Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83101
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰zh_TW
dc.contributor.advisorRuey-Feng Changen
dc.contributor.author謝雅如zh_TW
dc.contributor.authorYa-Ju Hsiehen
dc.date.accessioned2023-01-08T17:05:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-06-
dc.date.issued2022-
dc.date.submitted2022-12-02-
dc.identifier.citationA. R. Rudnicka et al., "Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention," British Journal of Ophthalmology, vol. 100, no. 7, pp. 882-890, 2016.
N. Gözüm, M. Cakir, A. Gücukoglu, and F. Sezen, "Relationship between retinal lesions and axial length, age and sex in high myopia," European journal of ophthalmology, vol. 7, no. 3, pp. 277-282, 1997.
N. Khatwani, S. Makhija, and A. Ahuja, "Clinical profile and distribution of peripheral retinal changes in myopic population in a hospital-based study in North India," Indian Journal of Ophthalmology, vol. 70, no. 4, pp. 1280-1285, 2022, doi: 10.4103/ijo.IJO_946_21.
D. S. C. LAM et al., "Prevalence and Characteristics of Peripheral Retinal Degeneration in Chinese Adults with High Myopia: A Cross-Sectional Prevalence Survey," Optometry and Vision Science, vol. 82, no. 4, pp. 235-238, 2005, doi: 10.1097/01.Opx.0000159359.49457.B4.
R. Cheung et al., "Visualisation of peripheral retinal degenerations and anomalies with ocular imaging," in Seminars in Ophthalmology, 2022, vol. 37, no. 5: Taylor & Francis, pp. 554-582.
B. A. Holden et al., "Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050," Ophthalmology, vol. 123, no. 5, pp. 1036-1042, 2016/05/01/ 2016, doi: https://doi.org/10.1016/j.ophtha.2016.01.006.
H. Lewis, "Peripheral retinal degenerations and the risk of retinal detachment," American Journal of Ophthalmology, vol. 136, no. 1, pp. 155-160, 2003/07/01/ 2003, doi: https://doi.org/10.1016/S0002-9394(03)00144-2.
Z. Li et al., "Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images," Communications biology, vol. 3, no. 1, pp. 1-10, 2020.
V. A. Shaimova, "Peripheral Retinal Degenerations as a Risk Factor for Rhegmatogenous Retinal Detachment," in Peripheral Retinal Degenerations : Optical Coherence Tomography and Retinal Laser Coagulation. Switzerland: Springer, 2017, ch. 3, pp. 27-34.
A. S. Bansal and G. B. Hubbard III, "Peripheral retinal findings in highly myopic children≤ 10 years of age," Retina (Philadelphia, Pa.), vol. 30, no. 4 Suppl, p. S15, 2010.
G. Jiao, M. Akanda, and R. M. Lieberman, "Peripheral Retinal Degenerations and Treatment Options," Advances in Ophthalmology and Optometry, vol. 7, no. 1, pp. 219-235, 2022/08/01/ 2022, doi: https://doi.org/10.1016/j.yaoo.2022.03.007.
M. Shukla and O. Anuja, "White with pressure (WWP) and white without pressure (WWOP) lesions," Indian journal of ophthalmology, vol. 30, no. 3, p. 129, 1982.
A. A. o. Ophthalmology, "Section 12. Retina and Vitreous," in Basic and Clinical Science Course : 2015-2016. San Francisco: American Academy of Ophthalmology, 2015, ch. 12.
N. Quinn et al., "The clinical relevance of visualising the peripheral retina," Progress in Retinal and Eye Research, vol. 68, pp. 83-109, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.preteyeres.2018.10.001.
L. Nivison‐Smith, R. Milston, J. Chiang, A. Ly, N. Assaad, and M. Kalloniatis, "Peripheral retinal findings in populations with macular disease are similar to healthy eyes," Ophthalmic and Physiological Optics, vol. 38, no. 6, pp. 584-595, 2018.
N. Bhambra, F. Antaki, F. El Malt, A. Xu, and R. Duval, "Deep Learning for Ultra-Widefield Imaging: A Scoping Review," 2021.
N. E. Byer, "Long-term Natural History of Lattice Degeneration of the Retina," Ophthalmology, vol. 96, no. 9, pp. 1396-1402, 1989/09/01/ 1989, doi: https://doi.org/10.1016/S0161-6420(89)32713-8.
M. Kernt and A. Kampik, "Imaging of the peripheral retina," Oman Journal of Ophthalmology, vol. 6, no. 4, p. 32, 2013.
A. Nagiel, R. A. Lalane, S. R. Sadda, and S. D. Schwartz, "ULTRA-WIDEFIELD FUNDUS IMAGING: A Review of Clinical Applications and Future Trends," RETINA, vol. 36, no. 4, pp. 660-678, 2016, doi: 10.1097/iae.0000000000000937.
M. A. Vilela, F. M. Valença, P. K. Barreto, C. E. Amaral, and L. C. Pellanda, "Agreement between retinal images obtained via smartphones and images obtained with retinal cameras or fundoscopic exams–systematic review and meta-analysis," Clinical Ophthalmology (Auckland, NZ), vol. 12, p. 2581, 2018.
C. J. Flaxel et al., "Posterior Vitreous Detachment, Retinal Breaks, and Lattice Degeneration Preferred Practice Pattern®," Ophthalmology, vol. 127, no. 1, pp. P146-P181, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.ophtha.2019.09.027.
Z. N. Sultan, E. I. Agorogiannis, D. Iannetta, D. Steel, and T. Sandinha, "Rhegmatogenous retinal detachment: a review of current practice in diagnosis and management," BMJ open ophthalmology, vol. 5, no. 1, p. e000474, 2020.
A. Joussen and B. Kirchhof, "Peripheral retinal degenerations--treatment recommendations," Der Ophthalmologe: Zeitschrift der Deutschen Ophthalmologischen Gesellschaft, vol. 101, no. 10, pp. 1035-47; quiz 1048, 2004.
M. T. Cicerone and C. H. Camp, "21 - Potential Roles for Spectroscopic Coherent Raman Imaging for Histopathology and Biomedicine," in Neurophotonics and Biomedical Spectroscopy, R. R. Alfano and L. Shi Eds.: Elsevier, 2019, pp. 547-570.
B. Halalli and A. Makandar, "Computer Aided Diagnosis - Medical Image Analysis Techniques," in Breast Imaging, vol. 85, 2018.
A. A. Malibari et al., "Optimal deep neural network-driven computer aided diagnosis model for skin cancer," Computers and Electrical Engineering, vol. 103, p. 108318, 2022/10/01/ 2022, doi: https://doi.org/10.1016/j.compeleceng.2022.108318.
H. Li, N. Zeng, P. Wu, and K. Clawson, "Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision," Expert Systems with Applications, vol. 207, p. 118029, 2022/11/30/ 2022, doi: https://doi.org/10.1016/j.eswa.2022.118029.
N. AlHinai, "Chapter 1 - Introduction to biomedical signal processing and artificial intelligence," in Biomedical Signal Processing and Artificial Intelligence in Healthcare, W. Zgallai Ed.: Academic Press, 2020, pp. 1-28.
Á. S. Hervella, J. Rouco, J. Novo, and M. Ortega, "Self-supervised multimodal reconstruction pre-training for retinal computer-aided diagnosis," Expert Systems with Applications, vol. 185, p. 115598, 2021/12/15/ 2021, doi: https://doi.org/10.1016/j.eswa.2021.115598.
K. O'Shea and R. Nash, "An introduction to convolutional neural networks," arXiv preprint arXiv:1511.08458, 2015.
S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, "Image segmentation using deep learning: A survey," IEEE transactions on pattern analysis and machine intelligence, 2021.
F. Sultana, A. Sufian, and P. Dutta, "Advancements in image classification using convolutional neural network," in 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), 2018: IEEE, pp. 122-129.
O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation," in International Conference on Medical image computing and computer-assisted intervention, 2015: Springer, pp. 234-241.
P. J. R. Prasad, O. J. Elle, F. Lindseth, F. Albregtsen, and R. P. Kumar, "Modifying U-Net for small dataset: a simplified U-Net version for liver parenchyma segmentation," in Medical Imaging 2021: Computer-Aided Diagnosis, 2021, vol. 11597: SPIE, pp. 396-405.
O. Oktay et al., "Attention U-Net: Learning where to look for the pancreas," arXiv preprint arXiv:1804.03999, 2018.
M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari, "Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation," arXiv preprint arXiv:1802.06955, 2018.
Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, "U-Net++: A nested u-net architecture for medical image segmentation," in Deep learning in medical image analysis and multimodal learning for clinical decision support: Springer, 2018, pp. 3-11.
A. Vaswani et al., "Attention is all you need," Advances in neural information processing systems, vol. 30, 2017.
A. Galassi, M. Lippi, and P. Torroni, "Attention in natural language processing," IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 10, pp. 4291-4308, 2020.
S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, "Transformers in vision: A survey," ACM computing surveys (CSUR), vol. 54, no. 10s, pp. 1-41, 2022.
A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, "End-to-end object detection with transformers," in European conference on computer vision, 2020: Springer, pp. 213-229.
H. Wang, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen, "Max-deeplab: End-to-end panoptic segmentation with mask transformers," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 5463-5474.
J. Zhang, Y. Zeng, and B. Starly, "Recurrent neural networks with long term temporal dependencies in machine tool wear diagnosis and prognosis," SN Applied Sciences, vol. 3, no. 4, pp. 1-13, 2021.
J. Chen et al., "TransUNet: Transformers make strong encoders for medical image segmentation," arXiv preprint arXiv:2102.04306, 2021.
Y. Yang and S. Mehrkanoon, "AA-transunet: Attention augmented transunet for nowcasting tasks," arXiv preprint arXiv:2202.04996, 2022.
S. Mehta, E. Mercan, J. Bartlett, D. Weaver, J. G. Elmore, and L. Shapiro, "Y-Net: joint segmentation and classification for diagnosis of breast biopsy images," in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018: Springer, pp. 893-901.
L. Song, J. Lin, Z. J. Wang, and H. Wang, "An end-to-end multi-task deep learning framework for skin lesion analysis," IEEE journal of biomedical and health informatics, vol. 24, no. 10, pp. 2912-2921, 2020.
Y. Zhou et al., "Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images," Medical Image Analysis, vol. 70, p. 101918, 2021/05/01/ 2021, doi: https://doi.org/10.1016/j.media.2020.101918.
H. Chen, Y. Yang, and C. Shao, "Multi-task learning for data-efficient spatiotemporal modeling of tool surface progression in ultrasonic metal welding," Journal of Manufacturing Systems, vol. 58, pp. 306-315, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.jmsy.2020.12.009.
M. Crawshaw, "Multi-task learning with deep neural networks: A survey," arXiv preprint arXiv:2009.09796, 2020.
E. Parra-Mora, A. Cazañas-Gordón, and L. A. da Silva Cruz, "Detection of Peripheral Retinal Breaks in Ultra-widefield Images Using Deep Learning," in 2021 Telecoms Conference (ConfTELE), 2021: IEEE, pp. 1-5.
F. Antaki, R. G. Coussa, G. Kahwati, K. Hammamji, M. Sebag, and R. Duval, "Accuracy of automated machine learning in classifying retinal pathologies from ultra-widefield pseudocolour fundus images," British Journal of Ophthalmology, 2021.
Z. Li et al., "A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images," Annals of translational medicine, vol. 7, no. 22, 2019.
C. Zhang et al., "Development of a deep-learning system for detection of lattice degeneration, retinal breaks, and retinal detachment in tessellated eyes using ultra-wide-field fundus images: a pilot study," Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 259, no. 8, pp. 2225-2234, 2021.
K. He, X. Zhang, S. Ren, and J. Sun, "Identity Mappings in Deep Residual Networks," in European conference on computer vision, 2016: Springer, pp. 630-645.
R. Strudel, R. Garcia, I. Laptev, and C. Schmid, "Segmenter: Transformer for semantic segmentation," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 7262-7272.
A. Hatamizadeh et al., "UNETR: Transformers for 3D Medical Image Segmentation," in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 574-584.
X. Chen et al., "Transformers Improve Breast Cancer Diagnosis from Unregistered Multi-View Mammograms," Diagnostics, vol. 12, no. 7, p. 1549, 2022.
W. Li et al., "SepViT: Separable Vision Transformer," arXiv preprint arXiv:2203.15380, 2022.
K. Janocha and W. M. Czarnecki, "On loss functions for deep neural networks in classification," arXiv preprint arXiv:1702.05659, 2017.
S. A. Taghanaki et al., "Combo loss: Handling input and output imbalance in multi-organ segmentation," Computerized Medical Imaging and Graphics, vol. 75, pp. 24-33, 2019.
C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso, "Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations," in Deep learning in medical image analysis and multimodal learning for clinical decision support: Springer, 2017, pp. 240-248.
Z. Zhang and M. Sabuncu, "Generalized cross entropy loss for training deep neural networks with noisy labels," Advances in neural information processing systems, vol. 31, 2018.
D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
L. R. Dice, "Measures of the amount of ecologic association between species," Ecology, vol. 26, no. 3, pp. 297-302, 1945.
O. U. Aydin et al., "On the usage of average Hausdorff distance for segmentation performance assessment: hidden error when used for ranking," European Radiology Experimental, vol. 5, no. 1, pp. 1-7, 2021.
D. Karimi and S. E. Salcudean, "Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks," IEEE Transactions on medical imaging, vol. 39, no. 2, pp. 499-513, 2019.
Q. McNemar, "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, vol. 12, no. 2, pp. 153-157, 1947.
D. Jha et al., "ResUNet++: An advanced architecture for medical image segmentation," in 2019 IEEE International Symposium on Multimedia (ISM), 2019: IEEE, pp. 225-2255.
J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology, vol. 143, no. 1, pp. 29-36, 1982.
S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, "Aggregated residual transformations for deep neural networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492-1500.
Z. Liu et al., "Swin transformer: Hierarchical vision transformer using shifted windows," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012-10022.
Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, "A convnet for the 2020s," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11976-11986.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83101-
dc.description.abstract隨著科技日益進步,人們長期使用電子產品易導致近視,進而發生各種眼部及視網膜疾病。特別是周邊視網膜病變,它是一種異質、退化性病變,並且好發於近視患者。若不及時診斷及持續追蹤或治療,可能導致輕度失明,而較嚴重的患者可能會導致視網膜剝離而喪失視力。在診斷周邊視網膜病變的過程,眼科醫生需要從超廣角眼底鏡影像中查看周邊視網膜是否有異常的組織及病變區域。因此,本研究提出一個輔助診斷系統來協助眼科醫生診斷周邊視網膜病變,以縮短診斷所需的時間,減輕醫護人員的時間及人力成本。
本系統包含影像前處理、病灶切割及診斷三個部分。首先,超廣角眼底鏡影像和對應的標註影像將先經過影像前處理,裁剪並調整到指定的影像大小。接著,預處理後的影像將用於訓練本篇所提出的CADx系統,以同時學習病變的切割和診斷。本研究提出一個含有編碼器、解碼器及分類模組的端到端網路來進行影像訓練,尤其是在編碼器中,我們整合了pre-activation ResNet-50和數個Transformer層,共享編碼特徵以進行後續切割及診斷兩個任務。最後,系統會產生切割及預測的診斷結果。在本研究,我們使用總計816張影像來訓練及測試我們提出的系統,包含:視網膜剝離18張、視網膜裂孔24張、格子狀變性32張、無壓力性白化43張、周邊視網膜病變142張、及其他557張非周邊視網病變的影像。在切割的實驗中可以達到Dice係數為 0.8613、IoU值為 0.7563、及HD95值為 24.6219的結果,而在診斷的實驗中可以達到平均準確度97.57%、靈敏度93.86%、特異度99.14%及ROC曲線下面積AUC為 0.8737。實驗結果證實本研究提出的方法可以切割出病灶區域及產生客觀的診斷結果,並且與其他方法相比有較出色的結果。
zh_TW
dc.description.abstractWith the advancement of technology, long-term using electronic products can easily lead to myopia and various eye diseases. In particular, peripheral retinal degeneration, a heterogeneous and degenerative lesion, predominates in myopic patients. If it is not diagnosed in time and followed up or treated continuously, it may lead to mild blindness, and more severe patients may cause retinal detachment and loss of vision. In diagnosing peripheral retinal degeneration, retinal specialists need to investigate whether there are abnormal tissues and lesion areas in the peripheral retina from ultra-widefield fundus image (UWFI). Therefore, this study proposed a computer-aided diagnosis (CADx) system to assist retinal specialists in diagnosing peripheral retinal degeneration to shorten the time required for diagnosis and reduce retinal specialists' time and labor costs.
The proposed system includes image preprocessing, lesion segmentation, and diagnosis. First, the UWFI and the corresponding ground truth image will be cropped and resized to the appropriate image size. Then, the pre-processed images are used to train the proposed CAD system to simultaneously learn the segmentation and diagnosis of lesions. This study proposes an end-to-end network including an encoder, decoder, and classification block; especially in the encoder, we integrate pre-activation ResNet-50 and Transformer layers to share the encoding features for segmentation and diagnosis tasks. Finally, the system output the segmentation and the predicted diagnostic results.
In this study, we used 816 images to train and test our proposed method, including 18 retinal detachments, 24 retinal breaks, 32 lattice degenerations, 43 white without pressures, 142 peripheral retinal degenerations, and 557 non-peripheral retinal images. The result of the segmentation experiment was Dice score coefficient (DSC) of 0.8613, Intersection over Union (IoU) of 0.7563, and Hausdorff distance (HD95) of 24.6219. In addition, in the diagnosis experiment, the average accuracy achieved 97.57%, sensitivity 93.86%, specificity 99.14%, and the area under the ROC curve (AUC) 0.8737. The experimental results proved that the method proposed in this study could segment the lesion area and provide objective diagnostic results that have better results than other methods.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-08T17:05:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-08T17:05:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Materials 9
Chapter 3 Methods 12
3.1. Image Preprocessing 14
3.2. Proposed Method 15
3.2.1. Hybrid encoder 17
3.2.2. Decoder 25
3.2.3. Classification block 26
3.2.4. Loss Function 27
Chapter 4 Experimental Results 29
4.1. Experimental Setting 29
4.1.1. Training Environment 29
4.1.2. Implementation Details 29
4.2. Evaluation and Statistics 30
4.3. Experimental Results 34
4.3.1. Segmentation Result 34
4.3.2. Diagnosis Result 36
4.4. Comparison of Different Classification Models 37
4.5. Comparison of the Diagnosis Results with Different Studies 39
4.6. Comparison of the Diagnosis Results of Ophthalmologists with Different Experiences 41
Chapter 5 Discussion and Conclusion 43
Reference 51
-
dc.language.isoen-
dc.title使用深度學習在超廣角眼底影像中進行周邊視網膜病灶診斷zh_TW
dc.titlePeripheral Retinal Lesion Diagnosis in Ultrawide Field Fundus Image using Deep Learningen
dc.title.alternativePeripheral Retinal Lesion Diagnosis in Ultrawide Field Fundus Image using Deep Learning-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳啟禎;羅崇銘zh_TW
dc.contributor.oralexamcommitteeChii-Jen Chen;Chung-Ming Loen
dc.subject.keyword周邊視網膜病變,超廣角眼底鏡影像,多任務學習,卷積神經網路,全局注意力機制,zh_TW
dc.subject.keywordperipheral retinal degeneration,ultra-widefield fundus imaging,multi-task learning,convolutional neural network,global attention mechanism,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202210097-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-12-05-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-0251221201375029.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.31 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved