Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8301
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈(Lin-Chi Chen)
dc.contributor.authorWei-Li Shihen
dc.contributor.author史唯里zh_TW
dc.date.accessioned2021-05-20T00:51:39Z-
dc.date.available2025-07-31
dc.date.available2021-05-20T00:51:39Z-
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-07
dc.identifier.citationAmbrosi, A., Chua, C. K., Bonanni, A., and Pumera, M. (2014). Electrochemistry of graphene and related materials. Chemical Reviews, 114(14), 7150-7188.
Ammann, D. (2013). Ion-selective microelectrodes: principles, design and application (Vol. 50): Springer Science and Business Media.
Appiah‐Kusi, C., Kew, S. J., and Hall, E. (2009). Water Transport in Poly (n‐butyl acrylate) Ion‐Selective Membranes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21(17‐18), 1992-2003.
Bakker, E., Bühlmann, P., and Pretsch, E. (2004). The phase-boundary potential model. Talanta, 63(1), 3-20.
Belaidi, F. S., Civélas, A., Castagnola, V., Tsopela, A., Mazenq, L., Gros, P., Temple-Boyer, P. (2015). PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 214, 1-9.
Bobacka, J. (1999). Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Analytical Chemistry, 71(21), 4932-4937.
Darmanin, T., and Guittard, F. (2014). Wettability of conducting polymers: from superhydrophilicity to superoleophobicity. Progress in Polymer Science, 39(4), 656-682.
del Pozo, M., Marchini, F., Cantoni, L., and Calvo, E. J. (2019). Direct measurement of lithium ion fluxes with a rotating ring disc electrode in potentiometric mode. Electrochimica Acta, 296, 901-906.
Elschner, A., Kirchmeyer, S., Lovenich, W., Merker, U., and Reuter, K. (2010). PEDOT: principles and applications of an intrinsically conductive polymer: CRC Press.
Fabretto, M., Zuber, K., Hall, C., Murphy, P., and Griesser, H. J. (2009). The role of water in the synthesis and performance of vapour phase polymerised PEDOT electrochromic devices. Journal of Materials Chemistry, 19(42), 7871-7878.
Fibbioli, M., Morf, W. E., Badertscher, M., de Rooij, N. F., and Pretsch, E. (2000). Potential drifts of solid‐contacted ion‐selective electrodes due to zero‐current ion fluxes through the sensor membrane. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 12(16), 1286-1292.
Filotás, D., Fernández-Pérez, B., Kiss, A., Nagy, L., Nagy, G., and Souto, R. (2018). Double barrel microelectrode assembly to prevent electrical field effects in potentiometric SECM imaging of galvanic corrosion processes. Journal of the Electrochemical Society, 165(5), 270-277.
Gyetvai, G., Nagy, L., Ivaska, A., Hernadi, I., and Nagy, G. (2009). Solid contact micropipette ion selective electrode II: potassium electrode for SECM and in vivo applications. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21(17‐18), 1970-1976.
Gyetvai, G., Sundblom, S., Nagy, L., Ivaska, A., and Nagy, G. (2007). Solid contact micropipette ion selective electrode for potentiometric SECM. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 19(10), 1116-1122.
He, N., and Lindfors, T. (2012). Determination of water uptake of polymeric ion-selective membranes with the coulometric Karl Fischer and FT-IR-attenuated total reflection techniques. Analytical Chemistry, 85(2), 1006-1012.
Hu, J., Stein, A., and Bühlmann, P. (2016). Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends in Analytical Chemistry, 76, 102-114.
Huang, X.-r., Ren, Q.-q., Yuan, X.-j., Wen, W., Chen, W., and Zhan, D.-p. (2014). Iridium oxide based coaxial pH ultramicroelectrode. Electrochemistry Communications, 40, 35-37.
Izquierdo, J., Nagy, L., Varga, Á., Bitter, I., Nagy, G., and Souto, R. M. (2012). Scanning electrochemical microscopy for the investigation of corrosion processes: measurement of Zn2+ spatial distribution with ion selective microelectrodes. Electrochimica Acta, 59, 398-403.
Keggin, J., and Miles, F. (1936). Structures and formulae of the Prussian blues and related compounds. Nature, 137(3466), 577-578.
Laipan, M., Xiang, L., Yu, J., Martin, B. R., Zhu, R., Zhu, J., Sun, L. (2020).
Layered intercalation compounds: Mechanisms, new methodologies, and advanced applications. Progress in Materials Science, 109, 100631.
Li, M., Lu, J., Chen, Z., and Amine, K. (2018). 30 years of lithium‐ion batteries. Advanced Materials, 30(33), 1800561.
Lin, J. W. P., and Dudek, L. P. (1980). Synthesis and properties of poly (2, 5‐thienylene). Journal of Polymer Science: Polymer Chemistry Edition, 18(9), 2869-2873.
Lin, T.-E., Rapino, S., Girault, H. H., and Lesch, A. (2018). Electrochemical imaging of cells and tissues. Chemical Science, 9(20), 4546-4554.
Lindner, E., Gyurcsányi, R. E., and Buck, R. P. (1999). Tailored transport through ion‐selective membranes for improved detection limits and selectivity coefficients. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 11(10‐11), 695-702.
Michalska, A., Dumańska, J., and Maksymiuk, K. (2003). Lowering the detection limit of ion-selective plastic membrane electrodes with conducting polymer solid contact and conducting polymer potentiometric sensors. Analytical Chemistry, 75(19), 4964-4974.
Michalska, A., Konopka, A., and Maj-Zurawska, M. (2003). All-solid-state calcium solvent polymeric membrane electrode for low-level concentration measurements. Analytical Chemistry, 75(1), 141-144.
Mohammadi, A., Hasan, M.-A., Liedberg, B., Lundström, I., and Salaneck, W. (1986). Chemical vapour deposition (CVD) of conducting polymers: Polypyrrole. Synthetic Metals, 14(3), 189-197.
Morf, W. E. (2012). The principles of ion-selective electrodes and of membrane transport. Elsevier.
Nikolskii, B. P. (1937) Theory of the glass electrode. I. Theoretical. The Journal of Physical Chemistry (U.S.S.R.), 10, 495-503.
Paradee, N., and Sirivat, A. (2014). Synthesis of poly (3, 4‐ethylenedioxythiophene) nanoparticles via chemical oxidation polymerization. Polymer International, 63(1), 106-113.
Rajan, K. P., and Neff, V. D. (1982). Electrochromism in the mixed-valence hexacyanides. 2. Kinetics of the reduction of ruthenium purple and Prussian blue. The Journal of Physical Chemistry, 86(22), 4361-4368.
Randriamahazaka, H., Noel, V., and Chevrot, C. (1999). Nucleation and growth of poly (3, 4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions. Journal of Electroanalytical Chemistry, 472(2), 103-111.
Shpigel, N., Levi, M. D., and Aurbach, D. (2019). EQCM-D technique for complex mechanical characterization of energy storage electrodes: Background and practical guide. Energy Storage Materials. 21, 399-413
Sundfors, F., Lindfors, T., Hofler, L., Bereczki, R., and Gyurcsányi, R. b. E. (2009). FTIR-ATR study of water uptake and diffusion through ion-selective membranes based on poly (acrylates) and silicone rubber. Analytical Chemistry, 81(14), 5925-5934.
Sutter, J., Lindner, E., Gyurcsányi, R. E., and Pretsch, E. (2004). A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit. Analytical and Bioanalytical Chemistry, 380(1), 7-14.
Takahashi, Y., Kumatani, A., Munakata, H., Inomata, H., Ito, K., Ino, K., Kanamura, K. (2014). Nanoscale visualization of redox activity at lithium-ion battery cathodes. Nature Communications, 5(1), 1-7.
Tang, Y., Li, W., Feng, P., Zhou, M., Wang, K., and Jiang, K. (2020). Investigation of Alkali-Ion (Li, Na and K) Intercalation in Manganese Hexacyanoferrate KxMnFe(CN)6 as Cathode Material. Chemical Engineering Journal, 125269.
Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., and Amemiya, S. (2000). Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report). Pure and Applied Chemistry, 72(10), 1851-2082.
Umezawa, Y., Umezawa K., and Sato H. (1995). Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA,Bpot values (Technical Report). Pure and Applied Chemistry, 67(3), 507-518
Vázquez, M., Bobacka, J., Ivaska, A., and Lewenstam, A. (2002). Influence of oxygen and carbon dioxide on the electrochemical stability of poly (3, 4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 82(1), 7-13.
Veder, J.-P., De Marco, R., Clarke, G., Chester, R., Nelson, A., Prince, K., Bakker, E. (2008). Elimination of undesirable water layers in solid-contact polymeric ion-selective electrodes. Analytical Chemistry, 80(17), 6731-6740.
Veder, J.-P., De Marco, R., Patel, K., Si, P., Grygolowicz-Pawlak, E., James, M., Pretsch, E. (2013). Evidence for a surface confined ion-to-electron transduction reaction in solid-contact ion-selective electrodes based on poly (3-octylthiophene). Analytical Chemistry, 85(21), 10495-10502.
Winther-Jensen, B., and West, K. (2004). Vapor-phase polymerization of 3, 4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules, 37(12), 4538-4543.
Yamada, H., Haraguchi, D., and Yasunaga, K. (2014). Fabrication and characterization of a K+-selective nanoelectrode and simultaneous imaging of topography and local K+ flux using scanning electrochemical microscopy. Analytical Chemistry, 86(17), 8547-8552.
Zou, X. U., Cheong, J. H., Taitt, B. J., and Bühlmann, P. (2013). Solid contact ion-selective electrodes with a well-controlled Co (II)/Co (III) redox buffer layer. Analytical Chemistry, 85(19), 9350-9355.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8301-
dc.description.abstract離子選擇微電極常與掃描式電化學顯微術合併使用,進行特定離子訊號的變化以及其於空間中分布的偵測。傳統的離子選擇微電極是採用玻璃製的micropipette來製作。玻璃製的micropipette相對較為脆弱並且需要特殊製程來製作。本研究藉由直接修飾微電極表面來製作固態接觸式鉀離子選擇微電極,並驗證其對於鉀離子通量監測的應用性。首先,本研究針對微電極表面的聚 (3,4-乙烯二氧噻吩) (PEDOT) 薄膜的修飾與調控進行探討,作為固態接觸式離子選擇微電極的基礎。本研究在白金微電極 (直徑10 µm) 上電鍍摻雜了過氯酸根離子的PEDOT薄膜,作為離子與電子訊號之間的轉換層。接著,對鉀離子具有選擇性響應薄膜被浸鍍到其上,作為擷取離子訊號的一層。此固態接觸式離子選擇微電極展現出近乎理論值 (59.1 mV/dec) 的靈敏度 (59.45 mV/dec) 並擁有10-5 M的偵測濃度下限。相對地,沒有PEDOT薄膜的鉀離子選擇微電極在只達到約70%的理論靈敏度 (41.39 mV/dec) 並只有10-4 M的偵測濃度下限。另外,本研究所製作的固態接觸式鉀離子選擇微電極的響應時間約為0.5秒,並且可以成功偵測到普魯士藍薄膜表面在多階段計時電流法以及循環伏安法下進行氧化還原反應時鉀離子吞吐的訊號。可見本研究所提出的固態接觸式離子選擇微電極將可實際作為掃描式電化學顯微術的探針使用,用以監測材料表面離子通量的訊號,也可以整合電化學石英微量天秤作為探討電化學材料表面離子進出機制的基本技術。zh_TW
dc.description.abstractIon-selective microelectrodes (ISMEs) are usually utilized to detect the variation and the spatial distribution of specific ions in corporation with the scanning electrochemical microscopy (SECM). Conventional ISMEs are made with glass micropipette. The glass micropipette is relatively fragile and some special fabrication procedures are needed. In this work, the solid-contact K+ ISMEs were made by directly modifying the microelectrode surface, and its application on the monitoring K+ flux by the them was verified. First, the modification and tuning of PEDOT thin film on the microelectrode was investigated, which is the basis of solid-contact K+ ISMEs. Next, the perchloride-doped poly(3,4-ethylenedioxythiophene) (PEDOT:ClO4) was electrodeposited on the platinum microelectrode (diameter = 10 µm) as the convertor for ion and electric signal. Next, a membrane with a selective response for K+ was dip-coated as a layer capturing the ion signal. The solid-contact ISME showed a sensitivity of 59.45 mV/dec, which was close to the theoretical value of 59.1 mV/dec, and had a detection limit of 10-5 M. However, the K+ ISMEs without PEDOT thin film showed a sensitivity of only 70% of the theoretical value (41.39 mV/dec) and had a detection limit of 10-4 M. The solid-contact K+ ISMEs has a response time of 0.5 seconds and successfully detected the surface K+ when a Prussian blue thin film conducts redox reaction under chronoamperometry and cyclic voltammetry operations. Thus, the solid-contact K+ ISMEs in this work can be utilized as the probe for SECM to monitor the ion flux on the material surface, or integrated with electrochemical quartz microbalance as the basic technique for investigation of ion flux.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:51:39Z (GMT). No. of bitstreams: 1
U0001-0708202012064100.pdf: 13172397 bytes, checksum: 402cebdd57d542e186b4a81758e12714 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 v
表目錄 x
符號說明 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 5
1.4 研究架構 6
第二章 文獻探討 7
2.1 掃描式電化學顯微術的簡介 8
2.2 離子進出的監測技術的近年發展 9
2.3 離子選擇微電極的近年發展 11
2.3.1 離子選擇微電極的應用 12
2.3.2 鉀離子選擇微電極 14
2.4 聚 (3,4-乙烯二氧噻吩) 的結構與簡介 15
2.4.1 PEDOT的製程 16
2.4.2 PEDOT的優勢 18
2.5 固態接觸式離子選擇電極 19
2.5.1 離子選擇電極的發展 19
2.5.2 離子選擇電極的感測原理 21
2.5.3 離子電子傳導層的機制 23
2.5.4 離子選擇薄膜的構成 25
2.6 離子選擇電極的感測性能、優化策略與評價方法 26
2.6.1 電位再現性 27
2.6.2 電位穩定性 28
2.6.3 偵測極限 33
2.7 普魯士藍的氧化還原特性 34
第三章 材料與實驗方法 36
3.1 設備與材料 36
3.1.1 實驗設備 36
3.1.2 實驗材料 37
3.2 實驗儀器架設 38
3.2.1 電極夾具之設計 38
3.2.2 電極高度定位 40
3.2.3 電化學反應槽架設 41
3.3 離子選擇微電極製備 42
3.3.1 在白金微電極上進行PEDOT之電鍍 44
3.3.2 PEDOT傳導層的預處理以及鉀離子選擇薄膜的浸鍍與調整 45
3.4 電極修飾的確認 46
3.4.1 PEDOT 46
3.4.2 ISM 46
3.5 鉀離子選擇微電極性能測試 47
3.5.1 校正曲線 47
3.5.2 電位穩定性 48
3.5.3 電位飄移與電位躍遷 48
3.5.4 選擇性 49
3.5.5 響應時間之量測與估計 50
3.6 應用固態接觸式離子選擇微電極於掃描式電化學顯微術之實驗 51
3.6.1 普魯士藍表面鉀離子通量之初步監測實驗 51
3.6.2 普魯士藍表面鉀離子在循環伏安法下之離子通量監測實驗 54
第四章 結果與討論 55
4.1 微電極狀態與基本行為之檢測 55
4.1.1 微電極循環伏安法測試 55
4.1.2 微電極approach curve測試 56
4.2 調控PEDOT電鍍製程以控制電鍍面積與電鍍電量 58
4.2.1 PEDOT初步電鍍嘗試 58
4.2.2 微電極上PEDOT薄膜之調控以及離子選擇微電極製備成果 64
4.2.3 離子選擇微電極之製備流程小結 75
4.3 離子選擇微電極的量測性能之測試與比較 78
4.3.1 有無離子電子傳導層的離子選擇微電極的檢量線之比較 78
4.3.2 有無離子電子傳導層的離子選擇微電極的電位穩定性比較 80
4.3.3 離子選擇微電極之選擇性測量與比較 84
4.3.4 micropipette 與固態接觸式離子選擇微電極感測性能比較 85
4.3.5 固態接觸式離子選擇微電極之響應時間測量 87
4.4 普魯士藍之鉀離子通量即時監測實驗 88
4.4.1 待掃描基材之普魯士藍製備與測試 88
4.4.2 普魯士藍表面鉀離子通量之初步監測實驗的訊號確認 90
4.4.3 普魯士藍表面鉀離子通量之初步監測實驗的訊號量化分析 94
4.4.4 循環伏安法下普魯士藍表面鉀離子通量之即時監測實驗 104
第五章
5.1
結論與建議 109
結論 109
建議 110
5.2
參考文獻 111
附錄 115
附錄一 離子選擇微電極對量測系統振動的抵抗能力 115
附錄二 定電流模式下的離子選擇微電極量測 117
附錄三 裸微電極以普魯士藍為基材的高度定位嘗試 119
dc.language.isozh-TW
dc.title基於聚乙烯二氧噻吩固態接觸式鉀離子選擇微電極之製備zh_TW
dc.titleOn the Fabrication of a PEDOT-based Solid-contact Potassium Ion-Selective Microelectrodeen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor林正嵐(Cheng-Lan Lin)
dc.contributor.oralexamcommittee何國川(Kuo-Chuan Ho),陳力騏(Li-Ci Chen)
dc.subject.keyword掃描式電化學顯微術,離子選擇微電極,聚 (3,4-乙烯二氧噻吩),普普士藍,離子通量,zh_TW
dc.subject.keywordscanning electrochemical microscopy (SECM),ion-selective microelectrode (ISME),poly(3,4-ethylenedioxythiophene) (PEDOT),Prussian Blue,ion flux,en
dc.relation.page120
dc.identifier.doi10.6342/NTU202002614
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
dc.date.embargo-lift2025-07-31-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-0708202012064100.pdf
  此日期後於網路公開 2025-07-31
12.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved