Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83071
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑zh_TW
dc.contributor.advisorYi-You Huangen
dc.contributor.author謝瑞洋zh_TW
dc.contributor.authorJui-Yang Hsiehen
dc.date.accessioned2023-01-06T17:01:47Z-
dc.date.available2023-11-09-
dc.date.copyright2023-01-06-
dc.date.issued2022-
dc.date.submitted2022-12-22-
dc.identifier.citation1. Chapman J, Smith JS, Kopjar B, Vaccaro AR, Arnold P, Shaffrey CI, Fehlings MG. The AO Spine North America Geriatric Odontoid Fracture Mortality Study: A retrospective review of mortality outcomes for operative versus nonoperative treatment of 322 patients with long-term follow-up. Spine. 2013; 38(13): 1098–1104.
2. Chotigavanich C, Sanpakit S, Wantthanaapisith T, Thanapipatsiri S, Chotigavanich C. The surgical treatment of the osteoporotic vertebral compression fracture in the elderly patients with the spinal instrumentation. J Med Assoc Thai. 2009; 92(Suppl 5): S109–115.
3. Reinhold M, Knop C, Beisse R, Audigé L, Kandziora F, Pizanis A, Pranzl R, Gercek E, Schultheiss M, Weckbach A, Bühren V, Blauth M. Operative treatment of 733 patients with acute thoracolumbar spinal injuries: Comprehensive results from the second, prospective, Internet-based multicenter study of the Spine Study Group of the German Association of Trauma Surgery. Eur Spine J. 2010; 19(10): 1657–1676.
4. Kohno M, Iwamura Y, Inasaka R, Kaneko K, Tomioka M, Kawai T, Aota Y, Saito T, Inaba Y. Surgical intervention for osteoporotic vertebral burst fractures in middle-low lumbar spine with special reference to postoperative complications affecting surgical outcomes. Neurol Med Chir. 2019; 59(3): 98–105.
5. Chen HY, Chen CL, Chen WL. Repeated adjacent segment dis eases and fractures in osteoporotic patients: a case report. Ther Clin Risk Manag. 2016; 12: 1145–1150.
6. Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie. 1987; 33(2): 166–168.
7. Pourtaheri S, Luo W, Cui C, Garfin S. Vertebral augmentation is superior to nonoperative care at reducing lower back pain for symptomatic osteoporotic compression fractures: A meta-analysis. Clin Spine Surg. 2018; 31(8): 339–344.
8. Wang H, Sribastav SS, Ye F, Yang C, Wang J, Liu H, Zheng Z. Comparison of percutaneous vertebroplasty and balloon kyphoplasty for the treatment of single level vertebral compression fractures: A meta-analysis of the literature. Pain Physician. 2015; 18(3): 209–222.
9. Flors L, Lonjedo E, Leiva-Salinas C, Martí-Bonmatí L, Martínez-Rodrigo JJ, López-Pérez E, Figueres G, Raoli I. Vesselplasty: A new technical approach to treat symptomatic vertebral compression fractures. AJR. 2009, 193(1): 218–226.
10. Eschler A, Ender SA, Ulmar B, Herlyn P, Mittlmeier T, Gradl G. Cementless fixation of osteoporotic VCFs using titanium mesh implants (OsseoFix): Preliminary results. Biomed Res Int. 2014; 2014: 853897.
11. Jacobson, R. E. The use of SpineJack intravertebral implant for the correction of recurrent vertebral fracture after kyphoplasty. Cureus. 2020; 12(4), e7599.
12. Belkoff SM, Molloy S. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine. 2003; 28(14): 1555–1559.
13. Fribourg D, Tang C, Sra P, Delamarter R, Bae H. Incidence of subsequent vertebral fracture after kyphoplasty. Spine. 2004; 29(20): 2270–2276.
14. Hsieh JY, Wang JH, Chen PQ, Huang YY. Comparison of osseointegration in different intravertebral fixators. J Med Biol Eng. 2022; 42(2): 196–203.
15. Hsieh JY, Chuang SM, Chen CS, Wang JH, Chen PQ, Huang YY. Novel modular spine blocks affect the lumbar spine on finite element analysis. Spine Surg Relat Res. 2022; 6(5): 553–559.
16. Levin JM, Tanenbaum JE, Steinmetz MP, Mroz TE, Overley SC. Posterolateral fusion (PLF) versus transforaminal lumbar interbody fusion (TLIF) for spondylolisthesis: a systematic review and meta-analysis. Spine J. 2018; 18(6): 1088–1098.
17. Yavin D, Casha S, Wiebe S, Feasby TE, Clark C, Isaacs A, Holroyd-Leduc J, Hurlbert RJ, Quan H, Nataraj A, Sutherland GR, Jette N. Lumbar fusion for degenerative disease: a systematic review and meta-analysis. Neurosurgery. 2017; 80(5): 701–715.
18. Zhong ZM, Deviren V, Tay B, Burch S, Berven SH. Adjacent segment disease after instrumented fusion for adult lumbar spondylolisthesis: incidence and risk factors. Clin Neurol Neurosurg. 2017; 156: 29–34.
19. Zhang C, Berven SH, Fortin M, Weber MH. Adjacent Segment Degeneration Versus Disease After Lumbar Spine Fusion for Degenerative Pathology: A Systematic Review With Meta-Analysis of the Literature. Clin Spine Surg. 2016; 29(1): 21–29.
20. Sebaaly A, Lahoud MJ, Rizkallah M, Kreichati G, Kharrat K. Etiology, Evaluation, and Treatment of Failed Back Surgery Syndrome. Asian Spine J. 2018; 12(3): 574–585.
21. Smith JS, Shaffrey E, Klineberg E, Shaffrey CI, Lafage V, Schwab FJ, Schwab FJ, Protopsaltis T, Scheer JK, Mundis GM Jr, Fu KM, Gupta MC, Hostin R, Deviren V, Kebaish K, Hart R, Burton DC, Line B, Bess S, Ames CP. Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine. 2014; 21(6): 994–1003.
22. Ozer AF, Cevik OM, Erbulut DU, Yaman O, Senturk S, Oktenoglu T, Sasani M, Suzer T, Goel V. A novel modular dynamic stabilization system for the treatment of degenerative spinal pathologies. Turk Neurosurg. 2019; 29(1): 115–120.
23. Benezech J, Garlenq B, Larroque G. Flexible stabilisation of the degenerative lumbar spine using PEEK rods. Adv Orthop. 2016;2016:7369409.
24. Pham MH, Mehta VA, Patel NN, Jakoi AM, Hsieh PC, Liu JC, Wang JC, Acosta FL. Complications associated with the Dynesys dynamic stabilization system: a comprehensive review of the literature. Neurosurg Focus. 2016; 40(1): E2.
25. Kok D, Firkins PJ, Wapstra FH, Veldhuizen AG. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation. BMC Musculoskelet Disord. 2013; 14: 269.
26. Kojio K, Furukawa M, Motokucho S, Shimada M, Sakai M. Structure-mechanical property relationships for polycarbonate urethane elastomers with novel soft segments. Macromolecules. 2009; 42(21): 8322–8327.
27. Hsieh JY, Chen CS, Chuang SM, Wang JH, Chen PQ, Huang YY. Comparison of the optimal design of spinal hybrid elastic rod for dynamic stabilization: A finite element analysis. Appl. Sci. 2022; 12(22): 11759.
28. Hsieh JY, Chen CS, Chuang SM, Wang JH, Chen PQ, Huang YY. Finite element analysis after rod fracture of the spinal hybrid elastic rod system. BMC Musculoskelet Disord. 2022; 23(1): 816.
29. Hsieh JY. Osteoporosis of the spine: Asian perspectives. Toh Tuck Link (Singapore): World Scientific; 2021. Chapter 27, Minimally invasive management of osteoporotic vertebral compression fractures; p. 615–634.
30. Hsieh JY, Chen PQ, Wang JH. Minimally invasive open reduction and internal fixation for osteoporotic vertebral compression fractures: Technical report and mid-term outcomes. Open Journal of Orthopedics. 2018; 8(9): 337–350.
31. Ottardi C, La Barbera L, Pietrogrande L, Villa T. Vertebroplasty and kyphoplasty for the treatment of thoracic fractures in osteoporotic patients: a finite element comparative analysis. J Appl Biomater Funct Mater. 2016; 14(2): e197–204.
32. Nielsen DH, McEvoy FJ, Madsen MT, Jensen JB, Svalastoga E. Relationship between bone strength and dual-energy X-ray absorptiometry measurements in pigs. J Anim Sci. 2007; 85(3): 667–672.
33. McLain RF, Yerby SA, Moseley TA. Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine. 2002; 27(8): E200–206.
34. Lorenzen E, Follmann F, Jungersen G, Agerholm JS. A review of the human vs. porcine female genital tract and associated immune system in the perspective of using minipigs as a model of human genital Chlamydia infection. Vet Res. 2015; 46: 116.
35. Heinritz SN, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev. 2013; 26(2): 191–209.
36. Lorenzo J. Cytokines and Bone: Osteoimmunology. Handb Exp Pharmacol. 2020; 262: 177–230.
37. Lane NE. An update on glucocorticoid-induced osteoporosis. Rheum Dis Clin North Am. 2001; 27(1): 235–253.
38. Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 1991; 15(3): 175–191.
39. Komori T. Animal models for osteoporosis. Eur J Pharmacol. 2015; 759: 287–294.
40. Kim SW, Kim KS, Solis CD, Lee MS, Hyun BH. Development of osteoporosis animal model using micropigs. Lab Anim Res. 2013; 29(3), 174–177.
41. Boyce RW, Ebert DC, Youngs TA, Paddock CL, Mosekilde L, Stevens ML, Gundersen HJ. Unbiased estimation of vertebral trabecular connectivity in calcium-restricted ovariectomized minipigs. Bone. 1995; 16(6): 637–642.
42. Mosekilde L, Weisbrode SE, Safron JA, Stills HF, Jankowsky ML, Ebert DC, Danielsen CC, Sogaard CH, Franks AF, Stevens ML, Paddock CL, Boyce RW. Calcium-restricted ovariectomized Sinclair S-1 minipigs: an animal model of osteopenia and trabecular plate perforation. Bone. 1993; 14(3): 379–382.
43. The study on the effect of artificial osteoporosis created by combined ovariectomy and calcium-restricted diets in a porcine model. Biomed. Eng.: Appl. Basis Commun. 2022. In press.
44. Kok D, Firkins PJ, Wapstra FH, Veldhuizen AG. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation. BMC Musculoskelet Disord. 2013; 14: 269.
45. Kojio K, Furukawa M, Motokucho S, Shimada M, Sakai M. Structuremechanical property relationships for polycarbonate urethane elastomers with novel soft segments. Macromolecules. 2009; 42(21): 8322–8327.
46. Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu KM, Keshavarzi S, Li CM, Deviren V, Schwab FJ, Lafage V, Bess S; International Spine Study Group. Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery. 2012; 71: 862–867.
47. Hsieh JY, Wu CD, Wang TM, Chen HY, Farn CJ, Chen PQ. Reduction of the domino effect in osteoporotic vertebral compression fractures through short-segment fixation with intravertebral expandable pillars compared to percutaneous kyphoplasty: A case control study. BMC Musculoskeletal Disord. 2013; 14: 75.
48. Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, Beck S, Weinberg AM. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomaterialia. 2011; 7(1): 432–440.
49. Chen SH, Zhong ZC, Chen CS, Chen WJ, Hung C. Biomechanical comparison between lumbar disc arthroplasty and fusion. Med Eng Phys. 2009; 31(2): 244–253.
50. Liu CL, Zhong ZC, Shih SL, Hung C, Lee YE, Chen CS. Influence of Dynesys system screw profile on adjacent segment and screw. J Spinal Disord Tech. 2010; 23(6): 410–417.
51. Zhong ZC, Chen SH, Hung CH. Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc Inst Mech Eng H. 2009; 223(2): 143–157.
52. Shih SL, Chen CS, Lin HM, Huang LY, Liu CL, Huang CH, Cheng CK. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis. J Spinal Disord Tech. 2012; 25(5): E140–149.
53. Ruberté LM, Natarajan RN, Andersson GB. Influence of singlelevel lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study. J Biomech. 2009; 42(3): 341–348.
54. Salvatore G, Berton A, Giambini H, Ciuffreda M, Florio P, Longo UG, Denaro V, Thoreson A, An KN. Biomechanical effects of metastasis in the osteoporotic lumbar spine: a finite element analysis. BMC Musculoskelet Disord. 2018; 19(1): 38.
55. Zhong ZC, Hung C, Lin HM, Wang YH, Huang CH, Chen CS. The influence of different magnitudes and methods of applying preload on fusion and disc replacement constructs in the lumbar spine: a finite element analysis. Comput Methods Biomech Biomed Eng. 2013; 16(9): 943–953.
56. Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine. 2001; 26(24): E557–561.
57. Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, Goel VK, Kiapour A, Kim YH, Labus KM, Little JP, Park WM, Wang YH, Wilke HJ, Rohlmann A, Schmidt H. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 2014; 47(8): 1757–1766.
58. Fukuhara M, Sanpei A. Elastic moduli and internal frictions of Inconel 718 and Ti-6Al-4V as a function of temperature. J Mater Sci Lett. 1993; 12(14): 1122–1124.
59. Long M, Rack H. Titanium alloys in total joint replacement―a materials science perspective. Biomaterials. 1989; 19(18): 1621–1639.
60. Chen CS, Huang CH, Shih SL. Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device (awesome rod system)--a finite element analysis. BMC Musculoskelet Disord. 2015; 16: 81.
61. Panjabi MM. Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech. 2007; 22(3): 257–265.
62. Iyer S, Christiansen BA, Roberts BJ, Valentine MJ, Manoharan RK, Bouxsein ML. A biomechanical model for estimating loads on thoracic and lumbar vertebrae. Clin Biomech. 2010; 25(9): 853–858.
63. Yamamoto I, Panjabi MM, Crisco T, Oxland T. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine. 1989; 14(11): 1256–1260.
64. Mosekilde L, Weisbrode SE, Safron JA, Stills HF, Jankowsky ML, Ebert DC, Danielsen CC, Sogaard CH, Franks AF, Stevens ML, Paddock CL, Boyce RW, Calcium-restricted ovariectomized Sinclair S-1 minipigs: an animal model of osteopenia and trabecular plate perforation. Bone. 1993; 14(3): 379–382.
65. Liu CL, Zhong ZC, Hsu HW, Shih SL, Wang ST, Hung C, Chen CS. Effect of the cord pretension of the Dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis. Eur Spine J. 2011; 20(11): 1850–1858.
66. Chevalier V, Arbab-Chirani R, Arbab-Chirani S, Calloch S. An improved model of 3-dimensional finite element analysis of 299 mechanical behavior of endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109(3): 111–121.
67. Li G, Qian H, Guo S, Wang D, Sun C, Du Y, Cheng J, Jiang H. Assessment of aging characteristics of female condylar trabecular structure by cone-beam computed tomography. Oral Radiol. 2019; 35(1): 16–22.
68. Ghofrani H, Nunn T, Robertson C, Mahar A, Lee Y, Garfin S. An evaluation of fracture stabilization comparing. kyphoplasty and titanium mesh repair techniques for vertebral compression fractures: Is bone cement necessary? Spine. 2010; 35(16): E768–E773.
69. Upasani VV, Robertson C, Lee D, Tomlinson T, Mahar AT. Biomechanical comparison of kyphoplasty versus a titanium mesh implant with cement for stabilization of vertebral compression fractures. Spine. 2010; 35(19): 1783–1788.
70. Ender SA, Gradl G, Ender M, Langner S, Merk HR, Kayser R. Osseofix® system for percutaneous stabilization. of osteoporotic and tumorous vertebral compression fractures—Clinical and radiological results after 12 months. Rofo. 2014; 186(4): 380–387.
71. Lee J, Song KS. Transpedicular intravertebral cage augmentation in a patient with neurologic deficits after severely collapsed kummel disease: Minimum 2-year follow-up. World Neurosurg. 2020; 135: 146–155.
72. Graillon T, Farah K, Rakotozanany P, Blondel B, Adetchessi T, Dufour H, Fuentes S. Anterior approach with expandable cage implantation in management of unstable thoracolumbar fractures: Results of a series of 93 patients. Neurochirurgie. 2016; 62(2): 78–85.
73. Müller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, Rüegsegger P. Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998; 23(1): 59–66.
74. de Oliveira RC, Leles CR, Lindh C, Ribeiro-Rotta RF. Bone tissue microarchitectural characteristics at dental implant sites. Part 1: Identification of clinical-related parameters. Clin Oral Implants Res. 2012; 23(8): 981–986.
75. Keller JC, Schneider GB, Stanford CM, Kellogg B. Effects of implant microtopography on osteoblast cell attachment. Implant Dent. 2003; 12(2): 175–181.
76. Parkinson IH, Badiei A, Stauber M, Codrington J, Muller R, Fazzalari NL. Vertebral body bone strength: The contribution of individual trabecular element morphology. Osteoporosis Int. 2012; 23(7): 1957–1965.
77. Vasconcellos LM, Leite DO, Oliveira FN, Carvalho YR, Cairo CA. Evaluation of bone ingrowth into porous titanium implant: Histomorphometric analysis in rabbits. Braz Oral Res. 2010; 24(4): 399–405.
78. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005; 26(27): 5474–5491.
79. Hartmann F, Griese M, Dietz SO, Kuhn S, Rommens PM, Gercek E. Two-year results of vertebral body stenting for the treatment of traumatic incomplete burst fractures. Minim Invasive Ther Allied Technol. 2015; 24(3): 161–166.
80. Rohlmann A, Boustani HN, Bergmann G, Zander T. A probabilistic finite element analysis of the stresses in the augmented vertebral body after vertebroplasty. Eur Spine J. 2010; 19(9): 1585–1595.
81. Krüger A, Bäumlein M, Knauf T, Pascal-Moussellard H, Ruchholtz S, Oberkircher L. Height and volume restoration in osteoporotic vertebral compression fractures: a biomechanical comparison of standard balloon kyphoplasty versus Tektona in a cadaveric fracture model. BMC Musculoskelet Disord. 2021; 22(1): 76.
82. La Barbera L, Cianfoni A, Ferrari A, Distefano D, Bonaldi G, Villa T. Stent-screw assisted internal fixation of osteoporotic vertebrae: a comparative finite element analysis on SAIF technique. Front Bioeng Biotechnol. 2019; 7: 291.
83. Buechel FF, Pappas MJ. Principles of human joint replacement: design and Stent-screw assisted internal fixation of osteoporotic clinical application. 2nd ed. Heidelberg (Berlin): Springer; 2011. Chapter 1, Properties of materials used in orthopaedic implant systems; p. 1–35.
84. Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, Reinhold M, Aarabi B, Kandziora F, Chapman J, Shanmuganathan R, Fehlings M, Vialle L; AOSpine Spinal Cord Injury & Trauma Knowledge Forum. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine. 2013; 38(23): 2028–2037.
85. Rohlmann A, Zander T, Bergmann G. Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty. Eur Spine J. 2006; 15(8): 1255–1264.
86. Spencer GR. Pregnancy and lactational osteoporosis. Animal model: porcine lactational osteoporosis. Am J Pathol. 1979; 95(1): 277–280.
87. Howroyd PC, Peter B, de Rijk E. Review of Sexual Maturity in the Minipig. Toxicol Pathol. 2016; 44(4): 607–611.
88. Sun SS, Schubert CM, Chumlea WC, Roche AF, Kulin HE, Lee PA, Himes JH, Ryan AS. National estimates of the timing of sexual maturation and racial differences among US children. Pediatrics. 2002; 110(5): 911–919.
89. Xue S, Kemal O, Lu M, Lix LM, Leslie WD, Yang S. Age at attainment of peak bone mineral density and its associated factors: The National Health and Nutrition Examination Survey 2005–2014. Bone. 2020; 131: 115163.
90. Yanaka K, Higuchi M, Ishimi Y. Anti-Osteoporotic Effect of Soy Isoflavones Intake on Low Bone Mineral Density Caused by Voluntary Exercise and Food Restriction in Mature Female Rats. J Nutr Sci Vitaminol (Tokyo). 2019; 65(4): 335–342.
91. Taku K, Melby MK, Kurzer MS, Mizuno S, Watanabe S, Ishimi Y. Effects of soy isoflavone supplements on bone turnover markers in menopausal women: systematic review and meta-analysis of randomized controlled trials. Bone. 2010; 47(2): 413–423.
92. Mitchell AD, Scholz AM, Pursel VG. Total body and regional measurements of bone mineral content and bone mineral density in pigs by dual energy X-ray absorptiometry. J Anim Sci. 2001; 79(10): 2594–2604.
93. Fu X, Tan J, Sun CG, Leng HJ, Xu YS, Song CL. Intraosseous Injection of Simvastatin in Poloxamer 407 Hydrogel Improves Pedicle-Screw Fixation in Ovariectomized Minipigs. J Bone Joint Surg Am. 2016; 98(22): 1924–1932.
94. Tan J, Fu X, Sun CG, Liu C, Zhang XH, Cui YY, Guo Q, Ma T, Wang H, Du GH, Yin X, Liu ZJ, Leng HJ, Xu YS, Song CL. A single CT-guided percutaneous intraosseous injection of thermosensitive simvastatin/poloxamer 407 hydrogel enhances vertebral bone formation in ovariectomized minipigs. Osteoporos Int. 2016; 27(2): 757–767.
95. Wu CC, Hsu LH, Sumi S, Yang KC, Yang SH. Injectable and biodegradable composite bone filler composed of poly(propylene fumarate) and calcium phosphate ceramic for vertebral augmentation procedure: An in vivo porcine study. J Biomed Mater Res B Appl Biomater. 2017; 105(8): 2232–2243.
96. Ohe M, Moridaira H, Inami S, Takeuchi D, Nohara Y, Taneichi H. Pedicle screws with a thin hydroxyapatite coating for improving fixation at the bone-implant interface in the osteoporotic spine: experimental study in a porcine model. J Neurosurg Spine. 2018; 28(6): 679–687.
97. Li KY, Li KT, Yang CH, Hwang MH, Chang SW, Lin SM, Wu HJ. Insular East Asia pig dispersal and vicariance inferred from Asian wild boar genetic evidence. J Anim Sci. 2017; 95(4): 1451–1466.
98. Hung CC, Fu E, Chiu HC, Liang HC. Bone formation following sinus grafting with an alloplastic biphasic calcium phosphate in Lanyu Taiwanese mini-pigs. J Periodontol. 2020; 91(1), 93–101.
99. Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study. Spine. 2006; 31(26): E992–998.
100. Gornet MF, Chan FW, Coleman JC, Murrell B, Nockels RP, Taylor BA, Lanman TH, Ochoa JA. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs. J Biomech Eng. 2011; 133(8): 081009.
101. Kurtz SM, Lanman TH, Higgs G, Macdonald DW, Berven SH, Isaza JE, Phillips E, Steinbeck MJ. Retrieval analysis of PEEK rods for posterior fusion and motion preservation. Eur Spine J. 2013; 22(12): 2752–2759.
102. Massey PA, Hoge S, Nelson BG, Ogden AL, Mody MG, Myers M, Bilderback K, Solitro G, Barton RS. Nitinol Memory Rods Versus Titanium Rods: A Biomechanical Comparison of Posterior Spinal Instrumentation in a Synthetic Corpectomy Model. Global Spine J. 2021; 11(3): 277–282.
103. Yeung KW, Poon RW, Liu XY, Ho JP, Chung CY, Chu PK, Lu WW, Chan D, Cheung KM. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys. J Biomed Mater Res A. 2005; 75(2): 256–267.
104. Chen CS, Shih SL. Biomechanical analysis of a new lumbar interspinous device with optimized topology. Med Biol Eng Comput. 2018; 56(8): 1333–1341.
105. Shih SL, Chen CS, Lin HM, Huang LY, Liu CL, Huang CH, Cheng CK. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis. J Spinal Disord Tech. 2012; 25(5): E140–149.
106. Barton C, Noshchenko A, Patel V, Cain C, Kleck C, Burger E. Risk factors for rod fracture after posterior correction of adult spinal deformity with osteotomy: a retrospective case-series. Scoliosis. 2015; 10: 30.
107. Massey PA, Hoge S, Nelson BG, Ogden AL, Mody MG, Myers M, Bilderback K, Solitro G, Barton RS. Nitinol memory rods versus titanium rods: a biomechanical comparison of posterior spinal instrumentation in a synthetic Corpectomy model. Global Spine J. 2021; 11(3): 277–282.
108. Kurtz SM, Lanman TH, Higgs G, Macdonald DW, Berven SH, Isaza JE, Phillips E, Steinbeck MJ. Retrieval analysis of PEEK rods for posterior fusion and motion preservation. Eur Spine J. 2013; 22(12): 2752–2759.
109. Stambough JL, Genaidy AM, Huston RL, Serhan H, El-khatib F, Sabri EH. Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determination of failure modes. J Spinal Disord. 1997; 10: 473–481.
110. Desai M, Bakhshi R, Zhou X, Odlyha M, You Z, Seifalian AM, Hamilton G. A sutureless aortic stent-graft based on a nitinol scaffold bonded to a compliant nanocomposite polymer is durable for 10 years in a simulated in vitro model. J Endovasc Ther. 2012; 19(3): 415–427.
111. Bezci SE, Klineberg EO, O’Connell GD. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs. J Mech Behav Biomed Mater. 2018; 77: 353–359.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/83071-
dc.description.abstract「模組脊柱積木(MSB)」係微創椎骨組裝新型「椎體內固定器」,可部分取代「椎體成型術」、「椎體後凸矯正術」,治療脊椎壓迫性骨折。以三維非線性有限元素模型分析(FEA)二種MSB結構設計與四種植入方法在脊椎力分佈。得知MSB對椎間活動之應力作用小,不產生額外負載於鄰椎間盤。以MSB植入豬體內,研究新骨MSB內形成狀況,得知MSB對骨整合具積極作用。評估微型豬去卵巢、限鈣飲食對骨質密度影響,得知其骨質密度繼續上升,人造骨質疏鬆豬模型是無效的。
「脊柱混合彈性(SHE)桿」使用鎳鈦諾內棒(NS)、聚碳酸酯聚氨酯外套(PS),為半剛性通用桿之新型「椎體間固定器」,可部分取代「後脊柱融合術」、「動態穩定系統」,矯正脊椎之退化性或變形。構建含植入椎弓螺釘、SHE棒組成之腰椎FEA,分析椎間力學效應。研究四種外徑相同SHE桿、相異NS直徑/PS厚度比例,得知SHE桿系統皆可提供足夠脊柱支撐、且溫和增加相鄰節段壓力,最佳NS/PS比為3.5/2.0毫米。若NS桿於下方1/3斷裂之最壞情況下,得知SHE桿系統仍能提供約一半脊柱支撐能力。
zh_TW
dc.description.abstractThe modular spine block (MSB) is a novel "intravertebral fixator" that is minimally invasively implanted into the vertebrae. It is intended for use in vertebral compression fracture and will partially replace the currently commonly used "vertebroplasty" or "kyphoplasty".
A three-dimensional nonlinear finite element analysis (FEA) of the osteoporotic L3 implanted with MSB was constructed. The force distribution was analyzed with 2 types of structural designs and 4 kinds of implantation methods at the adjacent segments. The MSB has little stress shielding effect on the intervertebral ROM and creates no additional loading to the adjacent disks. MSB were implanted in pigs to prove the ability of new bone formation within MSB in a porcine model. These findings suggest that MSBs have a similar positive effect on osseointegration. Meanwhile, it was also assessed whether the osteoporosis created by combined ovariectomy and calcium-restricted diets in the miniature pigs. The results demonstrated it is ineffective in achieving an artificial osteoporotic porcine model based on assessments of bone mineral density.
The spinal hybrid elastic (SHE) rod is a novel "intervertebral fixator" that is a semi-rigid pedicle screw-based universal rod using an inner nitinol stick (NS) and outer polycarbonate urethane shell (PS). It is intended for use in spinal degenerative diseases and deformities and will partially replace the currently used "posterior fusion" or "dynamic stabilization systems".
A 3-dimensional nonlinear FEA composed of pedicle screws, NS and PS was constructed to investigate the intervertebral biomechanical effects. Four groups had the same SHE rod diameter, but different NS diameter/PS thickness ratios. The SHE rod system provided sufficient spinal support and increased gentle adjacent-segment stress. The optimal NS diameter/PS thickness ratio is 3.5/2.0 mm. The SHE rod system affords nearly half spine support after lower third rod fracture in a worst-case scenario of the thinnest PS of the SHE rod system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-01-06T17:01:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-01-06T17:01:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS
口試委員會審定書…………………………………………………………………….. i
誌謝與序…………………………………………………………………………..…… ii
中文摘要………………………………………………………….……………....…... iii
Abstract……………………………………………………………………………....... iv
List of Figures…………………………………………..……………………………... vi
List of Tables………………………………………………..………….…………….. viii
Abbreviations…………………………………………………………………..……… x
Chapter 1 Introduction………………………………………………………..………... 1
1.1 Osteoporotic vertebral compression fractures……………………………………. 1
1.2 Spinal degenerative diseases and deformities……………..……………………... 2
Chapter 2 Theoretical Basis……………………………………………………….…… 4
2.1 Modular spine block………………………….……..……………………….…… 4
2.2 Animal model…………………..…………….……………………………..……. 6
2.3 Spinal hybrid elastic rod……………………..………………………………….... 8
Chapter 3 Materials and methods……………………………………………..……… 10
3.1 Implanted animal experiment……………………………………………...……. 10
3.2 Finite element model on intravertebral fixators………………………………… 15
3.3 Artificial development of osteoporosis in pigs………………………………….. 21
3.4 Finite element model on intervertebral fixators………………………………… 24
Chapter 4 Results…………………………………………………………………….. 29
4.1 Implantation in pigs…………………………………………………………….. 29
4.2 Finite element analysis on intravertebral fixators………………………………. 33
4.3 Bone mineral density in pigs……………………………………………………. 39
4.4 Finite element analysis on intervertebral fixators………………………….…… 42
4.4.1 Comparison of rod radio……………………………………………………. 42
4.4.2 Rod fracture…………………………………………………………………. 54
Chapter 5 Discussions……………………………………………………………..…. 66
5.1 Osseointegration………………………………………………………………… 66
5.2 Adjacent evaluation after intravertebral fixation………………………………… 69
5.3 Ovariectomy and calcium-restricted diets………………………………………. 71
5.4 Spinal dynamic stabilization……………………………………………………. 76
Chapter 6 Conclusions…………………………………………………………….….. 82
References………………………………………………..…………………………… 84
-
dc.language.isoen-
dc.title新型椎內與椎間固定器zh_TW
dc.titleNovel Intravertebral and Intervertebral fixatorsen
dc.title.alternativeNovel Intravertebral and Intervertebral fixators-
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳博光;楊榮森;陳振昇;施博仁zh_TW
dc.contributor.oralexamcommitteePo-Quang Chen;Rong-Sen Yang;Chen-Sheng Chen;Po-Jen Shihen
dc.subject.keyword脊椎壓迫性骨折,模組脊柱積木,有限元素模型分析,骨質疏鬆,後脊柱融合術,動態穩定系統,脊柱混合彈性桿,zh_TW
dc.subject.keywordvertebral compression fracture,modular spine block,finite element analysis,osteoporosis,posterior fusion,dynamic stabilization systems,hybrid elastic rod,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202210118-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-12-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0300221208348026.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved