Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83074
Title: PUB-R:基於回合定位的端到端任務對話系統
PUB-R: End-to-End TOD System via Turn-Based Positioning
Other Titles: PUB-R: End-to-End TOD System via Turn-Based Positioning
Authors: 林珏廷
Jyue-Ting Lin
Advisor: 廖世偉
Shie-Wei Liao
Co-Advisor: 戴敏育
Min-Yuh Day
Keyword: 自然語言處理,任務導向對話系統,多輪對話,
Natural Language Processing,Task-oriented dialog system,Multi-turn dialog,
Publication Year : 2022
Degree: 碩士
Abstract: 任務導向對話系統(Task-Oriented Dialog System)在無數行業中都有巨大的需求。可以大大降低客戶服務人員的管理費用並簡化人力資源流程。許多 TOD 系統皆使用 GPT-2 模型作為基底,但這些系統沒有考慮多輪對話的關鍵考慮因素--對話回合的位置。本論文 PUB-R 為最近的端到端任務對話模型引入了一種新的嵌入輸入方法:“基於回合的定位嵌入方法”(TPEM)。實驗結果顯示:(1) 與之前的 SOTA 模型相比,PUB-R 可以在更短的訓練時間內獲得更好的訓練性能;(2) 可以透過減少訓練所需的 epoch 數而不影響性能來實現模型的快速收斂。我們的實驗成功地改進了以前的“基於回合的定位”的端到端對話系統,在端對端對話評估方法上取得更高的分數,訓練時間更短,並且不需要額外的手動註釋。
In high demand across countless industries, Task-Oriented Dialog (TOD) systems may greatly reduce the overhead costs of customer service personnel and simplify human resource processes. The GPT-2 model is used across a variety of TOD systems, but these systems do not take into account the turn number, a critical consideration for multi-turn dialogs. Our paper PUB-R introduces a new embedding input method for recent end-to-end task dialog models : the “Turn-Based Positioning Embedding Method” (TPEM). Our results show that (1) PUB-R can obtain better training performance in a shorter training time compared with previous SOTA models and (2) rapid model convergence can be achieved by reducing the number of epochs required without compromising performance. Our implementation successfully improves upon previous end-to-end dialog systems in evaluation score of the model with the "turn-based positioning" with shorter training times and without requiring additional manual annotation.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83074
DOI: 10.6342/NTU202210113
Fulltext Rights: 未授權
Appears in Collections:資訊網路與多媒體研究所

Files in This Item:
File SizeFormat 
U0001-1013221206214016.pdf
  Restricted Access
10.25 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved