Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83082
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝尚賢zh_TW
dc.contributor.advisorShang-Hsien Hsiehen
dc.contributor.author蔡沅澔zh_TW
dc.contributor.authorYuan-Hao Tsaien
dc.date.accessioned2023-01-06T17:06:12Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-06-
dc.date.issued2022-
dc.date.submitted2022-12-22-
dc.identifier.citationAalsalem, M. Y., Khan, W. Z., Gharibi, W., Khan, M. K., & Arshad, Q. (2018). Wireless sensor networks in oil and gas industry: recent advances, taxonomy, requirements, and open challenges. Journal of Network and Computer Applications, 113, 87–97. https://doi.org/10.1016/j.jnca.2018.04.004
Abbas, R., Westling, F. A., Skinner, C., Hanus-Smith, M., Harris, A., & Kirchner, N. (2020). Integrating LiDAR and BIM for Real-Time Quality Control of Construction Projects. In Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC). https://doi.org/10.22260/isarc2020/0034
Aibinu Ajibade, & Venkatesh Sudha. (2014). Status of BIM adoption and the BIM experience of cost consultants in Australia. Journal of Professional Issues in Engineering Education and Practice, 140(3), 04013021. https://doi.org/10.1061/(ASCE)EI.1943-5541.0000193
Alleman, D., Papajohn, D., Gransberg, D. D., El Asmar, M., & Molenaar, K. R. (2017). Exploration of early work packaging in construction manager-general contractor highway projects. Transportation Research Record, 2630(1), 68–75. https://doi.org/10.3141/2630-09
Alreshidi, E., Mourshed, M., & Rezgui, Y. (2015). Cloud-based BIM governance platform requirements and specifications: software engineering approach using BPMN and UML. Journal of Computing in Civil Engineering, 30(4), 04015063. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000539
AlSehaimi, A. O., Fazenda, P. T., & Koskela, L. (2014). Improving construction management practice with the Last Planner System: a case study. Engineering, Construction and Architectural Management, 39, 88. https://doi.org/10.1108/ECAM-03-2012-0032
Arayici, Y., Coates, P., Koskela, L., & Kagioglou, M. (2011). Technology adoption in the BIM implementation for lean architectural practice. Automation in Construction, 20(2), 189–195. https://doi.org/10.1016/j.autcon.2010.09.016
Arslan, M., Riaz, Z., & Munawar, S. (2017). Building Information Modeling (BIM) Enabled Facilities Management Using Hadoop Architecture. International Conference on Management of Engineering and Technology, 1–7. https://doi.org/10.23919/PICMET.2017.8125462
Arthur, S., Li, H., & Lark, R. (2018). The Emulation and Simulation of Internet of Things Devices for Building Information Modelling (BIM). Advanced Computing Strategies for Engineering, 325–338. https://doi.org/10.1007/978-3-319-91638-5_18
Arulogun, O. T., Falohun, A. S., & Akande, N. O. (2016). Radio Frequency Identification and Internet of Things: a fruitful synergy. Current Journal of Applied Science and Technology, 1–16. https://doi.org/10.9734/BJAST/2016/30737
Atkinson, R. (1999). Project management: Cost, time and quality, two best guesses and a phenomenon, it’s time to accept other success criteria. International Journal of Project Management, 17(6), 337–342. https://doi.org/10.1016/S0263-7863(98)00069-6
Azhar, S. (2011). Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadership and Management in Engineering, 11(3), 241–252. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127
Azhar, S., & Brown, J. (2009). BIM for Sustainability Analyses. International Journal of Construction Education and Research, 5(4), 276–292. https://doi.org/10.1080/15578770903355657
Azhar, S., Khalfan, M., & Maqsood, T. (2012). Building information modelling (BIM): now and beyond. Construction Economics and Building, 12(4), 15–28. https://doi.org/10.5130/AJCEB.v12i4.3032
Azhar, S., Nadeem, A., Mok, J. Y., & Leung, B. H. (2008). Building Information Modeling (BIM): A new paradigm for visual interactive modeling and simulation for construction projects. First International Conference on Construction in Developing Countries, 1, 435–446. http://www.academia.edu/download/35698780/045.pdf
Aziz, R. F., & Hafez, S. M. (2013). Applying lean thinking in construction and performance improvement. Alexandria Engineering Journal, 52(4), 679–695. https://doi.org/10.1016/j.aej.2013.04.008
Ballard, G., Howell, G. A., Tommelein, I. D., & Zabelle, T. (2007). The Last Planner Production System Workbook. Lean Construction Institute.
Ballard, G., & Tommelein, I. (2016). Current process benchmark for the last planner system. Lean Construction Journal, 89, 57–89. https://leanconstruction.org.uk/wp-content/uploads/2018/10/Ballard_Tommelein-2016-Current-Process-Benchmark-for-the-Last-Planner-System.pdf
Bataglin, F. S., Viana, D. D., Formoso, C. T., & Bulhões, I. R. (2020). Model for planning and controlling the delivery and assembly of engineer-to-order prefabricated building systems: exploring synergies between Lean and BIM. Canadian Journal of Civil Engineering, 47(2), 165–177. https://doi.org/10.1139/cjce-2018-0462
Bryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of Building Information Modelling (BIM). International Journal of Project Management, 31(7), 971–980. https://doi.org/10.1016/j.ijproman.2012.12.001
Burati, J., Matthews, M., & Kalidindi, S. (1991). Quality management in construction industry. Journal of Construction Engineering and Management, 117(2), 341–359. https://doi.org/10.1061/(ASCE)0733-9364(1991)117:2(341)
Campisi, T., Acampa, G., Marino, G., & Tesoriere, G. (2020). Cycling Master Plans in Italy: The I-BIM Feasibility Tool for Cost and Safety Assessments. Sustainability: Science Practice and Policy, 12(11), 4723. https://doi.org/10.3390/su12114723
Carvalho, J. P., Bragança, L., & Mateus, R. (2021). Sustainable building design: Analysing the feasibility of BIM platforms to support practical building sustainability assessment. Computers in Industry, 127, 103400. https://doi.org/10.1016/j.compind.2021.103400
Chan, A. P. C., Scott, D., & Chan, A. P. L. (2004). Factors affecting the success of a construction project. In Journal of Construction Engineering and Management (Vol. 130, Issue 1, pp. 153–155). https://doi.org/10.1061/(asce)0733-9364(2004)130:1(153)
Chen, J., Bulbul, T., Taylor, J. E., & Olgun, G. (n.d.). A case study of embedding real-time infrastructure sensor data to BIM. Construction Research Congress 2014: Construction in a Global Network, 269–278. https://doi.org/10.1061/9780784413517.028
Chen, L., & Luo, H. (2014). A BIM-based construction quality management model and its applications. Automation in Construction, 46, 64–73. https://doi.org/10.1016/j.autcon.2014.05.009
Cheung, F. K. T., Rihan, J., Tah, J., Duce, D., & Kurul, E. (2012). Early stage multi-level cost estimation for schematic BIM models. Automation in Construction, 27, 67–77. https://doi.org/10.1016/j.autcon.2012.05.008
Cheung, W.-F., Lin, T.-H., & Lin, Y.-C. (2018). A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies. Sensors , 18(2). https://doi.org/10.3390/s18020436
Clarke, A. (1999). A practical use of key success factors to improve the effectiveness of project management. International Journal of Project Management, 17(3), 139–145. https://doi.org/10.1016/S0263-7863(98)00031-3
Construction Industry Council. (2018). Building Information Modelling Protocol Second Edition Standard Protocol for use in projects using Building Information Models. Construction Industry Council.
Construction Industry Institute. (2013). Advanced Work Packaging: implementation guidance. Construction Industry Institute. https://play.google.com/store/books/details?id=x0iJzQEACAAJ
Cottis, B., Graham, M.J., Lindsay, R., Lyon, S.B., Richardson, T., Scantlebury, D., Stott, H. (2010). Shreir’s Corrosion (H. Stott (ed.)). Elsevier, Oxford. https://doi.org/10.978.0444/527875
Das, M., Cheng, J. C. P., & Kumar, S. S. (2015). Social BIMCloud: a distributed cloud-based BIM platform for object-based lifecycle information exchange. Visualization in Engineering, 3(1), 1–20. https://doi.org/10.1186/s40327-015-0022-6
Dave, B., Buda, A., Nurminen, A., & Främling, K. (2018). A framework for integrating BIM and IoT through open standards. Automation in Construction, 95, 35–45. https://doi.org/10.1016/j.autcon.2018.07.022
Demian, P., & Walters, D. (2014). The advantages of information management through building information modelling. Construction Management and Economics, 32(12), 1153–1165. https://doi.org/10.1080/01446193.2013.777754
Dener, M., & Bostancıoğlu, C. (2015). Smart technologies with wireless sensor networks. Procedia - Social and Behavioral Sciences, 195, 1915–1921. https://doi.org/10.1016/j.sbspro.2015.06.202
Denis, F., Vandervaeren, C., & De Temmerman, N. (2018). Using Network Analysis and BIM to Quantify the Impact of Design for Disassembly. Buildings, 8(8), 113. https://doi.org/10.3390/buildings8080113
Dijkman, R., Hofstetter, J., & Koehler, J. (Eds.). (2011). Business Process Model and Notation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25160-3
Ding, L., & Xu, X. (2014). Application of Cloud Storage on BIM Life-Cycle Management. International Journal of Advanced Robotic Systems, 11(8), 129. https://doi.org/10.5772/58443
Donato, V., Lo Turco, M., & Bocconcino, M. M. (2018). BIM-QA/QC in the architectural design process. Architectural Engineering and Design Management, 14(3), 239–254. https://doi.org/10.1080/17452007.2017.1370995
Eadie, R., Browne, M., Odeyinka, H., McKeown, C., & McNiff, S. (2013). BIM implementation throughout the UK construction project lifecycle: An analysis. Automation in Construction, 36, 145–151. https://doi.org/10.1016/j.autcon.2013.09.001
Eastman, C. M., Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM handbook: a guide to Building Information Modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons. https://play.google.com/store/books/details?id=-GjrBgAAQBAJ
Eckert, C., Clarkson, P. J., & Stacey, M. (2001). Information flow in engineering companies: problems and their causes. International Conference on Engineering Design, 43–50. https://books.google.com/books?hl=en&lr=&id=tXr0wJpNW3wC&oi=fnd&pg=PA43&dq=Information+flow+in+engineering+companies+Problems+and+their+causes&ots=UpzOC897SJ&sig=P_J_HSYBu8Qeh6ynX0N0jmVG-5M
Edmondson, V., Cerny, M., Lim, M., Gledson, B., Lockley, S., & Woodward, J. (2018). A smart sewer asset information model to enable an “Internet of Things” for operational wastewater management. Automation in Construction, 91, 193–205. https://doi.org/10.1016/j.autcon.2018.03.003
ElMenshawy, M., & Marzouk, M. (2021). Automated BIM schedule generation approach for solving time–cost trade-off problems. Engineering, Construction and Architectural Management, 39, 88. https://doi.org/10.1108/ECAM-08-2020-0652
Fady, A. M., & Hemayed, E. E. (2019). Trusted Cloud Computing Architectures for infrastructure as a service: Survey and systematic literature review. Computers & Security, 82, 196–226. https://doi.org/10.1016/j.cose.2018.12.014
Fan, S.-L., Chong, H.-Y., Liao, P.-C., & Lee, C.-Y. (2019). Latent provisions for building information modeling (BIM) contracts: A social network analysis approach. KSCE Journal of Civil Engineering, 23(4), 1427–1435. https://doi.org/10.1007/s12205-019-0064-8
Fan, S.-L., Wu, C.-H., Hun, C.-C., & Others. (2015). Integration of cost and schedule using BIM. Journal of Applied Science and Engineering, 18(3), 223–232. https://doi.org/10.6180/jase.2015.18.3.02
Fraden, J. (2016). Handbook of Modern Sensors: Physics, Designs, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-19303-8
Frank, R. (2013). Understanding Smart Sensors. Artech House. https://play.google.com/store/books/details?id=v4G9jKBCghMC
Froese, T. M. (2010). The impact of emerging information technology on project management for construction. Automation in Construction, 19(5), 531–538. https://doi.org/10.1016/j.autcon.2009.11.004
Giel, Brittany K., & Issa, Raja R. A. (2013). Return on Investment Analysis of Using Building Information Modeling in Construction. Journal of Computing in Civil Engineering, 27(5), 511–521. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000164
Gillard, S., & Johansen, J. (2004). Project management communication: A systems approach. Journal of Information Science and Engineering, 30(1), 23–29. https://doi.org/10.1177/0165551504041675
Grilo, A., & Jardim-Goncalves, R. (2010). Value proposition on interoperability of BIM and collaborative working environments. Automation in Construction, 19(5), 522–530. https://doi.org/10.1016/j.autcon.2009.11.003
Guerra, B. C., & Leite, F. (2020). Bridging the Gap between Engineering and Construction 3D Models in Support of Advanced Work Packaging. In Journal of Legal Affairs and Dispute Resolution in Engineering and Construction (Vol. 12, Issue 3, p. 04520029). https://doi.org/10.1061/(asce)la.1943-4170.0000419
Halala, Y. S., & Fayek, A. R. (2019). A framework to assess the costs and benefits of advanced work packaging in industrial construction. Canadian Journal of Civil Engineering, 46(3), 216–229. https://doi.org/10.1139/cjce-2018-0072
Hallberg, D., & Tarandi, V. (2011). On the use of open BIM and 4D visualisation in a predictive life cycle management system for construction works. Journal of Information Technology in Construction (ITcon), 16, 445–466. https://www.itcon.org/2011/26
Ham, N.-H., Min, K.-M., Kim, J.-H., Lee, Y.-S., & Kim, J.-J. (2008). A Study on Application of BIM (Building Information Modeling) to Pre-design in Construction Project. 2008 Third International Conference on Convergence and Hybrid Information Technology, 1, 42–49. https://doi.org/10.1109/ICCIT.2008.190
Hartman, F., & Ashrafi, R. A. (2002). Project Management in the Information Systems and Information Technologies Industries. Project Management Journal, 33(3), 5–15. https://doi.org/10.1177/875697280203300303
Heigermoser, D., García de Soto, B., Abbott, E. L. S., & Chua, D. K. H. (2019). BIM-based Last Planner System tool for improving construction project management. Automation in Construction, 104, 246–254. https://doi.org/10.1016/j.autcon.2019.03.019
Hickethier, G., Tommelein, I. D., & Lostuvali, B. (2013). Social network analysis of information flow in an IPD-project design organization. International Group for Lean Construction, 319–328. https://www.researchgate.net/publication/287510854_Social_network_analysis_of_information_flow_in_an_IPD-project_design_organization
Hopp, W. J., & Spearman, M. L. (2004). To pull or not to pull: What is the question? Manufacturing & Service Operations Management: M & SOM, 6(2), 133–148. https://doi.org/10.1287/msom.1030.0028
International Organization for Standardization. (2018a). ISO 19650-1 Organization and digitization of information about buildings and civil engineering works, including building information modelling (BIM)-Information management using building information modelling Part 1: Concepts and principles. International Organization for Standardization.
International Organization for Standardization. (2018b). ISO 19650-2 Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)-Information Management Using Building Information Modelling Part 2: Delivery phase of the assets. International Organization for Standardization.
Isaac, S., Curreli, M., & Stoliar, Y. (2017). Work packaging with BIM. Automation in Construction, 83, 121–133. https://doi.org/10.1016/j.autcon.2017.08.030
Kensek, K. M. (2014). Integration of environmental sensors with BIM: case studies using Arduino, Dynamo, and the Revit API. Information of the Construction, 66(536). https://doi.org/10.3989/ic.13.151
Kim, S., Park, C., Lee, S., & Son, J. (2008). Integrated cost and schedule control in the Korean construction industry based on a modified work-packaging model. Canadian Journal of Civil Engineering, 35(3), 225–235. https://doi.org/10.1139/l07-094
Klepa, R. B., Medeiros, M. F., Franco, M. A. C., Tamberg, E. T., Farias, T. M. de B., Paschoalin Filho, J. A., Berssaneti, F. T., & Santana, J. C. C. (2019). Reuse of construction waste to produce thermoluminescent sensor for use in highway traffic control. Journal of Cleaner Production, 209, 250–258. https://doi.org/10.1016/j.jclepro.2018.10.225
Koskinen, K. U. (2004). Knowledge Management to Improve Project Communication and Implementation. Project Management Journal, 35(2), 13–19. https://doi.org/10.1177/875697280403500203
Kratzer, J., Gemünden, H. G., & Lettl, C. (2008). Balancing creativity and time efficiency in multi-team R&D projects: the alignment of formal and informal networks. R and D Management, 38(5), 538–549. https://doi.org/10.1111/j.1467-9310.2008.00528.x
Kula, B., & Ergen, E. (2021). Implementation of a BIM-FM platform at an international airport project: Case study. Journal of Construction Engineering and Management, 147(4), 05021002. https://doi.org/10.1061/(asce)co.1943-7862.0002025
Kuo, H.-J., Hsieh, S.-H., Guo, R.-C., & Chan, C.-C. (2016). A verification study for energy analysis of BIPV buildings with BIM. Energy and Buildings, 130, 676–691. https://doi.org/10.1016/j.enbuild.2016.08.048
Lai, J., Fan, H., Chen, J., Qiu, J., & Wang, K. (2015). Blasting Vibration Monitoring of Undercrossing Railway Tunnel Using Wireless Sensor Network. International Journal of Distributed Sensor Networks, 11(6), 703980. https://doi.org/10.1155/2015/703980
Lee, G., Cho, J., Ham, S., Lee, T., Lee, G., Yun, S.-H., & Yang, H.-J. (2012). A BIM- and sensor-based tower crane navigation system for blind lifts. Automation in Construction, 26, 1–10. https://doi.org/10.1016/j.autcon.2012.05.002
Lee, W., Kang, S., Moh, R., Wu, R., Hsieh, H., & Shu, Z. (2015). Application of BIM coordination technology to HSR Changhua station. Visualization in Engineering, 3(1), 5. https://doi.org/10.1186/s40327-014-0008-9
Li, C. Z., Xue, F., Li, X., Hong, J., & Shen, G. Q. (2018). An Internet of Things-enabled BIM platform for on-site assembly services in prefabricated construction. Automation in Construction, 89, 146–161. https://doi.org/10.1016/j.autcon.2018.01.001
Li, C. Z., Zhong, R. Y., Xue, F., Xu, G., Chen, K., Huang, G. G., & Shen, G. Q. (2017). Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction. Journal of Cleaner Production, 165, 1048–1062. https://doi.org/10.1016/j.jclepro.2017.07.156
Li, H., Chen, D., Zhang, H., Wu, C., & Wang, X. (2017). Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing. Applied Energy, 185, 244–253. https://doi.org/10.1016/j.apenergy.2016.10.080
Li, N., Becerik-Gerber, B., Krishnamachari, B., & Soibelman, L. (2014). A BIM centered indoor localization algorithm to support building fire emergency response operations. Automation in Construction, 42, 78–89. https://doi.org/10.1016/j.autcon.2014.02.019
Liu, D., Xia, X., Chen, J., & Li, S. (2021). Integrating building information model and augmented reality for drone-based building inspection. Journal of Computing in Civil Engineering, 35(2), 04020073. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000958
Li, X., Chi, H.-L., Wu, P., & Shen, G. Q. (2020). Smart work packaging-enabled constraint-free path re-planning for tower crane in prefabricated products assembly process. Advanced Engineering Informatics, 43, 101008. https://doi.org/10.1016/j.aei.2019.101008
Li, X., Shen, G. Q., Wu, P., Xue, F., Chi, H.-L., & Li, C. Z. (2019). Developing a conceptual framework of smart work packaging for constraints management in prefabrication housing production. Advanced Engineering Informatics, 42, 100938. https://doi.org/10.1016/j.aei.2019.100938
Li, X., Yi, W., Chi, H.-L., Wang, X., & Chan, A. P. C. (2018). A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Automation in Construction, 86, 150–162. https://doi.org/10.1016/j.autcon.2017.11.003
Loosemore, M., & Muslmani, H. S. A. (1999). Construction project management in the Persian Gulf: inter-cultural communication. International Journal of Project Management, 17(2), 95–100. https://doi.org/10.1016/S0263-7863(98)00030-1
Loukis, E., Janssen, M., & Mintchev, I. (2019). Determinants of software-as-a-service benefits and impact on firm performance. Decision Support Systems, 117, 38–47. https://doi.org/10.1016/j.dss.2018.12.005
Manning, R., & Messner, J. I. (2008). Case studies in BIM implementation for programming of healthcare facilities. Journal of Information Technology in Construction (ITcon), 13(18), 246–257. https://www.itcon.org/2008/18
Ma, Z., Cai, S., Mao, N., Yang, Q., Feng, J., & Wang, P. (2018). Construction quality management based on a collaborative system using BIM and indoor positioning. Automation in Construction, 92, 35–45. https://doi.org/10.1016/j.autcon.2018.03.027
McCafferty, E. (2005). Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion Science, 47(12), 3202–3215. https://doi.org/10.1016/j.corsci.2005.05.046
Meadati, P., Irizarry, J., & Akhnoukh, A. K. (2010). BIM and RFID integration: a pilot study. Second International Conference on Construction in Developing Countries (ICCIDC-II), 5, 570–578. https://www.researchgate.net/profile/Pavan_Meadati/publication/228962800_BIM_and_RFID_integration_A_pilot_study/links/09e41508aba2e9698a000000/BIM-and-RFID-integration-A-pilot-study.pdf
Mirshokraei, M., De Gaetani, C. I., & Migliaccio, F. (2019). A web-based BIM–AR quality management system for structural elements. Applied Sciences, 9(19), 3984. https://doi.org/10.3390/app9193984
Mohammed, B. H., Safie, N., Sallehuddin, H., & Hussain, A. H. B. (2020). Building information modelling (BIM) and the internet-of-things (IoT): A systematic mapping study. IEEE Access: Practical Innovations, Open Solutions, 8, 155171–155183. https://doi.org/10.1109/access.2020.3016919
Moumita, D., P., C. J. C., & Srinath, S. K. (2014). BIMCloud: A Distributed Cloud-Based Social BIM Framework for Project Collaboration. 41–48. https://doi.org/10.1061/9780784413616.006
Norton, B. J. (1978). Karl Pearson and statistics: the social origins of scientific innovation. Social Studies of Science, 8(1), 3–34. https://doi.org/10.1177/030631277800800101
Oraee, M., Hosseini, M. R., Papadonikolaki, E., Palliyaguru, R., & Arashpour, M. (2017). Collaboration in BIM-based construction networks: A bibliometric-qualitative literature review. International Journal of Project Management, 35(7), 1288–1301. https://doi.org/10.1016/j.ijproman.2017.07.001
Park, J., Kim, K., & Cho, Y. K. (2017). Framework of automated construction-safety monitoring using cloud-enabled BIM and BLE mobile tracking sensors. Journal of Construction Engineering and Management, 143(2). https://doi.org/10.1061/(asce)co.1943-7862.0001223
Patacas, J., Dawood, N., & Kassem, M. (2020). BIM for facilities management: A framework and a common data environment using open standards. Automation in Construction, 120, 103366. https://doi.org/10.1016/j.autcon.2020.103366
Petersen, S., Doyle, P., Vatland, S., Salbu Aasland, C., Andersen, T. M., & Sjong, D. (2007). Requirements, drivers and analysis of wireless sensor network solutions for the oil gas industry. 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007), 219–226. https://doi.org/10.1109/EFTA.2007.4416773
Phelps, A. F. (2012). The collective potential: A holistic approach to managing information flow in collaborative design and construction environments. Turning Point Press.
Phelps, A. F., & Reddy, M. (2009). The influence of boundary objects on group collaboration in construction project teams. ACM 2009 International Conference on Supporting Group Work, 125–128. https://doi.org/10.1145/1531674.1531693
Phelps, A., & Horman, M. (2008). Role of Information Flow Management in the Design and Construction of Exterior Wall Systems. AEI 2008: Building Integration Solutions, 1–12. https://doi.org/10.1061/41002(328)13
Plebankiewicz, E., Zima, K., & Skibniewski, M. (2015). Analysis of the first polish BIM-based cost estimation application. Procedia Engineering, 123, 405–414. https://doi.org/10.1016/j.proeng.2015.10.064
Pocock, D., Shetty, N., Hayes, A., & Watts, J. (2014). Leveraging the relationship between BIM and asset management. Infrastructure Asset Management, 1(1), 5–7. https://doi.org/10.1680/iasma.13.00013
Project Management Institute. (2017). A guide to the project management body of knowledge (6th). Project Management Institute. https://doi.org/10.1002/pmj.21345
Qu, X., Yu, Y., Zhou, M., Lin, C.-T., & Wang, X. (2020). Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach. Applied Energy, 257, 114030. https://doi.org/10.1016/j.apenergy.2019.114030
Radl, J., & Kaiser, J. (2019). Benefits of Implementation of Common Data Environment (CDE) into Construction Projects. IOP Conference Series: Materials Science and Engineering, 471(2), 022021. https://doi.org/10.1088/1757-899X/471/2/022021
Rathnasinghe, A. P., Kulatunga, U., Jayasena, H. S., & Wijewickrama, M. K. C. S. (2020). Information flows in a BIM enabled construction project: developing an information flow model. Intelligent Buildings International, 1–17. https://doi.org/10.1080/17508975.2020.1848783
Raz, T., & Globerson, S. (1998). Effective Sizing and Content Definition of Work Packages. Project Management Journal, 29(4), 17–23. https://doi.org/10.1177/875697289802900403
Rebolj, D., Pučko, Z., Babič, N. Č., Bizjak, M., & Mongus, D. (2017). Point cloud quality requirements for Scan-vs-BIM based automated construction progress monitoring. Automation in Construction, 84, 323–334. https://doi.org/10.1016/j.autcon.2017.09.021
Redmond, A., Hore, A., Alshawi, M., & West, R. (2012). Exploring how information exchanges can be enhanced through Cloud BIM. Automation in Construction, 24, 175–183. https://doi.org/10.1016/j.autcon.2012.02.003
Riaz, Z., Arslan, M., Kiani, A. K., & Azhar, S. (2014). CoSMoS: A BIM and wireless sensor based integrated solution for worker safety in confined spaces. Automation in Construction, 45, 96–106. https://doi.org/10.1016/j.autcon.2014.05.010
Riaz, Z., Parn, E. A., Edwards, D. J., Arslan, M., Shen, C., & Pena-Mora, F. (2017). BIM and sensor-based data management system for construction safety monitoring. Proceedings of the Institute of Marine Engineering, Science and Technology Part B: Journal of Design & Operations, 15(6), 738–753. https://doi.org/10.1108/JEDT-03-2017-0017
Röck, M., Hollberg, A., Habert, G., & Passer, A. (2018). LCA and BIM: Visualization of environmental potentials in building construction at early design stages. Building and Environment, 140, 153–161. https://doi.org/10.1016/j.buildenv.2018.05.006
Rogage, K., Clear, A., Alwan, Z., Lawrence, T., & Kelly, G. (2019). Assessing building performance in residential buildings using BIM and sensor data. International Journal of Building Pathology and Adaptation, 38(1), 176–191. https://doi.org/10.1108/IJBPA-01-2019-0012
Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, J. I. (2009). A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors , 9(6), 4728–4750. https://doi.org/10.3390/s90604728
Shalabi Firas, & Turkan Yelda. (2017). IFC BIM-based facility management approach to optimize data collection for corrective maintenance. Journal of Performance of Constructed Facilities, 31(1), 04016081. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000941
Smith, P. (2016). Project cost management with 5D BIM. Procedia - Social and Behavioral Sciences, 226, 193–200. https://doi.org/10.1016/j.sbspro.2016.06.179
Solla, M., Ismail, L. H., Shaarani, A. S., & Milad, A. (2019). Measuring the feasibility of using of BIM application to facilitate GBI assessment process. Journal of Building Engineering, 25, 100821. https://doi.org/10.1016/j.jobe.2019.100821
Song, Y., Wang, X., Wright, G., Thatcher, D., Wu, P., & Felix, P. (2019). Traffic Volume Prediction With Segment-Based Regression Kriging and its Implementation in Assessing the Impact of Heavy Vehicles. IEEE Transactions on Intelligent Transportation Systems, 20(1), 232–243. https://doi.org/10.1109/TITS.2018.2805817
Spencer, B. F., Jr, Ruiz-Sandoval, M. E., & Kurata, N. (2004). Smart sensing technology: opportunities and challenges. Structural Control and Health Monitoring, 11(4), 349–368. https://doi.org/10.1002/stc.48
Suprabhas, K., & Dib, H. N. (2017). Integration of BIM and utility sensor data for facilities management. Computing in Civil Engineering 2017, 26–33. https://doi.org/10.1061/9780784480823.004
Tang, F., Ma, T., Zhang, J., Guan, Y., & Chen, L. (2020). Integrating three-dimensional road design and pavement structure analysis based on BIM. Automation in Construction, 113, 103152. https://doi.org/10.1016/j.autcon.2020.103152
Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., & Gao, X. (2019). A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Automation in Construction, 101, 127–139. https://doi.org/10.1016/j.autcon.2019.01.020
Tan, Y., Li, S., & Wang, Q. (2020). Automated geometric quality inspection of prefabricated housing units using BIM and LiDAR. Remote Sensing, 12(15), 2492. https://doi.org/10.3390/rs12152492
Tauriainen, M., & Leväniemi, A. (2020). Improving the information flow in the construction phase of a construction project. Proceedings of the Creative Construction E-Conference, 40–49. https://doi.org/10.3311/CCC2020-044
Teizer, J., Wolf, M., Golovina, O., Perschewski, M., Propach, M., Neges, M., & König, M. (2017). Internet of Things (IoT) for integrating environmental and localization data in Building Information Modeling (BIM). Proceedings of the International Symposium on Automation and Robotics in Construction, 2, 603–609. https://pdfs.semanticscholar.org/15f6/d89d1fb9d9b198cab1720d7723550d7a5624.pdf
Tsai, Y. H., & Hsieh, S. H. (2016). Process modeling of a BIM-enabled construction inspection approach with BPMN. 2016 International Conference on Innovative Production and Construction, 80–83. https://www.researchgate.net/profile/Yuan_Hao_Tsai2/publication/333186835_Process_Modeling_of_a_BIM-enabled_Construction_Inspection_Approach_with_BPMN/links/5cdfeb5992851c4eabaabf24/Process-Modeling-of-a-BIM-enabled-Construction-Inspection-Approach-with-BPMN.pdf
Tsai, Y. H., Hsieh, S. H., & Kang, S. C. (2014). A BIM-Enabled Approach for Construction Inspection. 2014 Conference on Computing in Civil and Building Engineering, 721–728. https://doi.org/10.1061/9780784413616.090
Tsai, Y. H., Wang, J., Chien, W. T., Wei, C. Y., Wang, X., & Hsieh, S. H. (2019). A BIM-based approach for predicting corrosion under insulation. Automation in Construction, 107, 102923. https://doi.org/10.1016/j.autcon.2019.102923
Underwood, J., & Isikdag, U. (2011). Emerging technologies for BIM 2.0. Construction Innovation, 11(3), 252–258. https://doi.org/10.1108/14714171111148990
Uusitalo, P., Seppänen, O., Lappalainen, E., Peltokorpi, A., & Olivieri, H. (2019). Applying Level of Detail in a BIM-Based Project: An Overall Process for Lean Design Management. Buildings, 9(5), 109. https://doi.org/10.3390/buildings9050109
Uusitalo, P., Seppänen, O., Peltokorpi, A., & Olivieri, H. (2019). A Lean Design Management Process Based on Planning the Level of Detail in BIM-Based Design. Advances in Informatics and Computing in Civil and Construction Engineering, 147–152. https://doi.org/10.1007/978-3-030-00220-6_18
Valero, E., Sivanathan, A., Bosché, F., & Abdel-Wahab, M. (2017). Analysis of construction trade worker body motions using a wearable and wireless motion sensor network. Automation in Construction, 83, 48–55. https://doi.org/10.1016/j.autcon.2017.08.001
Valinejadshoubi, M., Moselhi, O., & Bagchi, A. (2021). Integrating BIM into sensor-based facilities management operations. Journal of Facilities Management, 39, 88. https://doi.org/10.1108/JFM-08-2020-0055
Verba, N., Chao, K.-M., James, A., Goldsmith, D., Fei, X., & Stan, S.-D. (2017). Platform as a service gateway for the Fog of Things. Advanced Engineering Informatics, 33, 243–257. https://doi.org/10.1016/j.aei.2016.11.003
Victores, J. G., Martínez, S., Jardón, A., & Balaguer, C. (2011). Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration. Automation in Construction, 20(5), 629–636. https://doi.org/10.1016/j.autcon.2010.12.005
Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings — Literature review and future needs. Automation in Construction, 38, 109–127. https://doi.org/10.1016/j.autcon.2013.10.023
Wang, B., Li, H., Rezgui, Y., Bradley, A., & Ong, H. N. (2014). BIM based virtual environment for fire emergency evacuation. The Scientific World Journal, 2014, 589016. https://doi.org/10.1155/2014/589016
Wang, H., Gluhak, A., Meissner, S., & Tafazolli, R. (2013). Integration of BIM and live sensing information to monitor building energy performance. Proceedings of the 30th CIB W78 International Conference, 344–352. https://architektur-informatik.scix.net/pdfs/w78-2013-paper-146.pdf
Wang, J., Li, S., Wang, X., Mao, C., & Guo, J. (2013). The application of BIM-enabled facility management system in complex building. International Journal of 3-D Information Modeling (IJ3DIM), 2(3), 16–33. https://doi.org/10.4018/ij3dim.2013070102
Wang, J., Sun, W., Shou, W., Wang, X., Wu, C., Chong, H.-Y., Liu, Y., & Sun, C. (2015). Integrating BIM and LiDAR for real-time construction quality control. Journal of Intelligent and Robotic Systems, 79(3-4), 417–432. https://doi.org/10.1007/s10846-014-0116-8
Wang, J., Wang, X., Shou, W., & Xu, B. (2014). Integrating BIM and augmented reality for interactive architectural visualisation. Construction Innovation, 14(4), 453–476. https://doi.org/10.1108/CI-03-2014-0019
Wang, Y., Thangasamy, V. K., Hou, Z., Tiong, R. L. K., & Zhang, L. (2020). Collaborative relationship discovery in BIM project delivery: A social network analysis approach. Automation in Construction, 114, 103147. https://doi.org/10.1016/j.autcon.2020.103147
Wang, Z., & Azar, E. R. (2019). BIM-based draft schedule generation in reinforced concrete-framed buildings. Construction Innovation, 39, 88. https://doi.org/10.1108/CI-11-2018-0094
Wong, J., Wang, X., Li, H., & Chan, G. (2014). A review of cloud-based BIM technology in the construction sector. Journal of Information Technology in Construction (ITcon), 19, 281–291. https://espace.curtin.edu.au/handle/20.500.11937/50359
Wu, P., Wang, J., & Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68, 21–31. https://doi.org/10.1016/j.autcon.2016.04.005
Wu, Z., Chen, C., Cai, Y., Lu, C., Wang, H., & Yu, T. (2019). BIM-Based Visualization Research in the Construction Industry: A Network Analysis. International Journal of Environmental Research and Public Health, 16(18). https://doi.org/10.3390/ijerph16183473
Zhai, Y., Chen, K., Zhou, J. X., Cao, J., Lyu, Z., Jin, X., Shen, G. Q. P., Lu, W., & Huang, G. Q. (2019). An Internet of Things-enabled BIM platform for modular integrated construction: A case study in Hong Kong. Advanced Engineering Informatics, 42, 100997. https://doi.org/10.1016/j.aei.2019.100997
Zhang, D., Zhang, J., Xiong, H., Cui, Z., & Lu, D. (2019). Taking advantage of collective intelligence and BIM-based virtual reality in fire safety inspection for commercial and public buildings. Applied Sciences, 9(23), 5068. https://doi.org/10.3390/app9235068
Zhang, J. P., Liu, Q., Yu, F. Q., Hu, Z. Z., & Zhao, W. Z. (2014). A framework of cloud-computing-cased BIM service for building lifecycle. In R. I. Issa & I. Flood (Eds.), Proceedings of the International Conference on Computing in Civil and Building Engineering (pp. 1514–1521). https://doi.org/10.1061/9780784413616.188
Zhang, S., Sulankivi, K., Kiviniemi, M., Romo, I., Eastman, C. M., & Teizer, J. (2015). BIM-based fall hazard identification and prevention in construction safety planning. Safety Science, 72, 31–45. https://doi.org/10.1016/j.ssci.2014.08.001
Zhong, R. Y., Peng, Y., Xue, F., Fang, J., Zou, W., Luo, H., Thomas Ng, S., Lu, W., Shen, G. Q. P., & Huang, G. Q. (2017). Prefabricated construction enabled by the Internet-of-Things. Automation in Construction, 76, 59–70. https://doi.org/10.1016/j.autcon.2017.01.006
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83082-
dc.description.abstract由於創新設計、新興技術崛起以及日漸精進的管理流程,專案過程記錄的資訊不斷地增加,而這些資訊也幫助專案的利害關係人做決策。然而在決策時,很可能因資訊量過多而遺漏或不考慮部分的資訊。而這些沒納入決策的資訊,本質上是一種資源的浪費,因其不為專案增加價值。由此可知,一套有效管理資訊流的方法,是減少資訊浪費的關鍵。本研究主要目標為發展一套創新的資訊環境,以減少潛在的資源浪費,從而改善專案中的資訊流。
本研究開發了一套縱整專案資訊的通用資料環境(CDE),容納來自各專業的資訊。在提出的通用資料環境中,我們開發了一套基於BIM的現地感測方法,來輔助決策時所需的現地資訊。此外,我們也開發了一套基於BIM的工作包方案,用於整理各專業的資訊。他能以一系列的工作包來管理各專業的現地任務,並基於工作包內部的共通屬性自動關聯,作為跨專業資訊交流的核心。因此,在所提出的CDE中,現地感測資訊和工作包內的資訊會井然有序且相互參照。在決策時,也能有相關的專案資訊來輔助判斷,減少資訊的浪費,改善複雜專案的資訊流。
本研究為專案生命週期中的利害關係人提供了理論和實際意義。它為專案提供了持續的資訊流,將工地現場資訊流向辦公室,並將這些感測器收集的數據轉換為能輔助決策的資訊。此外,各利害關係人的資訊也能藉此被妥善整理並自動關聯,提供了一種創新的方法來整理和分析多方的專案資訊。
zh_TW
dc.description.abstractThe amount of information in a project can increase significantly due to innovative designs, increasing adoption of emerging technologies, and complicated management processes. Although this information can be made available to all project stakeholders, when decision-making occurs, some information is neglected or not considered. The omitted information is essentially a wasted resource, which does not add value to the project. An effective management of information flow is the key to reducing wasted information, yet it accounts for the largest proportion of issues during a project lifecycle. The primary goal in this research is to develop an innovative data environment to reduce the potential wasted resources so as to improve the information flow in projects.
This research develops an integrated common data environment (CDE) to accommodate the project information from multiple sources. In the proposed common data environment, the BIM-based field sensing approach is developed to monitor site conditions which serves for the information demands when decision making. Besides, the BIM-enabled work packaging approach is developed to organise the information from various disciplines and working schedules. A series of work packages could be layouted to specify the tasks, and the linkages are automatically generated afterwards on the basis of the properties inside. Therefore, the field sensing information and work packages are well-organised and cross-referenced in the proposed CDE. It provides relevant information as much as possible when decision making occurs which is considered to be versatile and capable of reducing information waste. In consequence, the improvement of information flow in complex projects is achieved.
Theoretical and practical implications of this research are provided for stakeholders along with the project lifecycle. It provides a continuous information flow to stream site conditions from site to office and interpret the sensor data in useful information to support the decision making. Besides, project information from multiple stakeholders is organised and linkages among project information are automatically generated which provides a novel approach to arrange and analyse multiple sources of project information. The versatility of the common data environment shows an insight of integrating multiple emerging technologies to suffice various demands of information.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-06T17:06:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-06T17:06:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsChapter 1: Introduction 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Research Aim and Objectives 6
1.4 Significance and Contribution of the Research 8
1.5 Structure of the Thesis 10
Chapter 2: Literature Review 13
2.1 Site Monitoring with BIM 13
2.1.1 Smart Sensing Technologies 13
2.1.2 Internet of Things (IoT) 19
2.1.3 Sensing Data Integration 20
2.2 Work Packaging for Information Management 25
2.2.1 Work Packaging principles 26
2.2.2 Network Analysis 29
2.2.3 Lean Construction 30
2.3 BIM-based Common Data Environment for Information Collaboration 33
2.3.1 Cloud BIM 33
2.3.2 Software As A Service 34
2.3.3 Common Data Environment 35
2.3.4 ISO 19650 36
Chapter 3: Research Methodology 37
3.1 Developing BIM-enabled Site Monitoring for Decision Making 39
3.2 Developing BIM-enabled Work Packaging for Information Linkages 39
3.3 Designing Common Data Environment of Project Information Management 40
Chapter 4: Monitoring Site Conditions with BIM and Field Sensing Information for Decision Making in Complex Projects 42
4.1 Introduction 42
4.2 A Framework of Leveraging BIM and Field Sensing for Decision Making 43
4.2.1 Module 1: Data Collection 44
4.2.2 Module 2: Data Analysis 46
4.2.3 Module 3: Application 47
4.3 Case Study 47
4.3.1 Background 47
4.3.2 Process Modelling for the Approach for Corrosion Prediction 49
4.3.3 System Framework 52
4.3.4 System Architecture 54
4.3.5 Module 1: Data Collection 55
4.3.6 Module 2: Data Analysis 61
4.3.7 Module 3: Application 69
4.4 Discussions 73
Chapter 5: Designing BIM-enabled Work Packaging for Strengthening Information Linkages in Complex Projects 74
5.1 Introduction 74
5.2 A Framework of Strengthening Linkages across Work Packages 75
5.2.1 Module 1: Data Preparation 76
5.2.2 Module 2: Work Package Planning and Generation 78
5.2.3 Module 3: Work Package Linking 81
5.2.4 Module 4: Work Package Updating 85
5.3 Case Study 87
5.3.1 Background 87
5.3.2 System Architecture 87
5.3.3 Module 1: Data Preparation 92
5.3.4 Module 2: Work Package Planning and Generation 94
5.3.5 Module 3: Work Package Linking 98
5.3.6 Module 4: Work Package Updating 106
5.4 Discussions 107
Chapter 6: Integrating Field Sensing Information and BIM-enabled Work Packaging for Improving Information Flow in Complex Projects 109
6.1 Introduction 109
6.2 Common Data Environment for Improving Information Flow in Project Lifecycle 110
6.3 Pilot Study: A BIM-enabled Approach for Construction Inspection 113
6.3.1 Background 113
6.3.2 CDE-supported Construction Inspection 115
6.3.3 Implementation 116
6.3.4 Discussions 123
6.4 Pilot Study: BIM-enabled Work Packaging with Field Sensing for Constraint Management 124
6.4.1 Background 124
6.4.2 CDE-supported Constraint Management 125
6.4.3 Implementation 127
6.4.4 Discussions 129
6.5 Summary 129
Chapter 7: Conclusions, Implications, and Future Recommendations 131
-
dc.language.isoen-
dc.title以BIM實現工作包結合現地感測技術於複雜專案資訊流之改善zh_TW
dc.titleDeveloping BIM-enabled Work Packaging with Field Sensing for Information Flow Improvement in Complex Projectsen
dc.title.alternativeDeveloping BIM-enabled Work Packaging with Field Sensing for Information Flow Improvement in Complex Projects-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.coadvisor王翔宇zh_TW
dc.contributor.coadvisorXiangyu Wangen
dc.contributor.oralexamcommittee康仕仲;張陸滿;陳柏翰;林之謙;邱仁鈿zh_TW
dc.contributor.oralexamcommitteeShih-Chung Kang;Luh-Maan Chang;Po-Han Chen;Je-Chian Lin;Jen-Diann Chiouen
dc.subject.keyword建築資訊模型,通用資料環境,工作包,現地感測技術,資訊管理,zh_TW
dc.subject.keywordbuilding information model,common data environment,work packaging,smart sensing technology,information management,en
dc.relation.page154-
dc.identifier.doi10.6342/NTU202210165-
dc.rights.note未授權-
dc.date.accepted2022-12-26-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-0507221221061610.pdf
  目前未授權公開取用
17.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved