請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82900完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳瑞華(Ruey-Hwa Chen) | |
| dc.contributor.author | Shu-Jou Chan | en |
| dc.contributor.author | 詹書柔 | zh_TW |
| dc.date.accessioned | 2022-11-25T08:02:08Z | - |
| dc.date.copyright | 2021-11-15 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-01 | |
| dc.identifier.citation | 1. Hanahan, D.; Weinberg, Robert A., Hallmarks of Cancer: The Next Generation. Cell 2011, 144 (5), 646-674. 2. Kamińska, K.; Szczylik, C.; Bielecka, Z. F.; Bartnik, E.; Porta, C.; Lian, F.; Czarnecka, A. M., The role of the cell-cell interactions in cancer progression. Journal of cellular and molecular medicine 2015, 19 (2), 283-96. 3. Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A., Autocrine growth factors and solid tumor malignancy. West J Med 1991, 155 (2), 152-163. 4. Liberti, M. V.; Locasale, J. W., The Warburg Effect: How Does it Benefit Cancer Cells? Trends in Biochemical Sciences 2016, 41 (3), 211-218. 5. Lee, E. Y. H. P.; Muller, W. J., Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol 2010, 2 (10), a003236-a003236. 6. Yao, Y.; Dai, W., Genomic Instability and Cancer. J Carcinog Mutagen 2014, 5, 1000165. 7. Yu, J.; Zhang, L., PUMA, a potent killer with or without p53. Oncogene 2008, 27 Suppl 1 (Suppl 1), S71-S83. 8. Junttila, M. R.; Evan, G. I., p53--a Jack of all trades but master of none. Nature reviews. Cancer 2009, 9 (11), 821-9. 9. Lowe, S. W.; Cepero, E.; Evan, G., Intrinsic tumour suppression. Nature 2004, 432 (7015), 307-15. 10. Galluzzi, L.; Kroemer, G., Necroptosis: a specialized pathway of programmed necrosis. Cell 2008, 135 (7), 1161-3. 11. Karnoub, A. E.; Weinberg, R. A., Chemokine networks and breast cancer metastasis. Breast disease 2006, 26, 75-85. 12. Grivennikov, S. I.; Greten, F. R.; Karin, M., Immunity, inflammation, and cancer. Cell 2010, 140 (6), 883-99. 13. Blasco, M. A., Telomeres and human disease: ageing, cancer and beyond. Nature reviews. Genetics 2005, 6 (8), 611-22. 14. Mougiakakos, D.; Choudhury, A.; Lladser, A.; Kiessling, R.; Johansson, C. C., Regulatory T cells in cancer. Advances in cancer research 2010, 107, 57-117. 15. Ostrand-Rosenberg, S.; Sinha, P., Myeloid-derived suppressor cells: linking inflammation and cancer. Journal of immunology (Baltimore, Md. : 1950) 2009, 182 (8), 4499-506. 16. Ferrara, N., Vascular endothelial growth factor. Arteriosclerosis, thrombosis, and vascular biology 2009, 29 (6), 789-91. 17. Shchors, K.; Shchors, E.; Rostker, F.; Lawlor, E. R.; Brown-Swigart, L.; Evan, G. I., The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes development 2006, 20 (18), 2527-2538. 18. Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M., Angiogenesis in cancer. Vasc Health Risk Manag 2006, 2 (3), 213-219. 19. Vander Heiden, M. G.; Cantley, L. C.; Thompson, C. B., Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324 (5930), 1029-33. 20. Gatenby, R. A.; Gillies, R. J., Why do cancers have high aerobic glycolysis? Nature Reviews Cancer 2004, 4 (11), 891-899. 21. Cairns, R. A.; Harris, I. S.; Mak, T. W., Regulation of cancer cell metabolism. Nature reviews. Cancer 2011, 11 (2), 85-95. 22. Hsu, P. P.; Sabatini, D. M., Cancer cell metabolism: Warburg and beyond. Cell 2008, 134 (5), 703-7. 23. DeBerardinis, R. J.; Lum, J. J.; Hatzivassiliou, G.; Thompson, C. B., The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell metabolism 2008, 7 (1), 11-20. 24. Iyer, N. V.; Kotch, L. E.; Agani, F.; Leung, S. W.; Laughner, E.; Wenger, R. H.; Gassmann, M.; Gearhart, J. D.; Lawler, A. M.; Yu, A. Y.; Semenza, G. L., Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes development 1998, 12 (2), 149-62. 25. Kim, J. W.; Gao, P.; Liu, Y. C.; Semenza, G. L.; Dang, C. V., Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Molecular and cellular biology 2007, 27 (21), 7381-93. 26. Zhang, C.; Liu, J.; Liang, Y.; Wu, R.; Zhao, Y.; Hong, X.; Lin, M.; Yu, H.; Liu, L.; Levine, A. J.; Hu, W.; Feng, Z., Tumour-associated mutant p53 drives the Warburg effect. Nature communications 2013, 4, 2935. 27. Eriksson, M.; Ambroise, G.; Ouchida, A. T.; Lima Queiroz, A.; Smith, D.; Gimenez-Cassina, A.; Iwanicki, M. P.; Muller, P. A.; Norberg, E.; Vakifahmetoglu-Norberg, H., Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism. Molecular and cellular biology 2017, 37 (24). 28. Liotta, L. A., Tumor invasion and metastases--role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer research 1986, 46 (1), 1-7. 29. Thiery, J. P.; Acloque, H.; Huang, R. Y.; Nieto, M. A., Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139 (5), 871-90. 30. Gocheva, V.; Wang, H.-W.; Gadea, B. B.; Shree, T.; Hunter, K. E.; Garfall, A. L.; Berman, T.; Joyce, J. A., IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes development 2010, 24 (3), 241-255. 31. Vidak, E.; Javoršek, U.; Vizovišek, M.; Turk, B., Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019, 8 (3), 264. 32. Zavyalova, M. V.; Denisov, E. V.; Tashireva, L. A.; Savelieva, O. E.; Kaigorodova, E. V.; Krakhmal, N. V.; Perelmuter, V. M., Intravasation as a Key Step in Cancer Metastasis. Biochemistry. Biokhimiia 2019, 84 (7), 762-772. 33. Wyckoff, J. B.; Wang, Y.; Lin, E. Y.; Li, J. F.; Goswami, S.; Stanley, E. R.; Segall, J. E.; Pollard, J. W.; Condeelis, J., Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer research 2007, 67 (6), 2649-56. 34. Micalizzi, D. S.; Maheswaran, S.; Haber, D. A., A conduit to metastasis: circulating tumor cell biology. Genes development 2017, 31 (18), 1827-1840. 35. Guo, W.; Giancotti, F. G., Integrin signalling during tumour progression. Nature reviews. Molecular cell biology 2004, 5 (10), 816-26. 36. Douma, S.; Van Laar, T.; Zevenhoven, J.; Meuwissen, R.; Van Garderen, E.; Peeper, D. S., Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 2004, 430 (7003), 1034-9. 37. Joyce, J. A.; Pollard, J. W., Microenvironmental regulation of metastasis. Nature reviews. Cancer 2009, 9 (4), 239-52. 38. Valastyan, S.; Weinberg, Robert A., Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell 2011, 147 (2), 275-292. 39. Al-Mehdi, A. B.; Tozawa, K.; Fisher, A. B.; Shientag, L.; Lee, A.; Muschel, R. J., Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature medicine 2000, 6 (1), 100-2. 40. Padua, D.; Zhang, X. H.; Wang, Q.; Nadal, C.; Gerald, W. L.; Gomis, R. R.; Massagué, J., TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008, 133 (1), 66-77. 41. Gupta, G. P.; Nguyen, D. X.; Chiang, A. C.; Bos, P. D.; Kim, J. Y.; Nadal, C.; Gomis, R. R.; Manova-Todorova, K.; Massagué, J., Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 2007, 446 (7137), 765-70. 42. Peinado, H.; Zhang, H.; Matei, I. R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R. N.; Bromberg, J. F.; Kang, Y.; Bissell, M. J.; Cox, T. R.; Giaccia, A. J.; Erler, J. T.; Hiratsuka, S.; Ghajar, C. M.; Lyden, D., Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer 2017, 17 (5), 302-317. 43. Oskarsson, T.; Acharyya, S.; Zhang, X. H.; Vanharanta, S.; Tavazoie, S. F.; Morris, P. G.; Downey, R. J.; Manova-Todorova, K.; Brogi, E.; Massagué, J., Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nature medicine 2011, 17 (7), 867-74. 44. Chambers, A. F.; Groom, A. C.; MacDonald, I. C., Dissemination and growth of cancer cells in metastatic sites. Nature reviews. Cancer 2002, 2 (8), 563-72. 45. Tsukazaki, T.; Chiang, T. A.; Davison, A. F.; Attisano, L.; Wrana, J. L., SARA, a FYVE Domain Protein that Recruits Smad2 to the TGFβ Receptor. Cell 1998, 95 (6), 779-791. 46. Li, X.; Feng, X.-H., SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochemical Pharmacology 2020, 180, 114155. 47. Kavsak, P.; Rasmussen, R. K.; Causing, C. G.; Bonni, S.; Zhu, H.; Thomsen, G. H.; Wrana, J. L., Smad7 Binds to Smurf2 to Form an E3 Ubiquitin Ligase that Targets the TGFβ Receptor for Degradation. Molecular Cell 2000, 6 (6), 1365-1375. 48. Ebisawa, T.; Fukuchi, M.; Murakami, G.; Chiba, T.; Tanaka, K.; Imamura, T.; Miyazono, K., Smurf1 Interacts with Transforming Growth Factor-β Type I Receptor through Smad7 and Induces Receptor Degradation*. Journal of Biological Chemistry 2001, 276 (16), 12477-12480. 49. Park, S.; Jung, H. H.; Park, Y. H.; Ahn, J. S.; Im, Y. H., ERK/MAPK pathways play critical roles in EGFR ligands-induced MMP1 expression. Biochemical and biophysical research communications 2011, 407 (4), 680-6. 50. Yu, J. S.; Ramasamy, T. S.; Murphy, N.; Holt, M. K.; Czapiewski, R.; Wei, S. K.; Cui, W., PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nature communications 2015, 6, 7212. 51. Zhang, Y. E., Non-Smad pathways in TGF-β signaling. Cell Research 2009, 19 (1), 128-139. 52. Baghdassarian, N.; Ffrench, M., Cyclin-dependent kinase inhibitors (CKIs) and hematological malignancies. Hematology and cell therapy 1996, 38 (4), 313-23. 53. Feng, X.-H.; Liang, Y.-Y.; Liang, M.; Zhai, W.; Lin, X., Direct Interaction of c-Myc with Smad2 and Smad3 to Inhibit TGF- #x3b2;-Mediated Induction of the CDK Inhibitor p15<sup>Ink4B</sup>. Molecular Cell 2002, 9 (1), 133-143. 54. Seoane, J.; Pouponnot, C.; Staller, P.; Schader, M.; Eilers, M.; Massagué, J., TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biology 2001, 3 (4), 400-408. 55. Gartel, A. L.; Ye, X.; Goufman, E.; Shianov, P.; Hay, N.; Najmabadi, F.; Tyner, A. L., Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proceedings of the National Academy of Sciences of the United States of America 2001, 98 (8), 4510-4515. 56. Jang, C. W.; Chen, C. H.; Chen, C. C.; Chen, J. Y.; Su, Y. H.; Chen, R. H., TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 2002, 4 (1), 51-8. 57. Ozaki, I.; Hamajima, H.; Matsuhashi, S.; Mizuta, T., Regulation of TGF-β1-Induced Pro-Apoptotic Signaling by Growth Factor Receptors and Extracellular Matrix Receptor Integrins in the Liver. Frontiers in physiology 2011, 2, 78. 58. Heldin, C.-H.; Vanlandewijck, M.; Moustakas, A., Regulation of EMT by TGFβ in cancer. FEBS Letters 2012, 586 (14), 1959-1970. 59. Thiery, J. P.; Acloque, H.; Huang, R. Y. J.; Nieto, M. A., Epithelial-Mesenchymal Transitions in Development and Disease. Cell 2009, 139 (5), 871-890. 60. Yu, J.; Lei, R.; Zhuang, X.; Li, X.; Li, G.; Lev, S.; Segura, M. F.; Zhang, X.; Hu, G., MicroRNA-182 targets SMAD7 to potentiate TGFβ-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nature communications 2016, 7, 13884. 61. Fu, S.; Zhang, N.; Yopp, A. C.; Chen, D.; Mao, M.; Chen, D.; Zhang, H.; Ding, Y.; Bromberg, J. S., TGF-β Induces Foxp3 + T-Regulatory Cells from CD4 + CD25 − Precursors. American Journal of Transplantation 2004, 4 (10), 1614-1627. 62. Das, L.; Levine, A. D., TGF-β Inhibits IL-2 Production and Promotes Cell Cycle Arrest in TCR-Activated Effector/Memory T Cells in the Presence of Sustained TCR Signal Transduction. The Journal of Immunology 2008, 180 (3), 1490. 63. Li, W.; Wei, Z.; Liu, Y.; Li, H.; Ren, R.; Tang, Y., Increased 18F-FDG uptake and expression of Glut1 in the EMT transformed breast cancer cells induced by TGF-beta. Neoplasma 2010, 57 (3), 234-40. 64. Rodríguez-García, A.; Samsó, P.; Fontova, P.; Simon-Molas, H.; Manzano, A.; Castaño, E.; Rosa, J. L.; Martinez-Outshoorn, U.; Ventura, F.; Navarro-Sabaté, À.; Bartrons, R., TGF-β1 targets Smad, p38 MAPK, and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells. The FEBS journal 2017, 284 (20), 3437-3454. 65. Ma, L. N.; Huang, X. B.; Muyayalo, K. P.; Mor, G.; Liao, A. H., Lactic Acid: A Novel Signaling Molecule in Early Pregnancy? Frontiers in immunology 2020, 11, 279. 66. Conacci-Sorrell, M.; McFerrin, L.; Eisenman, R. N., An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014, 4 (1), a014357-a014357. 67. Dang, C. V., MYC on the path to cancer. Cell 2012, 149 (1), 22-35. 68. Stine, Z. E.; Walton, Z. E.; Altman, B. J.; Hsieh, A. L.; Dang, C. V., MYC, Metabolism, and Cancer. Cancer discovery 2015, 5 (10), 1024-39. 69. García-Gutiérrez, L.; Bretones, G.; Molina, E.; Arechaga, I.; Symonds, C.; Acosta, J. C.; Blanco, R.; Fernández, A.; Alonso, L.; Sicinski, P.; Barbacid, M.; Santamaría, D.; León, J., Myc stimulates cell cycle progression through the activation of Cdk1 and phosphorylation of p27. Scientific Reports 2019, 9 (1), 18693. 70. Arvanitis, C.; Felsher, D. W., Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Seminars in Cancer Biology 2006, 16 (4), 313-317. 71. Dalla-Favera, R.; Bregni, M.; Erikson, J.; Patterson, D.; Gallo, R. C.; Croce, C. M., Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America 1982, 79 (24), 7824-7. 72. Spencer, C. A.; Groudine, M., Control of c-myc regulation in normal and neoplastic cells. Advances in cancer research 1991, 56, 1-48. 73. Zindy, F.; Eischen, C. M.; Randle, D. H.; Kamijo, T.; Cleveland, J. L.; Sherr, C. J.; Roussel, M. F., Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes development 1998, 12 (15), 2424-33. 74. Eischen Christine, M.; Roussel Martine, F.; Korsmeyer Stanley, J.; Cleveland John, L., Bax Loss Impairs Myc-Induced Apoptosis and Circumvents the Selection of p53 Mutations during Myc-Mediated Lymphomagenesis. Molecular and cellular biology 2001, 21 (22), 7653-7662. 75. Eischen, C. M.; Weber, J. D.; Roussel, M. F.; Sherr, C. J.; Cleveland, J. L., Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes development 1999, 13 (20), 2658-69. 76. Beer, S.; Zetterberg, A.; Ihrie, R. A.; McTaggart, R. A.; Yang, Q.; Bradon, N.; Arvanitis, C.; Attardi, L. D.; Feng, S.; Ruebner, B.; Cardiff, R. D.; Felsher, D. W., Developmental context determines latency of MYC-induced tumorigenesis. PLoS biology 2004, 2 (11), e332. 77. Zhang, H.; Gao, P.; Fukuda, R.; Kumar, G.; Krishnamachary, B.; Zeller, K. I.; Dang, C. V.; Semenza, G. L., HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer cell 2007, 11 (5), 407-20. 78. Ma, L.; Young, J.; Prabhala, H.; Pan, E.; Mestdagh, P.; Muth, D.; Teruya-Feldstein, J.; Reinhardt, F.; Onder, T. T.; Valastyan, S.; Westermann, F.; Speleman, F.; Vandesompele, J.; Weinberg, R. A., miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010, 12 (3), 247-56. 79. DeBerardinis, R. J.; Cheng, T., Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010, 29 (3), 313-24. 80. Hu, S.; Balakrishnan, A.; Bok, Robert A.; Anderton, B.; Larson, Peder E. Z.; Nelson, Sarah J.; Kurhanewicz, J.; Vigneron, Daniel B.; Goga, A., 13C-Pyruvate Imaging Reveals Alterations in Glycolysis that Precede c-Myc-Induced Tumor Formation and Regression. Cell metabolism 2011, 14 (1), 131-142. 81. Shim, H.; Chun, Y. S.; Lewis, B. C.; Dang, C. V., A unique glucose-dependent apoptotic pathway induced by c-Myc. Proceedings of the National Academy of Sciences of the United States of America 1998, 95 (4), 1511-6. 82. Osthus, R. C.; Shim, H.; Kim, S.; Li, Q.; Reddy, R.; Mukherjee, M.; Xu, Y.; Wonsey, D.; Lee, L. A.; Dang, C. V., Deregulation of Glucose Transporter 1 and Glycolytic Gene Expression by c-Myc*. Journal of Biological Chemistry 2000, 275 (29), 21797-21800. 83. Li, Y.; Sun, X.-X.; Qian, D. Z.; Dai, M.-S., Molecular Crosstalk Between MYC and HIF in Cancer. Frontiers in Cell and Developmental Biology 2020, 8 (1319). 84. Wang, W.; Bai, L.; Li, W.; Cui, J., The Lipid Metabolic Landscape of Cancers and New Therapeutic Perspectives. Frontiers in oncology 2020, 10, 605154-605154. 85. Edmunds, L. R.; Sharma, L.; Kang, A.; Lu, J.; Vockley, J.; Basu, S.; Uppala, R.; Goetzman, E. S.; Beck, M. E.; Scott, D.; Prochownik, E. V., c-Myc Programs Fatty Acid Metabolism and Dictates Acetyl-CoA Abundance and Fate*. Journal of Biological Chemistry 2014, 289 (36), 25382-25392. 86. Morrish, F.; Noonan, J.; Perez-Olsen, C.; Gafken, P. R.; Fitzgibbon, M.; Kelleher, J.; VanGilst, M.; Hockenbery, D., Myc-dependent Mitochondrial Generation of Acetyl-CoA Contributes to Fatty Acid Biosynthesis and Histone Acetylation during Cell Cycle Entry*. Journal of Biological Chemistry 2010, 285 (47), 36267-36274. 87. Patra, Krushna C.; Wang, Q.; Bhaskar, Prashanth T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, William J.; Allen, Eric L.; Jha, Abhishek K.; Smolen, Gromoslaw A.; Clasquin, Michelle F.; Robey, R. B.; Hay, N., Hexokinase 2 Is Required for Tumor Initiation and Maintenance and Its Systemic Deletion Is Therapeutic in Mouse Models of Cancer. Cancer cell 2013, 24 (2), 213-228. 88. Wang, Z.-Y.; Loo, T. Y.; Shen, J.-G.; Wang, N.; Wang, D.-M.; Yang, D.-P.; Mo, S.-L.; Guan, X.-Y.; Chen, J.-P., LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Research and Treatment 2012, 131 (3), 791-800. 89. Fantin, V. R.; St-Pierre, J.; Leder, P., Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer cell 2006, 9 (6), 425-34. 90. Seth, P.; Grant, A.; Tang, J.; Vinogradov, E.; Wang, X.; Lenkinski, R.; Sukhatme, V. P., On-target inhibition of tumor fermentative glycolysis as visualized by hyperpolarized pyruvate. Neoplasia 2011, 13 (1), 60-71. 91. Li, S.; Topatana, W.; Juengpanich, S.; Cao, J.; Hu, J.; Zhang, B.; Ma, D.; Cai, X.; Chen, M., Development of synthetic lethality in cancer: molecular and cellular classification. Signal Transduction and Targeted Therapy 2020, 5 (1), 241. 92. Wilde, B. R.; Ayer, D. E., Interactions between Myc and MondoA transcription factors in metabolism and tumourigenesis. Br J Cancer 2015, 113 (11), 1529-1533. 93. Carroll, P. A.; Diolaiti, D.; McFerrin, L.; Gu, H.; Djukovic, D.; Du, J.; Cheng, P. F.; Anderson, S.; Ulrich, M.; Hurley, J. B.; Raftery, D.; Ayer, D. E.; Eisenman, R. N., Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer cell 2015, 27 (2), 271-85. 94. Berretta, J.; Morillon, A., Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO reports 2009, 10 (9), 973-82. 95. Wang, K. C.; Chang, H. Y., Molecular mechanisms of long noncoding RNAs. Molecular cell 2011, 43 (6), 904-914. 96. Li, X.; Wu, Z.; Fu, X.; Han, W., lncRNAs: Insights into their function and mechanics in underlying disorders. Mutation Research/Reviews in Mutation Research 2014, 762, 1-21. 97. Xing, Y.-H.; Yao, R.-W.; Zhang, Y.; Guo, C.-J.; Jiang, S.; Xu, G.; Dong, R.; Yang, L.; Chen, L.-L., SLERT Regulates DDX21 Rings Associated with Pol I Transcription. Cell 2017, 169 (4), 664-678.e16. 98. Cooper, D. R.; Carter, G.; Li, P.; Patel, R.; Watson, J. E.; Patel, N. A., Long Non-Coding RNA NEAT1 Associates with SRp40 to Temporally Regulate PPARγ2 Splicing during Adipogenesis in 3T3-L1 Cells. Genes 2014, 5 (4), 1050-63. 99. Yoon, J.-H.; Abdelmohsen, K.; Srikantan, S.; Yang, X.; Martindale, Jennifer L.; De, S.; Huarte, M.; Zhan, M.; Becker, Kevin G.; Gorospe, M., LincRNA-p21 Suppresses Target mRNA Translation. Molecular Cell 2012, 47 (4), 648-655. 100. Yan, Y.; Shi, Q.; Yuan, X.; Xue, C.; Shen, S.; He, Y., DANCR: an emerging therapeutic target for cancer. American journal of translational research 2020, 12 (7), 4031-4042. 101. Schmitt, A. M.; Chang, H. Y., Long Noncoding RNAs in Cancer Pathways. Cancer cell 2016, 29 (4), 452-463. 102. Xiao, C.; Wu, C. H.; Hu, H. Z., LncRNA UCA1 promotes epithelial-mesenchymal transition (EMT) of breast cancer cells via enhancing Wnt/beta-catenin signaling pathway. European review for medical and pharmacological sciences 2016, 20 (13), 2819-24. 103. Pawłowska, E.; Szczepanska, J.; Blasiak, J., The Long Noncoding RNA HOTAIR in Breast Cancer: Does Autophagy Play a Role? Int J Mol Sci 2017, 18 (11), 2317. 104. Ding, W.; Ren, J.; Ren, H.; Wang, D., Long Noncoding RNA HOTAIR Modulates MiR-206-mediated Bcl-w Signaling to Facilitate Cell Proliferation in Breast Cancer. Scientific Reports 2017, 7 (1), 17261. 105. Wu, Y.; Zhang, L.; Zhang, L.; Wang, Y.; Li, H.; Ren, X.; Wei, F.; Yu, W.; Liu, T.; Wang, X.; Zhou, X.; Yu, J.; Hao, X., Long non-coding RNA HOTAIR promotes tumor cell invasion and metastasis by recruiting EZH2 and repressing E-cadherin in oral squamous cell carcinoma. International journal of oncology 2015, 46 (6), 2586-94. 106. Yang, T.; He, X.; Chen, A.; Tan, K.; Du, X., LncRNA HOTAIR contributes to the malignancy of hepatocellular carcinoma by enhancing epithelial-mesenchymal transition via sponging miR-23b-3p from ZEB1. Gene 2018, 670, 114-122. 107. Nandwani, A.; Rathore, S.; Datta, M., LncRNAs in cancer: Regulatory and therapeutic implications. Cancer Letters 2021, 501, 162-171. 108. Papoutsoglou, P.; Moustakas, A., Long non-coding RNAs and TGF-β signaling in cancer. Cancer Sci 2020, 111 (8), 2672-2681. 109. Zhang, K.; Han, X.; Zhang, Z.; Zheng, L.; Hu, Z.; Yao, Q.; Cui, H.; Shu, G.; Si, M.; Li, C.; Shi, Z.; Chen, T.; Han, Y.; Chang, Y.; Yao, Z.; Han, T.; Hong, W., The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nature communications 2017, 8 (1), 144. 110. Chen, C.; Li, H.; Wang, X.; Wang, L.; Zeng, Q., Lnc-LFAR1 affects intrahepatic cholangiocarcinoma proliferation, invasion, and EMT by regulating the TGFβ/Smad signaling pathway. International journal of clinical and experimental pathology 2019, 12 (7), 2455-2461. 111. Wang, P.; Luo, M. L.; Song, E.; Zhou, Z.; Ma, T.; Wang, J.; Jia, N.; Wang, G.; Nie, S.; Liu, Y.; Hou, F., Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Science translational medicine 2018, 10 (462). 112. Zhang, J.; Han, C.; Song, K.; Chen, W.; Ungerleider, N.; Yao, L.; Ma, W.; Wu, T., The long-noncoding RNA MALAT1 regulates TGF-β/Smad signaling through formation of a lncRNA-protein complex with Smads, SETD2 and PPM1A in hepatic cells. PLoS One 2020, 15 (1), e0228160-e0228160. 113. Tu, X.; Zhang, Y.; Zheng, X.; Deng, J.; Li, H.; Kang, Z.; Cao, Z.; Huang, Z.; Ding, Z.; Dong, L.; Chen, J.; Zang, Y.; Zhang, J., TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice. Sci Rep 2017, 7 (1), 2957. 114. Papoutsoglou, P.; Tsubakihara, Y.; Caja, L.; Morén, A.; Pallis, P.; Ameur, A.; Heldin, C. H.; Moustakas, A., The TGFB2-AS1 lncRNA Regulates TGF-β Signaling by Modulating Corepressor Activity. Cell reports 2019, 28 (12), 3182-3198.e11. 115. He, P.; Xiong, G.; Guo, W.; Jiang, G.; Li, Y.; Li, H., Long non-coding RNA CCAT2 promotes prostate cancer cell proliferation and invasion by regulating the Wnt/β-catenin signaling pathway. Oncol Lett 2020, 20 (4), 97-97. 116. Prensner, J. R.; Chen, W.; Han, S.; Iyer, M. K.; Cao, Q.; Kothari, V.; Evans, J. R.; Knudsen, K. E.; Paulsen, M. T.; Ljungman, M.; Lawrence, T. S.; Chinnaiyan, A. M.; Feng, F. Y., The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 2014, 16 (11), 900-908. 117. Hung, C.-L.; Wang, L.-Y.; Yu, Y.-L.; Chen, H.-W.; Srivastava, S.; Petrovics, G.; Kung, H.-J., A long noncoding RNA connects c-Myc to tumor metabolism. Proceedings of the National Academy of Sciences of the United States of America 2014, 111 (52), 18697-18702. 118. Doose, G.; Haake, A.; Bernhart, S. H.; López, C.; Duggimpudi, S.; Wojciech, F.; Bergmann, A. K.; Borkhardt, A.; Burkhardt, B.; Claviez, A.; Dimitrova, L.; Haas, S.; Hoell, J. I.; Hummel, M.; Karsch, D.; Klapper, W.; Kleo, K.; Kretzmer, H.; Kreuz, M.; Küppers, R.; Lawerenz, C.; Lenze, D.; Loeffler, M.; Mantovani-Löffler, L.; Möller, P.; Ott, G.; Richter, J.; Rohde, M.; Rosenstiel, P.; Rosenwald, A.; Schilhabel, M.; Schneider, M.; Scholz, I.; Stilgenbauer, S.; Stunnenberg, H. G.; Szczepanowski, M.; Trümper, L.; Weniger, M. A.; Consortium, I. M.-S.; Hoffmann, S.; Siebert, R.; Iaccarino, I., MINCR is a MYC-induced lncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America 2015, 112 (38), E5261-E5270. 119. Kawasaki, Y.; Komiya, M.; Matsumura, K.; Negishi, L.; Suda, S.; Okuno, M.; Yokota, N.; Osada, T.; Nagashima, T.; Hiyoshi, M.; Okada-Hatakeyama, M.; Kitayama, J.; Shirahige, K.; Akiyama, T., MYU, a Target lncRNA for Wnt/c-Myc Signaling, Mediates Induction of CDK6 to Promote Cell Cycle Progression. Cell reports 2016, 16 (10), 2554-2564. 120. Das, M.; Renganathan, A.; Dighe, S. N.; Bhaduri, U.; Shettar, A.; Mukherjee, G.; Kondaiah, P.; Satyanarayana Rao, M. R., DDX5/p68 associated lncRNA LOC284454 is differentially expressed in human cancers and modulates gene expression. RNA biology 2018, 15 (2), 214-230. 121. Fan, C.; Tang, Y.; Wang, J.; Wang, Y.; Xiong, F.; Zhang, S.; Li, X.; Xiang, B.; Wu, X.; Guo, C.; Ma, J.; Zhou, M.; Li, X.; Xiong, W.; Li, Y.; Li, G.; Zeng, Z., Long non-coding RNA LOC284454 promotes migration and invasion of nasopharyngeal carcinoma via modulating the Rho/Rac signaling pathway. Carcinogenesis 2019, 40 (2), 380-391. 122. Liu, H.; Gu, X.; Wang, G.; Huang, Y.; Ju, S.; Huang, J.; Wang, X., Copy number variations primed lncRNAs deregulation contribute to poor prognosis in colorectal cancer. Aging (Albany NY) 2019, 11 (16), 6089-6108. 123. Han, L.; Zhou, W.; Wu, F., Long non‑coding RNA LOC284454 promotes hepatocellular carcinoma cell invasion and migration by inhibiting E‑cadherin expression. Oncology reports 2021, 45 (4). 124. Leung, J. Y.; Ehmann, G. L.; Giangrande, P. H.; Nevins, J. R., A role for Myc in facilitating transcription activation by E2F1. Oncogene 2008, 27 (30), 4172-4179. 125. Wolpaw, A. J.; Dang, C. V., MYC-induced metabolic stress and tumorigenesis. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2018, 1870 (1), 43-50. 126. Dong, Y.; Tu, R.; Liu, H.; Qing, G., Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal Transduction and Targeted Therapy 2020, 5 (1), 124. 127. Singh, A.; Settleman, J., EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010, 29 (34), 4741-4751. 128. Zeng, H. C.; Bae, Y.; Dawson, B. C.; Chen, Y.; Bertin, T.; Munivez, E.; Campeau, P. M.; Tao, J.; Chen, R.; Lee, B. H., MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts. Nature communications 2017, 8, 15000. 129. Chandran, P. A.; Keller, A.; Weinmann, L.; Adel Seida, A.; Braun, M.; Andreev, K.; Fischer, B.; Horn, E.; Schwinn, S.; Junker, M.; Houben, R.; Dombrowski, Y.; Dietl, J.; Finotto, S.; Wölfl, M.; Meister, G.; Wischhusen, J., The TGF-β-inducible miR-23a cluster attenuates IFN-γ levels and antigen-specific cytotoxicity in human CD8+ T cells. Journal of Leukocyte Biology 2014, 96 (4), 633-645. 130. Huang, S.; He, X.; Ding, J.; Liang, L.; Zhao, Y.; Zhang, Z.; Yao, X.; Pan, Z.; Zhang, P.; Li, J.; Wan, D.; Gu, J., Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. International journal of cancer 2008, 123 (4), 972-8. 131. Mertens-Talcott, S. U.; Chintharlapalli, S.; Li, X.; Safe, S., The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer research 2007, 67 (22), 11001-11. 132. Feris, E. J.; Hinds, J. W.; Cole, M. D., Formation of a structurally-stable conformation by the intrinsically disordered MYC:TRRAP complex. PLoS One 2019, 14 (12), e0225784. 133. Bouchard, C.; Dittrich, O.; Kiermaier, A.; Dohmann, K.; Menkel, A.; Eilers, M.; Lüscher, B., Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes development 2001, 15 (16), 2042-2047. 134. Kajino, T.; Shimamura, T.; Gong, S.; Yanagisawa, K.; Ida, L.; Nakatochi, M.; Griesing, S.; Shimada, Y.; Kano, K.; Suzuki, M.; Miyano, S.; Takahashi, T., Divergent lncRNA MYMLR regulates MYC by eliciting DNA looping and promoter-enhancer interaction. The EMBO Journal 2019, 38 (17), e98441. 135. Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W., Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential. Biomarker Research 2018, 6 (1), 10. 136. Kim, K. H.; Roberts, C. W. M., Targeting EZH2 in cancer. Nature medicine 2016, 22 (2), 128-134. 137. Cao, W.; Ribeiro, R. d. O.; Liu, D.; Saintigny, P.; Xia, R.; Xue, Y.; Lin, R.; Mao, L.; Ren, H., EZH2 Promotes Malignant Behaviors via Cell Cycle Dysregulation and Its mRNA Level Associates with Prognosis of Patient with Non-Small Cell Lung Cancer. PLoS One 2013, 7 (12), e52984. 138. Gardner, E. E.; Lok, B. H.; Schneeberger, V. E.; Desmeules, P.; Miles, L. A.; Arnold, P. K.; Ni, A.; Khodos, I.; de Stanchina, E.; Nguyen, T.; Sage, J.; Campbell, J. E.; Ribich, S.; Rekhtman, N.; Dowlati, A.; Massion, P. P.; Rudin, C. M.; Poirier, J. T., Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis. Cancer cell 2017, 31 (2), 286-299. 139. Zimmerli, D.; Brambillasca, C. S.; Talens, F.; Bhin, J.; Bhattacharya, A.; Joosten, S. E. P.; Da Silva, A. M.; Wellenstein, M. D.; Kersten, K.; de Boo, M.; Roorda, M.; Henneman, L.; de Bruijn, R.; Annunziato, S.; van der Burg, E.; Drenth, A. P.; Lutz, C.; van de Ven, M.; Wessels, L.; de Visser, K.; Zwart, W.; Fehrmann, R. S. N.; van Vugt, M. A. T. M.; Jonkers, J., MYC promotes immune-suppression in TNBC via inhibition of IFN signaling. bioRxiv 2021, 2021.02.24.432659. 140. Casey, S. C.; Baylot, V.; Felsher, D. W., The MYC oncogene is a global regulator of the immune response. Blood 2018, 131 (18), 2007-2015. 141. Yang, Q.; Xu, Z.; Zheng, L.; Zhang, L.; You, Q.; Sun, J., Multimodal detection of PD-L1: reasonable biomarkers for immune checkpoint inhibitor. Am J Cancer Res 2018, 8 (9), 1689-1696. 142. Voorwerk, L.; Slagter, M.; Horlings, H. M.; Sikorska, K.; van de Vijver, K. K.; de Maaker, M.; Nederlof, I.; Kluin, R. J. C.; Warren, S.; Ong, S.; Wiersma, T. G.; Russell, N. S.; Lalezari, F.; Schouten, P. C.; Bakker, N. A. M.; Ketelaars, S. L. C.; Peters, D.; Lange, C. A. H.; van Werkhoven, E.; van Tinteren, H.; Mandjes, I. A. M.; Kemper, I.; Onderwater, S.; Chalabi, M.; Wilgenhof, S.; Haanen, J. B. A. G.; Salgado, R.; de Visser, K. E.; Sonke, G. S.; Wessels, L. F. A.; Linn, S. C.; Schumacher, T. N.; Blank, C. U.; Kok, M., Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nature medicine 2019, 25 (6), 920-928. 143. Wang, E.; Sorolla, A.; Cunningham, P. T.; Bogdawa, H. M.; Beck, S.; Golden, E.; Dewhurst, R. E.; Florez, L.; Cruickshank, M. N.; Hoffmann, K.; Hopkins, R. M.; Kim, J.; Woo, A. J.; Watt, P. M.; Blancafort, P., Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene 2019, 38 (1), 140-150. 144. Kwa, M. J.; Adams, S., Checkpoint inhibitors in triple-negative breast cancer (TNBC): Where to go from here. Cancer 2018, 124 (10), 2086-2103. 145. Polk, A.; Svane, I.-M.; Andersson, M.; Nielsen, D., Checkpoint inhibitors in breast cancer – Current status. Cancer Treatment Reviews 2018, 63……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82900 | - |
| dc.description.abstract | 長鏈非編碼RNA在癌症進展中具有至關重要的作用,但其功能機制尚未完全了解。根據我們實驗室先前研究發現Smyca的高度表現與多種癌症的不良預後和較高的病理分期有關,因此認為Smyca是致癌的長鏈非編碼RNA。另外,我們檢測了一群乳癌患者,發現基底樣亞型─三陰性乳癌患者的Smyca表現量顯著較高。由於 Smyca在間質樣乳癌細胞株和三陰性乳癌患者中高度表現,我們進一步探討Smyca是否促進上皮間質轉化(EMT)。我們在過表現Smyca的正常乳腺上皮細胞證實的確會促進EMT。在實驗室先前的RNAseq以及GSEA分析中發現Smyca所調控的基因特徵與TGF-β所調控的基因特徵具有高度相關。如同分析結果,我們證明了Smyca會促進TGF-β誘導的基因表現並且與TGF-β路徑形成正回饋調控。由於TGF-β訊息傳遞路徑在癌症進展中具有兩種截然不同的影響,我們想知道Smyca是否可活化其他促進腫瘤的路徑來抵銷TGF-β誘導的抑制生長作用。而重要的是,Myc基因特徵也與Smyca調控的基因特徵具高度相關性。我們進一步證實了Smyca不僅可透過增加Myc報告基因的活性,還可透過增加糖解和脂質代謝有關的Myc下游基因的轉錄作用。此外,我們的結果顯示Smyca可促進Myc募集到其目標基因以活化轉錄作用。有趣的是,我們發現Smyca透過促進Myc和TGF-β路徑來相反地調控CDK抑制因子p15/p21表現和腫瘤增殖。此外,我們證實了Smyca透過促進Myc和TGF-β路徑來協同提升糖解作用。最後,我們在動物實驗證實Smyca會促進乳癌轉移,而在無法和Smad結合的Smyca突變細胞株則會顯著抑制此轉移現象。此外,我們證明了Smyca knockdown可有效增強Doxorubicin的抗腫瘤作用,最終幾乎完全抑制腫瘤生長。因此,我們的研究揭示了Smyca透過活化TGF-β和Myc路徑在促進腫瘤進程中的作用,並顯示Smyca有望作為乳癌的標靶基因。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T08:02:08Z (GMT). No. of bitstreams: 1 U0001-3007202115572100.pdf: 6286691 bytes, checksum: e2174df90822dde4b1e20cd00acc585b (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌 謝 ii 中文摘要 iii Abstract iv Contents vi List of Figures ix I. Introduction 1 1. Hallmarks of cancer 1 1.1 Overview 1 1.2 Metabolic reprogramming in cancer cells 3 1.3 Invasion-metastasis cascade 4 2. TGF-β pathway 6 2.1 Mechanism of TGF-β pathway 6 2.2 The role of TGF-β pathway in cancer progression 7 2.2.1 The tumor suppressive effects of TGF-β 7 2.2.2 The tumor promoting effects of TGF-β 8 3. Myc pathway 9 3.1 Myc functions as a transcription factor 9 3.2 Myc regulation in normal and cancer cells 9 3.3 The oncogenic functions of Myc 10 3.3.1 Overview 10 3.3.2 Metabolism 11 3.3.3 Targeting Myc-regulated metabolic pathway in cancer therapy 12 4. Long non-coding RNAs 13 4.1 Characteristics and molecular mechanism 13 4.2 LncRNAs in cancer 14 4.3 LncRNAs in TGF-β pathway 15 4.4 LncRNAs in Myc pathway 16 5. Smyca 17 II. Materials and Methods 19 Cell culture and transfection 19 Plasmids 19 Human specimens 19 Lentiviral transduction 20 Western blot 20 RT-qPCR 20 Luciferase reporter assay 21 Chromatin immunoprecipitation (ChIP) assay 21 RNA interference 22 BrdU cell proliferation assay 22 Measurement of glucose and lactate levels 22 Animal studies 23 Statistical analysis 23 III. Results 24 Smyca high expression correlates with higher malignant subtype of breast cancer. 24 Overexpression of Smyca in M10 cells promotes epithelial-mesenchymal transition. 24 Smyca serves as a positive regulator of TGF-β signaling. 25 Smyca forms a positive feedback loop with TGF-β signaling. 25 Smyca upregulated Myc pathway in transcriptional level. 26 Smyca-induced activation of Myc pathway antagonizes the growth inhibitory effect elicited by its activation of TGF-β pathway. 27 Smyca coordinates TGF-β and Myc pathways to synergize glycolysis. 28 Smyca promotes breast cancer metastasis via its Smad-binding region. 29 Smyca knockdown enhances the anti-tumor effect of Doxorubicin. 30 IV. Discussion 31 V. References 36 VI. Figures 48 VII. Appendix 62 Appendix 1 Primers used in this study 62 Appendix 2 GSEA hallmark analysis for the correlation of Smyca-induced gene signature with the indicated signatures. 64 | |
| dc.language.iso | en | |
| dc.subject | 腫瘤進程 | zh_TW |
| dc.subject | 上皮間質轉化/癌症轉移 | zh_TW |
| dc.subject | TGF-β | zh_TW |
| dc.subject | Myc | zh_TW |
| dc.subject | Smyca | zh_TW |
| dc.subject | 長鏈非編碼RNA | zh_TW |
| dc.subject | 糖解作用 | zh_TW |
| dc.subject | lncRNA | en |
| dc.subject | glycolysis | en |
| dc.subject | Myc | en |
| dc.subject | TGF-β | en |
| dc.subject | EMT/metastasis | en |
| dc.subject | tumor progression | en |
| dc.title | 長鏈非編碼RNA Smyca協同調控TGF-β和Myc路徑以促進腫瘤惡性化 | zh_TW |
| dc.title | The LncRNA Smyca Coordinates TGF-β and Myc Pathways to Promote Tumor Malignancies | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 袁維謙(Hsin-Tsai Liu),李育儒(Chih-Yang Tseng) | |
| dc.subject.keyword | 長鏈非編碼RNA,Smyca,腫瘤進程,上皮間質轉化/癌症轉移,TGF-β,Myc,糖解作用, | zh_TW |
| dc.subject.keyword | lncRNA,tumor progression,EMT/metastasis,TGF-β,Myc,glycolysis, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202101937 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-02 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-01 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3007202115572100.pdf 未授權公開取用 | 6.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
