Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83102Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 馬鴻文 | zh_TW |
| dc.contributor.advisor | Hwong-wen Ma | en |
| dc.contributor.author | 陳智榮 | zh_TW |
| dc.contributor.author | Chih-Rung Chen | en |
| dc.date.accessioned | 2023-01-08T17:05:27Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-01-06 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-11-26 | - |
| dc.identifier.citation | Baccarelli, A., Bollati, V. (2009). Epigenetics and environmental chemicals. Current opinion in pediatrics 21, 243
Baccarelli, A., Wright, R.O., Bollati, V., Tarantini, L., Litonjua, A.A., Suh, H.H., Zanobetti, A., Sparrow, D., Vokonas, P.S., Schwartz, J. (2009). Rapid DNA methylation changes after exposure to traffic particles. American journal of respiratory and critical care medicine 179, 572-578 Baker, J., Walker, H.L., Cai, X.J.A.E. (2004). A study of the dispersion and transport of reactive pollutants in and above street canyons—a large eddy simulation. 38, 6883-6892 Bell, M.L., Belanger, K., Ebisu, K., Gent, J.F., Lee, H.J., Koutrakis, P., Leaderer, B.P. (2010). Prenatal exposure to fine particulate matter and birth weight: variations by particulate constituents and sources. Epidemiology (Cambridge, Mass.) 21, 884-891. https://doi.org/10.1097/EDE.0b013e3181f2f405 Betha, R., Pavagadhi, S., Sethu, S., Hande, M.P., Balasubramanian, R. (2012). Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel. Atmospheric Environment 61, 23-29. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.06.086 Birch, M., Cary, R. (1996). Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Science and Technology 25, 221-241 Brauer, M., Amann, M., Burnett, R.T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S.B., Krzyzanowski, M., Martin, R.V., Van Dingenen, R.J.E.s., technology (2012). Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. 46, 652-660 Cachia, M., Bouyssiere, B., Carrier, H., Garraud, H., Caumette, G., Le Hécho, I. (2018). Characterization and comparison of trace metal compositions in natural gas, biogas, and biomethane. Energy & fuels 32, 6397-6400 Cao, L., Zeng, J., Liu, K., Bao, L., Li, Y. (2015). Characterization and Cytotoxicity of PM<0.2, PM0.2-2.5 and PM2.5-10 around MSWI in Shanghai, China. Int J Environ Res Public Health 12, 5076-5089. https://doi.org/10.3390/ijerph120505076 Carey, I.M., Anderson, H.R., Atkinson, R.W., Beevers, S.D., Cook, D.G., Strachan, D.P., Dajnak, D., Gulliver, J., Kelly, F.J. (2018). Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BNJ open 8, e022404 Chalvatzaki, E., Chatoutsidou, S.E., Lehtomäki, H., Almeida, S.M., Eleftheriadis, K., Hänninen, O., Lazaridis, M. (2019). Characterization of human health risks from particulate air pollution in selected European cities. Atmosphere 10, 96 Chan, Y.C., Simpson, R.W., McTainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M. (1999). Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modelling. Atmospheric Environment 33, 3251-3268. https://doi.org/https://doi.org/10.1016/S1352-2310(99)00090-4 Chang, C.-C., Kuo, C.-C., Liou, S.-H., Yang, C.-Y. (2013). Fine Particulate Air Pollution and Hospital Admissions for Myocardial Infarction in a Subtropical City: Taipei, Taiwan. Journal of Toxicology and Environmental Health, Part A 76, 440-448. https://doi.org/10.1080/15287394.2013.771559 Chen, C.R., Lai, H.C., Liao, M.I., Hsiao, M.C., Ma, H.W. (2021). Health risk assessment of trace elements of ambient PM2.5 under monsoon patterns. Chemosphere 264, 128462. https://doi.org/10.1016/j.chemosphere.2020.128462 Chen, W.T., Shao, M., Lu, S.H., Wang, M., Zeng, L.M., Yuan, B., Liu, Y. (2014). Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model. Atmos. Chem. Phys. 14, 3047-3062. https://doi.org/10.5194/acp-14-3047-2014 Chen, Y.-C., Hsu, C.-Y., Lin, S.-L., Chang-Chien, G.-P., Chen, M.-J., Fang, G.-C., Chiang, H.-C. (2015). Characteristics of Concentrations and Metal Compositions for PM2.5 and PM2.5–10 in Yunlin County, Taiwan during Air Quality Deterioration. Aerosol and Air Quality Research 15, 2571-2583. https://doi.org/10.4209/aaqr.2015.04.0261 Cheng, M.T., Tsai, Y.I. (2000). Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas. Science of the total environment 263, 101-114 Cheng, S., Lang, J., Zhou, Y., Han, L., Wang, G., Chen, D. (2013). A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2. 5 pollution in Beijing, China. Atmospheric Environment 79, 308-316 Chiang, P., Chen, C.W., Hsieh, D.P., Chan, T.-C., Chiang, H.-C., Wen, C.-P. (2014). Lung cancer risk in females due to exposures to PM2. 5 in Taiwan. The Open Epidemiology Journal 7 Chio, C.-P., Cheng, M.-T., Wang, C.-F. (2004). Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan. Atmospheric Environment 38, 6893-6905. https://doi.org/https://doi.org/10.1016/j.atmosenv.2004.08.041 Chow, J.C., Fairley, D., Watson, J.G., DeMandel, R., Fujita, E.M., Lowenthal, D.H., Lu, Z., Frazier, C.A., Long, G., Cordova, J. (1995). Source Apportionment of Wintertime PM 10 at San Jose, Calif. Journal of Environmental Engineering 121, 378-387 Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Magliano, K.L., Ziman, S.D., Richards, L.W. (1992). PM10 source apportionment in California's San Joaquin Valley. Atmospheric Environment. Part A. General Topics 26, 3335-3354 Chu, C., Zhang, H.Y., Cui, S.J., Han, B., Zhou, L.X., Zhang, N., Su, X., Niu, Y.J., Chen, W., Chen, R., Zhang, R., Zheng, Y.X. (2019). Ambient PM2.5 caused depressive-like responses through Nrf2/NLRP3 signaling pathway modulating inflammation. Journal of Hazardous Materials 369, 180-190. https://doi.org/10.1016/j.jhazmat.2019.02.026 Chuang, K.-J., Chan, C.-C., Su, T.-C., Lee, C.-T., Tang, C.-S. (2007). The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. American journal of respiratory and critical care medicine 176, 370-376 Chuang, M.-T., Chou, C.C.K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., Lee, C.-T. (2013). Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment 78, 72-81. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.06.056 Cullen, A.C., Frey, H.C., Frey, C.H. (1999). Probabilistic techniques in exposure assessment: a handbook for dealing with variability and uncertainty in models and inputs. Springer Science & Business Media Diociaiuti, M., Balduzzi, M., De Berardis, B., Cattani, G., Stacchini, G., Ziemacki, G., Marconi, A., Paoletti, L. (2001). The two PM2. 5 (fine) and PM2. 5–10 (coarse) fractions: evidence of different biological activity. Environmental research 86, 254-262 Dockery, D.W., Cunningham, J., Damokosh, A.I., Neas, L.M., Spengler, J.D., Koutrakis, P., Ware, J.H., Raizenne, M., Speizer, F.E. (1996). Health effects of acid aerosols on North American children: respiratory symptoms. Environ Health Perspect 104, 500-505. https://doi.org/10.1289/ehp.96104500 Dockery, D.W., Pope, C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris Jr, B.G., Speizer, F.E. (1993). An association between air pollution and mortality in six US cities. New England journal of medicine 329, 1753-1759 Duoyi, W., Meizhou, D., Yinghan, L., Yawei, L., Xingyun, L., Renqi, L. (2008). Discovery of the metal trace elements in natural gas and its ecological environment significance. Earth Science Frontiers 15, 124-132 Engling, G., Lee, J.J., Tsai, Y.-W., Lung, S.-C.C., Chou, C.C.-K., Chan, C.-Y. (2009). Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Science & Technology 43, 662-672 Ferecatu, I., Borot, M.-C., Bossard, C., Leroux, M., Boggetto, N., Marano, F., Baeza-Squiban, A., Andreau, K. (2010). Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor. Particle and fibre toxicology 7, 1-14 Fiordelisi, A., Piscitelli, P., Trimarco, B., Coscioni, E., Iaccarino, G., Sorriento, D. (2017). The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart failure reviews 22, 337-347 Franklin, M., Koutrakis, P., Schwartz, P. (2008). The role of particle composition on the association between PM2.5 and mortality. Epidemiology 19, 680-689 Gadi, R., Sharma, S.K., Mandal, T.K. (2019). Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2. 5): A complete year study over National Capital Region of India. Chemosphere 221, 583-596 Gehring, U., Beelen, R., Eeftens, M., Hoek, G., Hoogh, K.d., C de Jongste, J., Keuken, M., Koppelman, G., Meliefste, K., Oldenwening, M., S Postma, D., van Rossem, L., Wang, M., A Smit, H., Brunekreef, B. (2015). Particulate Matter Composition and Respiratory Health: The PIAMA Birth Cohort Study. https://doi.org/10.1097/EDE.0000000000000264 Glad, J.A., Brink, L.L., Talbott, E.O., Lee, P.C., Xu, X.H., Saul, M., Rager, J. (2012). The Relationship of Ambient Ozone and PM2.5 Levels and Asthma Emergency Department Visits: Possible Influence of Gender and Ethnicity. Archives of Environmental & Occupational Health 67, 103-108. https://doi.org/10.1080/19338244.2011.598888 Greene, N.A., Morris, V.R. (2006). Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. Int J Environ Res Public Health 3, 86-97 Guarnieri, M., Balmes, J.R. (2014). Outdoor air pollution and asthma. The Lancet 383, 1581-1592 Harrison, R.M., Yin, J. (2000). Particulate matter in the atmosphere: which particle properties are important for its effects on health? Science of The Total Environment 249, 85-101. https://doi.org/https://doi.org/10.1016/S0048-9697(99)00513-6 Hristov, A.N. (2011). Contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2. 5) in the United States. Journal of dairy science 94, 3130-3136 Hsu, C.-H., Cheng, F.-Y. (2019). Synoptic weather patterns and associated air pollution in Taiwan. Aerosol and Air Quality Research 19, 1139-1151 Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., Chen, Y.-C.J.S.o.t.T.E. (2016). Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Sci Total Environ 541, 1139-1150 Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment 57, 146-152. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.04.056 IARC (2013). Outdoor air pollution a leading environmental cause of cancer deaths, Lyon, France: World Health Organization, International Agency for Research on Cancer. IPCC (2013). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press Jimenez, J., Wu, C.-F., Claiborn, C., Gould, T., Simpson, C.D., Larson, T., Liu, L.-J.S. (2006). Agricultural burning smoke in eastern Washington—part I: Atmospheric characterization. Atmospheric Environment 40, 639-650 Jin, X., Xue, B., Zhou, Q., Su, R., Li, Z. (2018). Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM2. 5 exposure. The Journal of toxicological sciences 43, 101-111 Kalaiarasan, G., Balakrishnan, R.M., Sethunath, N.A., Manoharan, S. (2017). Source Apportionment of PM2.5 Particles: Influence of Outdoor Particles on Indoor Environment of Schools Using Chemical Mass Balance. Aerosol and Air Quality Research 17, 616-625. https://doi.org/10.4209/aaqr.2016.07.0297 Kang, C.-M., Gold, D., Koutrakis, P. (2014). Downwind O3 and PM2.5 speciation during the wildfires in 2002 and 2010. Atmospheric Environment 95, 511-519. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.07.008 Krewski, D., Burnett, R.T., Goldberg, M.S., Hoover, K., Siemiatycki, J., Jerrett, M., Abrahamowicz, M., White, W. (2000). Reanalysis oft the Harvard Six Cities Study and the American Cancer Society Study of particulate air pollution and mortality. Health Effects Institut, Cambridge, MA Krewski, D., Jerrett, M., Burnett, R.T., Ma, R., Hughes, E., Shi, Y., Turner, M.C., Pope III, C.A., Thurston, G., Calle, E.E. (2009). Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Health Effects Institute Boston, MA Kuo, C.-Y., Wong, R.-H., Lin, J.-Y., Lai, J.-C., Lee, H. (2006). Accumulation of Chromium and Nickel Metals in Lung Tumors from Lung Cancer Patients in Taiwan. Journal of Toxicology and Environmental Health, Part A 69, 1337-1344. https://doi.org/10.1080/15287390500360398 Laden, F., Schwartz, J., Speizer, F.E., Dockery, D.W. (2006). Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 173, 667-672. https://doi.org/10.1164/rccm.200503-443OC Lai, C.H., Chen, K.S., Wang, H.K. (2009). Influence of rice straw burning on the levels of polycyclic aromatic hydrocarbons in agricultural county of Taiwan. J Environ Sci 21, 1200-1207 Lai, H.-C., Lin, M.-C. (2020). Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography. Atmospheric Environment, 117418 Lai, H.C., Ma, H.W., Chen, C.R., Hsiao, M.C., Pan, B.H. (2019). Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5. Atmospheric Environment 212, 116-127. https://doi.org/10.1016/j.atmosenv.2019.05.038 Leclercq, B., Kluza, J., Antherieu, S., Sotty, J., Alleman, L.Y., Perdrix, E., Loyens, A., Coddeville, P., Lo Guidice, J.M., Marchetti, P., Garçon, G. (2018). Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. Environmental Pollution 243, 1434-1449. https://doi.org/https://doi.org/10.1016/j.envpol.2018.09.062 Lee, B.-J., Kim, B., Lee, K. (2014). Air pollution exposure and cardiovascular disease. Toxicological research 30, 71-75 Lee, S., Liu, W., Wang, Y., Russell, A.G., Edgerton, E.S. (2008). Source apportionment of PM2. 5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmospheric Environment 42, 4126-4137 Lepeule, J., Laden, F., Dockery, D., Schwartz, J. (2012). Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environmental health perspectives 120, 965-970 Levy, J.I., Diez, D., Dou, Y., Barr, C.D., Dominici, F. (2012). A Meta-Analysis and Multisite Time-Series Analysis of the Differential Toxicity of Major Fine Particulate Matter Constituents. American Journal of Epidemiology 175, 1091-1099. https://doi.org/10.1093/aje/kwr457 Levy, J.I., Hammitt, J.K., Spengler, J.D. (2000). Estimating the mortality impacts of particulate matter: what can be learned from between-study variability? Environmental health perspectives 108, 109-117 Lewandowski, T.A., Norman, J. (2015). Dose-Response Assessment, in: Torres, J.A., Bobst, S. (Eds.), Toxicological Risk Assessment for Beginners. Springer International Publishing, Cham, pp. 43-66. https://doi.org/10.1007/978-3-319-12751-4_3 Li, J., Li, W.X., Bai, C., Song, Y. (2017). Particulate matter‐induced epigenetic changes and lung cancer. The clinical respiratory journal 11, 539-546 Li, R., Kou, X., Geng, H., Xie, J., Tian, J., Cai, Z., Dong, C. (2015). Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. Journal of Hazardous Materials 287, 392-401. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.02.006 Li, T.-C., Yuan, C.-S., Huang, H.-C., Lee, C.-L., Wu, S.-P., Tong, C. (2016). Inter-comparison of seasonal variation, chemical characteristics, and source identification of atmospheric fine particles on both sides of the Taiwan Strait. Scientific reports 6, 22956 Liang, C.-M., Cao, J.-Y., Wang, Y. (2011). Assessment of DNA Damage Induced by Cooking Oil Fumes Particulate in the Mice Alveolar TypeⅡ Epithelial Cells. Journal of Environment and Health, 10 Liang, W.-M., Wei, H.-Y., Kuo, H.-W. (2009). Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environmental Research 109, 51-58. https://doi.org/https://doi.org/10.1016/j.envres.2008.10.002 Liu, X., Zhao, X., Li, X., Lv, S., Ma, R., Qi, Y., Abulikemu, A., Duan, H., Guo, C., Li, Y. (2020). PM2. 5 triggered apoptosis in lung epithelial cells through the mitochondrial apoptotic way mediated by a ROS-DRP1-mitochondrial fission axis. Journal of hazardous materials 397, 122608 Lowenthal, D.H., Zielinska, B., Chow, J.C., Watson, J.G., Gautam, M., Ferguson, D.H., Neuroth, G.R., Stevens, K.D. (1994). Characterization of heavy-duty diesel vehicle emissions. Atmospheric Environment 28, 731-743 Lu, H.-Y., Lin, S.-L., Kennedy, J., Wang, L.-C., Lin, H.-Y. (2016). Characteristics and Source Apportionment of Atmospheric PM2.5 at a Coastal City in Southern Taiwan. Aerosol and Air Quality Research 16, 1022-1034. https://doi.org/10.4209/aaqr.2016.01.0008 Luo, X., Zhao, Z., Xie, J., Luo, J., Chen, Y., Li, H., Jin, L. (2019). Pulmonary bioaccessibility of trace metals in PM2. 5 from different megacities simulated by lung fluid extraction and DGT method. Chemosphere 218, 915-921 Ma, H.W. (2002). Stochastic multimedia risk assessment for a site with contaminated groundwater. Stochastic Environmental Research and Risk Assessment 16, 464-478. https://doi.org/10.1007/s00477-002-0112-6 Madrigano, J., Kloog, I., Goldberg, R., Coull, B.A., Mittleman, M.A., Schwartz, J.J.E.h.p. (2012). Long-term exposure to PM2. 5 and incidence of acute myocardial infarction. 121, 192-196 Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, W., Machir, J., Eatough, D.J., Rees, L.B., Wilkerson, T., Jensen, D.T. (1997). The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in Cache Valley, Utah. Journal Of The Air & Waste Management Association 47, 167-175 Mar, T.F., Koenig, J.Q., Primomo, J. (2010). Associations between asthma emergency visits and particulate matter sources, including diesel emissions from stationary generators in Tacoma, Washington. Inhalation Toxicology 22, 445-448. https://doi.org/10.3109/08958370903575774 Martuzevicius, D., Kliucininkas, L., Prasauskas, T., Krugly, E., Kauneliene, V., Strandberg, B. (2011). Resuspension of particulate matter and PAHs from street dust. Atmospheric Environment 45, 310-317. https://doi.org/https://doi.org/10.1016/j.atmosenv.2010.10.026 Meij, R., te Winkel, H. (2007). The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations. Atmospheric Environment 41, 9262-9272 Monn, C., Becker, S. (1999). Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2. 5) and coarse particles (PM10–2.5) in outdoor and indoor air. Toxicology and applied pharmacology 155, 245-252 Moolgavkar, S.H. (2000a). Air pollution and daily mortality in three US counties. Environmental Health Perspectives 108, 777-784 Moolgavkar, S.H. (2000b). Air pollution and hospital admissions for chronic obstructive pulmonary disease in three metropolitan areas in the United States. Inhal Toxicol 12 Suppl 4, 75-90. https://doi.org/10.1080/089583700750019512 Morgan, M.G., Henrion, M., Small, M. (1990). Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge university press Mortamais, M., Gutierrez, L.-A., de Hoogh, K., Chen, J., Vienneau, D., Carrière, I., Letellier, N., Helmer, C., Gabelle, A., Mura, T., Sunyer, J., Benmarhnia, T., Jacquemin, B., Berr, C. (2021). Long-term exposure to ambient air pollution and risk of dementia: Results of the prospective Three-City Study. Environment International 148, 106376. https://doi.org/https://doi.org/10.1016/j.envint.2020.106376 MSC (2001). Precursor Contributions to Ambient Fine Particulate Matter in Canada. Internal report. National Research Council, N. (1983). Risk Assessment in the Federal Government: Managing the Process. The National Academies Press, Washington, DC. https://doi.org/doi:10.17226/366 National Research Council, N. (2009). Science and decisions: advancing risk assessment. Niu, J., Liberda, E.N., Qu, S., Guo, X., Li, X., Zhang, J., Meng, J., Yan, B., Li, N., Zhong, M. (2013). The role of metal components in the cardiovascular effects of PM2. 5. PloS one 8, e83782 Norris, G., Duvall, R., Brown, S., Bai, S. (2014). Epa positive matrix factorization (pmf) 5.0 fundamentals and user guide prepared for the us environmental protection agency office of research and development, washington, dc. Washington, DC Okada, F. (2014). Inflammation-related carcinogenesis: current findings in epidemiological trends, causes and mechanisms. Yonago acta medica 57, 65 Olmez, I., Sheffield, A., Gordon, G., Houck, J., Pritchett, L., Cooper, J., Dzubay, T., Bennett, R. (1988). Compositions of particles from selected sources in Philadelphia for receptor modeling applications. Japca 38, 1392-1402 Osornio-Vargas, Á.R., Bonner, J.C., Alfaro-Moreno, E., Martínez, L., García-Cuellar, C., Ponce-de-León Rosales, S., Miranda, J., Rosas, I. (2003). Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. Environmental health perspectives 111, 1289-1293 Ostro, B., World Health Organization, O., Environmental Health, T. (2004). Outdoor air pollution : assessing the environmental burden of disease at national and local levels / Bart Ostro. World Health Organization, Geneva. Ostro, B.D. (1987). Air pollution and morbidity revisited: A specification test. Journal of Environmental Economics and Management 14, 87-98. https://doi.org/https://doi.org/10.1016/0095-0696(87)90008-8 Ostro, B.W. (2004). Outdoor air pollution: assessing the environmental burden of disease at national and local levels. World Health Organization Pan, J., Xue, Y., Li, S., Wang, L., Mei, J., Ni, D., Jiang, J., Zhang, M., Yi, S., Zhang, R., Ma, Y., Liu, Y., Liu, Y. (2022). PM2.5 induces the distant metastasis of lung adenocarcinoma via promoting the stem cell properties of cancer cells. Environmental Pollution 296, 118718. https://doi.org/https://doi.org/10.1016/j.envpol.2021.118718 Park, E.J., Kim, D.S., Park, K. (2008). Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environ Monit Assess 137, 441-449. https://doi.org/10.1007/s10661-007-9779-y Peng, R.D., Chang, H.H., Bell, M.L., McDermott, A., Zeger, S.L., Samet, J.M., Dominici, F. (2008). Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among Medicare patients. Jama 299, 2172-2179 Peters, A., Dockery, D.W., Muller, J.E., Mittleman, M.A. (2001). Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103, 2810-2815. https://doi.org/10.1161/01.cir.103.23.2810 Pipalatkar, P., Khaparde, V.V., Gajghate, D.G., Bawase, M.A. (2014). Source apportionment of PM2. 5 using a CMB model for a centrally located Indian city. Aerosol and Air Quality Research 14, 1089-1099 Pope, C.A. (2007). Mortality Effects of Longer Term Exposures to Fine Particulate Air Pollution: Review of Recent Epidemiological Evidence. Inhalation Toxicology 19, 33-38. https://doi.org/10.1080/08958370701492961 Pope, C.A., 3rd, Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132-1141. https://doi.org/10.1001/jama.287.9.1132 Pope, C.A., Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, F.E., Heath, C.W. (1995). Particulate air pollution as a predictor of mortality in a prospective study of US adults. American journal of respiratory and critical care medicine 151, 669-674 Pope III, C.A., Dockery, D.W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the air waste management association 56, 709-742 Qian, X., Guo, X., Lin, L., Shen, G. (2013). Research methods for agriculturally emitted ammonia effects on formation of fine particulate matter (PM2. 5), a review. J Agro-Environ Sci 32, 1908-1914 Russell, L.M., Seinfeld, J.H. (1998). Size-and composition-resolved externally mixed aerosol model. Aerosol Science and Technology 28, 403-416 Schauer, J.J., Cass, G.R. (2000). Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environmental science & technology 34, 1821-1832 Seinfeld, J.H., Pandis, S.N. (2006). Atmospheric chemistry and physicsfrom air pollution to climate change. Shaeb, K.H.B., Rao, K.K., Althaf, P. (2019). Seasonal Characteristics of Black Carbon Aerosols over an Urban City in India: Source Analysis Using Concentration Weighted Trajectories. Asia-Pacific Journal of Atmospheric Sciences, 1-15 Shimadera, H., Hayami, H., Chatani, S., Morino, Y., Mori, Y., Morikawa, T., Yamaji, K., Ohara, T. (2014). Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate. Journal of the Air & Waste Management Association 64, 374-387. https://doi.org/10.1080/10962247.2013.778919 Shukla, A., Timblin, C., BeruBe, K., Gordon, T., McKinney, W., Driscoll, K., Vacek, P., Mossman, B.T. (2000). Inhaled particulate matter causes expression of nuclear factor (NF)-κ B–related genes and oxidant-dependent NF-κ B activation in vitro. American journal of respiratory cell and molecular biology 23, 182-187 Slaughter, J.C., Kim, E., Sheppard, L., Sullivan, J.H., Larson, T.V., Claiborn, C. (2005). Association between particulate matter and emergency room visits, hospital admissions and mortality in Spokane, Washington. J Expo Anal Env Epid 15, 153-159. https://doi.org/10.1038/sj.jea.7500382 Spurny, K. (1998). On the physics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): new advances. Toxicology letters 96, 253-261 Syu, J.-Y., Cheng, Y.-C., Kao, Y.-Y., Liang, C.-S., Yan, Y.-L., Lai, C.-Y., Chang, C.-T., Chen, C.-C., Young, C.-Y., Wu, Y.-L. (2016). The horizontal and vertical characteristics of Aeolian dust from riverbed. Aerosol Air Qual. Res 16, 3026-3036 Tai, A.P., Mickley, L.J., Jacob, D.J. (2010). Correlations between fine particulate matter (PM2. 5) and meteorological variables in the United States: Implications for the sensitivity of PM2. 5 to climate change. Atmospheric Environment 44, 3976-3984 Taichung-EPB (2013). 102 年臺中市PM2.5 來源分析及管制計畫, 台中市. Taichung-EPB (2017). 106年臺中市細懸浮微粒(PM2.5)採樣分析計畫, 台中市. Taiwan-EPA (2018). Air Quality Annual Report of R.O.C.(Taiwan),2017. Taiwan-EPA (2019). The 2019 Project of Chemical Speciation Monitoring and Analysis of Fine Particulate Matter (PM2.5). Taiwan-EPA. Taiwo, A.M., Harrison, R.M., Shi, Z. (2014). A review of receptor modelling of industrially emitted particulate matter. Atmospheric Environment 97, 109-120. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.07.051 Tian, Y., Liu, J., Han, S., Shi, X., Shi, G., Xu, H., Yu, H., Zhang, Y., Feng, Y., Russell, A.G. (2018). Spatial, seasonal and diurnal patterns in physicochemical characteristics and sources of PM2. 5 in both inland and coastal regions within a megacity in China. Journal of hazardous materials 342, 139-149 Tsai, S.-S., Yang, C.-Y. (2014). Fine particulate air pollution and hospital admissions for pneumonia in a subtropical city: Taipei, Taiwan. Journal of Toxicology and Environmental Health, Part A 77, 192-201 Tsai, S.S., Chang, C.C., Yang, C.Y. (2013a). Fine particulate air pollution and hospital admissions for chronic obstructive pulmonary disease: a case-crossover study in Taipei. Int J Environ Res Public Health 10, 6015-6026. https://doi.org/10.3390/ijerph10116015 Tsai, Y.I., Sopajaree, K., Chotruksa, A., Wu, H.-C., Kuo, S.-C. (2013b). Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand. Atmospheric Environment 78, 93-104. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.09.040 Tsai, Y.I., Sopajaree, K., Kuo, S.C., Yu, S.P. (2015). Potential PM2.5 impacts of festival-related burning and other inputs on air quality in an urban area of southern Taiwan. Sci Total Environ 527-528, 65-79. https://doi.org/10.1016/j.scitotenv.2015.04.021 Tseng, C.-Y., Lin, S.-L., Mwangi, J.K., Yuan, C.-S., Wu, Y.-L. (2016). Characteristics of atmospheric PM2. 5 in a densely populated city with multi-emission sources. Aerosol Air Qual. Res 16, 2145-2158 Tseng, E., Ho, W.-C., Lin, M.-H., Cheng, T.-J., Chen, P.-C., Lin, H.-H. (2015). Chronic exposure to particulate matter and risk of cardiovascular mortality: cohort study from Taiwan. BMC public health 15, 1-9 Tseng, Y.-L., Yuan, C.-S., Bagtasa, G., Chuang, H.-L., Li, T.-C. (2019). Inter-correlation of Chemical Compositions, Transport Routes, and Source Apportionment Results of Atmospheric PM2.5 in Southern Taiwan and the Northern Philippines. Aerosol and Air Quality Research 9, 2645-2661. https://doi.org/10.4209/aaqr.2019.10.0526 Urch, B., Brook, J.R., Wasserstein, D., Brook, R.D., Rajagopalan, S., Corey, P., Silverman, F. (2004). Relative Contributions of PM2.5 Chemical Constituents to Acute Arterial Vasoconstriction in Humans. Inhalation Toxicology 16, 345-352. https://doi.org/10.1080/08958370490439489 US-EPA (1999). A revised user’s guide to MESOPUFF II (V5.1), in: Research Triangle Park, N. (Ed.). US Environment protection Agency, Research Triangle Park, NC. US-EPA (2004). EPA-CMB8. 2 users manual. US-EPA (2005). Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities, Final. Office of Solid Waste and Emergency Response US-EPA. US-EPA (2010). Quantitative health risk assessment for particulate matter. US Environmental Protection Agency Washington, DC. US-EPA (2018). Regional Screening Levels (RSLs) - User's Guide. US-EPA (2020). Support Center for Regulatory Atmospheric Modeling (SCRAM). https://www.epa.gov/scram. US-EPA (2022). Human Health Risk Assessment. https://www.epa.gov/risk/human-health-risk-assessment. US‐EPA (2022). Regional Screening Levels‐Generic Tables, May 2022 ed. US‐EPA. Verdeny, E., Masqué, P., Maiti, K., Garcia-Orellana, J., Bruach, J., Mahaffey, C., Benitez-Nelson, C. (2008). Particle export within cyclonic Hawaiian lee eddies derived from 210Pb–210Po disequilibrium. Deep Sea Research Part II: Topical Studies in Oceanography 55, 1461-1472 Wang, J., Ogawa, S. (2015). Effects of meteorological conditions on PM2. 5 concentrations in Nagasaki, Japan. International journal of environmental research and public health 12, 9089-9101 Wang, Y.S., Chang, L.C., Chang, F.J. (2021). Explore Regional PM2.5 Features and Compositions Causing Health Effects in Taiwan. Environ Manage 67, 176-191. https://doi.org/10.1007/s00267-020-01391-5 Watson, J.G., Robinson, N.F., Chow, J.C., Henry, R.C., Kim, B., Pace, T., Meyer, E.L., Nguyen, Q. (1990). The USEPA/DRI chemical mass balance receptor model, CMB 7.0. Environmental Software 5, 38-49 Wei, H., Liang, F., Cheng, W., Zhou, R., Wu, X., Feng, Y., Wang, Y. (2017). The mechanisms for lung cancer risk of PM2. 5: Induction of epithelial‐mesenchymal transition and cancer stem cell properties in human non‐small cell lung cancer cells. Environmental toxicology 32, 2341-2351 WHO (2006). Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization WHO (2021). Ambient (outdoor) air pollution. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed October, 1 2021). Woodruff, T.J., Grillo, J., Schoendorf, K.C. (1997). The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. Environmental Health Perspectives 105, 608-612. https://doi.org/DOI 10.1289/ehp.97105608 Wu, Lin, Y.-C., Yu, H.-L., Chen, J.-H., Chen, T.-F., Sun, Y., Wen, L.-L., Yip, P.-K., Chu, Y.-M., Chen, Y.-C.J.A.s., Dementia: Diagnosis, A., Monitoring, D. (2015). Association between air pollutants and dementia risk in the elderly. 1, 220-228 Wu, C.F., Wu, S.Y., Wu, Y.H., Cullen, A.C., Larson, T.V., Williamson, J., Liu, L.J. (2009). Cancer risk assessment of selected hazardous air pollutants in Seattle. Environ Int 35, 516-522. https://doi.org/10.1016/j.envint.2008.09.009 Xie, Y., Dai, H., Dong, H., Hanaoka, T., Masui, T. (2016). Economic Impacts from PM2.5 Pollution-Related Health Effects in China: A Provincial-Level Analysis. Environmental Science & Technology 50, 4836-4843. https://doi.org/10.1021/acs.est.5b05576 Zhang, X., Chen, W., Ma, C., Zhan, S. (2012). Modeling the effect of humidity on the threshold friction velocity of coal particles. Atmospheric Environment 56, 154-160. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.04.015 Zhang, Y., Zheng, M., Cai, J., Yan, C., Hu, Y., Russell, A.G., Wang, X., Wang, S., Zhang, Y. (2015). Comparison and overview of PM2.5source apportionment methods. Chinese Science Bulletin (Chinese Version) 60, 109-121. https://doi.org/10.1360/n972014-00975 Zhao, H., Li, W., Gao, Y., Li, J., Wang, H. (2014). Exposure to particular matter increases susceptibility to respiratory Staphylococcus aureus infection in rats via reducing pulmonary natural killer cells. Toxicology 325, 180-188. https://doi.org/https://doi.org/10.1016/j.tox.2014.09.006 陳彥全 (2007). 健康風險評估中不確定性之量化與降低, 國立臺灣大學環境工程學研究所博士論文, 台北市. 郭崇義、林傳堯、林昭遠、黃隆明、望熙榮 (2007). 中部地區河川揚塵對空氣品質影響之調查評估專案工作計畫, 台北市. 蔣本基、王竹方、楊末雄、望熙榮、李文智、羅夢娜 (1996). 台灣地區懸浮微粒空氣污染問題及防治之研究, 台北市. 蔣本基、望熙榮、詹長權等 (1993). 台灣北、中部地區受體模式建立與應用研究(一), 台北市. 李佩珊 (2014). 台灣細懸浮微粒(PM2.5)健康風險評估探究, 國立臺灣大學環境工程學研究所碩士論文, 台北市. 李文智 (2001). 南高屏空氣污染總量管制規劃-排放源粒狀物組成調查分析, 台北市. 梁志峰 (2006). 受體模式CMB與PMF之比較與驗證, 國立中興大學環境工程學系所碩士論文, 台中市. 林文印、楊之遠、顏有利等 (2011). 河川揚塵對空氣品質影響預防評估計畫:以濁水溪為例, 台北市. 馬鴻文、蔣本基、賴信志等 (2019). 塑化公司汽電廠及麥電公司發電廠PM2.5評估管理策略計畫, 雲林縣. 邱嘉斌 (2005). 台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究, 國立中興大學環境工程學系博士論文, 台中市. 王景良 (2000). 中部空品區污染源逸散粉塵的組成分析, 國立中興大學環境工程學系碩士論文, 台中市. 王秋森 (1994). 石化工廠產生的粒狀空氣污染物的受體模式之建立, 台北市. 行政院環境保護署 (2011). 健康風險評估技術規範. 行政院環境保護署, 台北市. 鄭曼婷、程萬里、張艮輝、林沛練、莊秉潔、王竹方、郭崇義、林宗嵩、王重傑、黃景祥、白曛綾 (2000). 中部地區空氣污染總量管制技術資料建立與應用, 台北市. 鄭曼婷、王竹方、蔣勝吉、林煜棋、賴宏志、蔡素芬 (1998). 台中市道路揚塵特性及減量評估, 台中市. 鄭尊仁、吳焜裕、陳保中等 (2011). 環保署/國科會空污染防制科研合作計畫-空氣品質標準檢討評估、細懸浮微粒空氣品質標準研訂計畫, 台北市. 莊鳳宸 (2009). 六輕離島工業區附近地區懸浮微粒來源之受體模式分析, 國立雲林科技大學環境與安全工程系碩士班碩士論文, 雲林縣. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83102 | - |
| dc.description.abstract | 細懸浮微粒(fine particulate matter)對環境的衝擊與人體健康之嚴重危害日漸受到關注。然而不同PM2.5來源對健康風險的貢獻以及季節型態對健康風險的影響尚不清楚。為了對PM2.5進行有效的管理,需要發展一套完整的健康風險評估方法,以釐清各污染排放源的貢獻程度,並量化對健康風險的影響。
本研究實地採樣以台灣中部複雜污染區域為對象,探討在不同季節型態時PM2.5與微量元素濃度的變化,以了解不同排放源對健康的影響。本研究應用化學質量平衡模式(CMB)解析PM2.5的來源貢獻率,在源解析的基礎上評估不同排放源對PM2.5中毒性元素吸入性健康風險。同時為發展PM2.5健康風險的綜合評估方法,採用台灣四個都市測站長期的濃度與成分監測資料,結合毒理學與流行病學方法評估PM2.5濃度與成分對健康的影響。 分析顯示PM2.5濃度與季風型態的變化有關,東北季風期間PM2.5濃度的主要貢獻源為衍生性氣膠28.93% > 燃煤鍋爐19.82% > 地殼揚塵15.99%;西南季風期間濃度的主要貢獻源為燃煤鍋爐37.29% > 交通排放21.19% > 衍生性氣膠17.84%。總致癌風險高於可接受風險值(3.07×10-6),非致癌風險在可接受範圍內(0.262)。 季風帶上的排放源影響PM2.5的化學組成,由於化學成分的變化,PM2.5的健康風險不一定與濃度成正相關;毒理學與流行病學的風險評估結果可能不一致,為了提升空品管理效益,除了PM2.5的濃度之外,亦應該關注PM2.5的組成成分;本研究為健康風險量化與空品標準的擬定提供方法學,應有助於釐清並量化空氣污染源對人體健康的影響。 | zh_TW |
| dc.description.abstract | Fine particulate matter (PM2.5) is a type of air pollutant that is widely studied in environmental research. However, the contribution of different sources to PM2.5 and the impact of seasonal patterns on health risks from PM2.5 remain unclear. To support effective management, a comprehensive health risk assessment method needs to be developed to clarify the contribution of various emission sources and quantify its impact on health risks.
To identify the contribution of health risks derived from various emission sources, this study investigated seasonal patterns in terms of PM2.5 mass and concentrations of associated trace elements in a region with complex pollution sources in central Taiwan. We applied the chemical mass balance receptor model (CMB) to analyze the contribution of various sources to PM2.5. Based on this source apportionment, health risks from the inhalation of toxic elements in PM2.5 from different emission sources were assessed. Finally, to develop a comprehensive assessment method to examine health risks associated with PM2.5, long-term concentration and composition monitoring data from four urban monitoring stations in Taiwan were used to evaluate the impact of PM2.5 concentration and composition on health by combining toxicological and epidemiological methods. Variation in the concentration of PM2.5 was related to changes in monsoon type. Among the top contributors of PM2.5 during the north-east monsoon were secondary aerosols (28.93%), coal boilers (19.82%), and crustal dust (15.99%). During the south-west monsoon, the top contributors were coal boilers (37.29%), traffic emission (21.19%), and secondary aerosols (17.84%). The total risk of cancer was above the acceptable risk (3.07×10-6), while the risk of non-carcinogenic diseases was within the acceptable range (0.262). Monsoon zones affected the performance of various components of PM2.5 from the emission sources. The risks associated with PM2.5 were not necessarily positively correlated with PM2.5 concentration, due to variations in its complex chemical composition. Toxicological and epidemiological risk assessment results were at times inconsistent. To provide sound air quality management, attention should be paid to the composition of PM2.5 in addition to its concentration. This study provides a methodology for the quantification of health risks and the formulation of air quality standards, which then helps to clarify and quantify the impact of PM2.5 on human health. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-08T17:05:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-01-08T17:05:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書i
誌 謝 iii 摘 要 v Abstract vi Contents ix List of Figures xii List of Tables xv Chapter 1 Introduction 1 1.1 Health impact of PM2.5 1 1.2 Research Purpose 4 1.3 Research structure 5 Chapter 2 Literature review 7 2.1 Fine particulate in the environment 7 2.1.1 Particle size range 7 2.1.2 Chemical composition and sources 9 2.1.3 Source identification 12 2.1.4 Generation mechanism 14 2.2 Health hazards of fine particulate 22 2.2.1 Toxic mechanism of PM2.5 22 2.2.2 Mechanism of harm 26 2.2.3 Chemical hazard 35 2.3 Helth risk assessment of particulate 39 2.3.1 PM2.5 epidemiological assessment method 39 2.3.2 Literature on epidemiological risk assessment of PM2.5 46 2.4 Application of receptor model 53 2.4.1 Application of receptor model in the world 53 2.4.2 Application of receptor model in the Taiwan 55 2.5 Analysis of meteorological trajectory model 56 2.6 PM2.5 control standards 58 Chapter 3 Research method 61 3.1 Site description and Sample collection 61 3.2 Gravimetric and Sample analysis 63 3.3 Source apportionment model 66 3.3.1 Basic theory and hypothesis of CMB 68 3.3.2 Operation method of CMB 69 3.3.3 CMB analysis process 71 3.4 Component health risk assessment of PM2.5 73 3.5 Uncertainty in analysis of risk 79 Chapter 4 Analysis of composition and health risk 83 4.1 Aerosol composition and concentration 83 4.2 Source apportionment using CMB 90 4.3 Assessment of risk of chemical composition to human health 102 4.5 Uncertainty analysis of components of health risk 115 4.5 Health‐risk assessment using an epidemiological method 120 Chapter 5 Integration of the health risk assessment method: case study in four urban monitoring stations 125 Chapter 6 Conclusions and Suggestions 141 6.1 Conclusions 141 6.2 Suggestions for decision maker and further research 143 References 145 Appendix A 157 Appendix B 161 | - |
| dc.language.iso | en | - |
| dc.subject | 微量元素 | zh_TW |
| dc.subject | 細懸浮微粒 | zh_TW |
| dc.subject | 受體模式 | zh_TW |
| dc.subject | 風險評估 | zh_TW |
| dc.subject | 源解析 | zh_TW |
| dc.subject | Risk assessment | en |
| dc.subject | Fine particulate matter | en |
| dc.subject | Trace element | en |
| dc.subject | Source apportionment | en |
| dc.subject | Receptor model | en |
| dc.title | 細懸浮微粒來源解析及成分健康風險評估方法建立 | zh_TW |
| dc.title | Source Apportionment of Ambient PM2.5 and Establishment of Health Risk Assessment Method for Components | en |
| dc.title.alternative | Source Apportionment of Ambient PM2.5 and Establishment of Health Risk Assessment Method for Components | - |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 張慶源;席行正;于昌平;賴信志 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Yuan Chang;Hsing-Cheng Hsi;Chang-Ping Yu;Hsin-Chih Lai | en |
| dc.subject.keyword | 細懸浮微粒,微量元素,源解析,受體模式,風險評估, | zh_TW |
| dc.subject.keyword | Fine particulate matter,Trace element,Source apportionment,Receptor model,Risk assessment, | en |
| dc.relation.page | 164 | - |
| dc.identifier.doi | 10.6342/NTU202210073 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-11-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| Appears in Collections: | 環境工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1221221122361003.pdf Restricted Access | 4.78 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
