoglio, F. Conformational rigidity of the amide bond. A variable-temperature nuclear magnetic resonance study of the system Ag+-N,N-dimethylacetamide. J. Phys. Chem. 1969, 73, 4227–4232 Kumari, S.; Carmona, A. V. Amide bond bioisosteres: strategies, synthesis, and successes. J. Med. Chem. 2020, 63, 12290–12358 Gabriele, B.; Salerno, G.; Veltri, L.; Mancuso, R.; Li, Z.; Crispini, A.; Bellusci, A. A new synthesis of 2,3-dihydrobenzo[1,4]dioxine and 3,4-dihydro-2H-benzo[1,4]oxazine derivatives by tandem palladium-catalyzed oxidative aminocarbonylation−cyclization of 2-prop-2-ynyloxyphenols and 2-prop-2-ynyloxyanilines. J. Org. Chem. 2006, 71, 7895−7898 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83105 | - |
| dc.description.abstract | 在論文的第一部分中,我們合成一系列有潛力的抑制劑,其結構與 GlgE催化的起始物以及過渡型態相似,GlgE 是結核分枝桿菌的重要酵素。然而,我們合出來的化合物,包括文獻報導最有效的兩個分子,沒有展現出對分枝桿菌 GlgE的抑制作用。到目前為止,我們依然還不確定哪些因素產生了這樣的問題。
在第二部分中,我們開發了一種利用雙硫化物-炔反應的新方法來修飾含有雙硫鍵的蛋白質。一開始,我們著重於抗體的修飾。儘管小分子雙硫化合物進行的很順利,胱胺酸衍生物卻完全沒有反應。我們接著將注意力轉向利用芳基重氮鹽。藉由甲酸鈉以及藍光發光二極體的引發,產生芳基自由基,進而和包含胱胺酸衍生物的雙硫化合物反應。將其運用於抗體分子中,只有重氮鹽基團無法完全捕獲雙硫鍵的兩個硫原子。 因此,我們合成了另一個新的重氮鹽,其鄰位含有炔丙基醚,以捕獲雙硫鍵的兩個硫原子。我們證明了這個利用新的重氮鹽的方法可用於修飾曲妥珠單抗(賀癌平),一種人源化單株抗體,儘管由於兩對鏈間的雙硫鍵距離較短而產生半抗體。最後,我們也提出了一種芳基重氮鹽,含有炔丙基醯胺基團,可經由銅催化炔烴-疊氮化物環加成反應來安裝藥物分子。 | zh_TW |
| dc.description.abstract | In the first part of thesis, we synthesized a series of potential inhibitors, which share similar structure with the substrate or transition-state of GlgE, a crucial enzyme for Mycobacterium tuberculosis. However, our synthesized compounds including the two of the most potent molecules reported in literature did not show any inhibitory effect against M. smegmatis GlgE. So far, we have not identified which factors that caused the problem.
In the second part of thesis, we developed a new method using disulfide-yne reaction for modification of proteins containing disulfide bonds. At first, we focused on the decoration of an antibody. Although disulfide-yne reaction proceeded smoothly with small disulfide molecules, the reaction of cystine derivatives did not give any yield. We then turned our attention to using aryl diazonium salts. Upon initiation by sodium formate and blue LED light, aryl radicals were generated and reacted with disulfide compounds including cystine derivatives. In application to antibody, the diazonium group alone could not fully trap both sulfur atoms of disulfide bonds. Therefore, we prepared a new aryl diazonium salt with a propargyl ether at the ortho position to catch both sulfur atoms in a disulfide bond. We proved that the method using this new diazonium salt could be applied to modify the disulfide bonds in trastuzumab (Herceptin), a humanized monoclonal antibody, although the half antibody was obtained due to the short distance between two pairs of interchain disulfide bonds. Finally, we proposed an aryl diazonium salt containing a propargyl amide group, which can be utilized for installation of a drug molecule via the copper-catalyzed alkyne-azide cycloaddition reaction. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-08T17:06:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-08T17:06:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II Table of Contents IV Index of Schemes IX Index of Figures XI Index of Tables XV Abbreviation XVI Part 1. GlgE Inhibitors against Tuberculosis Chapter 1. Introduction 1 1.1 History of tuberculosis 1 1.2 Pathology and immunology of Mtb infection 5 1.2.1 Phagocytosis and survival of Mtb inside macrophages 5 1.2.2 Development of tuberculosis granuloma 9 1.3 Mycobacterial cell envelope 11 1.3.1 Cell wall core and mAGP complex 11 1.3.2 Capsular layer 13 1.4 α-D-Glucan 15 1.4.1 Rv3032 pathway 17 1.4.2 GlgE pathway 19 1.5 Maltosyltransferase GlgE 22 1.5.1 Structure of GlgE 22 1.5.2 Structural comparison of Mtb GlgE and Sco GlgEI 24 1.5.3 Mechanism of GlgE catalysis 27 1.6 Recent investigation of potential GlgE inhibitors 28 Chapter 2. Results and Discussion 31 2.1 Design concepts of GlgE inhibitor 31 2.2 Shikimic acid and polyhydroxybenzene derivatives 34 2.2.1 Synthesis of shikimate core structure 35 2.2.2 Synthesis of polyhydroxybenzenes 37 2.2.3 Coupling reactions of shikimate derivatives and polyhydroxybenzenes 39 2.2.4 Bioassay of shikimate and polyhydroxybenzene derivatives 45 2.3 Carbohydrate derivatives 48 2.3.1 Synthesis of glycosyl donor 49 2.3.2 Glycosylation with shikimic acid and global deprotection 51 2.3.3 Synthesis of reported inhibitors 54 2.3.4 Bioassay 57 2.4 Conclusion 59 Part 2. Direct Protein Modification via Disulfide−Yne and Disulfide−Diazonium Reaction Chapter 3. Introduction 63 3.1 Property of thiyl radical 63 3.2 Generation of thiyl radical 65 3.2.1 Bond dissociation energy of S‒H and S‒S bonds 65 3.2.2 Classical methods for generation of thiyl radicals 66 3.3 Thiyl radical in organic chemistry 71 3.3.1 Small molecules 71 3.3.2 Biomolecules 75 3.4 Antibody drug conjugation 79 3.4.1 Anticancer 79 3.4.2 Components of ADCs 82 3.4.3 Traditional methods for construction of ADCs 87 Chapter 4. Results and Discussion 93 4.1 Optimization of disulfide-ene/yne reactions 93 4.1.1 Free radical initiators 95 4.1.2 Initiation by photo-irradiation 97 4.2 Diazonium compound 105 4.2.1 Synthesis of aryl diazonium compounds 106 4.2.2 Reaction of diazonium compound and disulfide molecules 107 4.3 Application S-arylation of diazonium salt to antibody 112 4.3.1 HER2 and trastuzumab 112 4.3.2 Labeling of trastuzumab with diazonium salt 114 4.3.3 Trypsin digestion and LC−MS/MS analysis 123 4.3.4 Rebridging 128 4.4 Conclusion 139 Chapter 5. Experimental Section 144 5.1 General part 144 5.2 Instrumentation 144 5.3 Bioassays 145 5.3.1 Inhibition studies 146 5.3.2 Determination of minimal inhibition concentration (MIC) 146 5.4 Synthetic procedure and characterization of compounds 147 5.5 Conjugation of diazonium salts with trastuzumab 203 5.6 Deglycosylation of antibodies with PNGase F 204 5.7 LC-ESI-MS experiments 204 5.8 Protein digestion 205 5.9 LC−MS/MS experiments 206 References 208 Appendix 245 | - |
| dc.language.iso | en | - |
| dc.subject | 類雙醣抑制劑 | zh_TW |
| dc.subject | 麥芽糖轉醣酶 | zh_TW |
| dc.subject | 結核病 | zh_TW |
| dc.subject | 雙硫鍵–炔基反應 | zh_TW |
| dc.subject | 雙硫鍵–重氮鹽反應 | zh_TW |
| dc.subject | 抗體藥物複合體 | zh_TW |
| dc.subject | disulfide–diazonium reaction | en |
| dc.subject | tuberculosis | en |
| dc.subject | maltosyl transferase | en |
| dc.subject | pseudo-disaccharide inhibitor | en |
| dc.subject | antibody-drug conjugate | en |
| dc.subject | disulfide–yne reaction | en |
| dc.title | 酵素抑制及抗體藥物複合體的研究 | zh_TW |
| dc.title | A Study of Enzyme Inhibition and Antibody−Drug Conjugation | en |
| dc.title.alternative | A Study of Enzyme Inhibition and Antibody−Drug Conjugation | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 王宗興;陳平;羅禮強;謝俊結 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Shing Wang;Ping Cheng;Lee-Chiang Lo;Jiun-Jie Shie | en |
| dc.subject.keyword | 結核病,麥芽糖轉醣酶,類雙醣抑制劑,抗體藥物複合體,雙硫鍵–炔基反應,雙硫鍵–重氮鹽反應, | zh_TW |
| dc.subject.keyword | tuberculosis,maltosyl transferase,pseudo-disaccharide inhibitor,antibody-drug conjugate,disulfide–yne reaction,disulfide–diazonium reaction, | en |
| dc.relation.page | 286 | - |
| dc.identifier.doi | 10.6342/NTU202210081 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-11-30 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2027-11-14 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1257221125183104.pdf 未授權公開取用 | 9.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
