請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82872
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
dc.contributor.author | Yuan-Cheng Lin | en |
dc.contributor.author | 林園宸 | zh_TW |
dc.date.accessioned | 2022-11-25T08:01:26Z | - |
dc.date.copyright | 2021-08-31 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-08-09 | |
dc.identifier.citation | 1. R. Sartori, V. Romanello, and M. Sandri, 'Mechanisms of muscle atrophy and hypertrophy: implications in health and disease,' Nat Commun, vol. 12, no. 1, pp. 330, 2021. 2. W. J. Evans, and W. W. Campbell, 'Sarcopenia and age-related changes in body composition and functional capacity,' J Nutr, vol. 123, no. 2 Suppl, pp. 465-8, 1993. 3. J. E. Morley, A. M. Abbatecola, J. M. Argiles, V. Baracos, J. Bauer, S. Bhasin, T. Cederholm, A. J. S. Coats, S. R. Cummings, and W. J. Evans, 'Sarcopenia with limited mobility: an international consensus,' Journal of the American Medical Directors Association, vol. 12, no. 6, pp. 403-409, 2011. 4. R. H. Jacomo, T. R. Nascimento, M. Lucena da Siva, M. C. Salata, A. T. Alves, P. R. C. da Cruz, and J. Batista de Sousa, 'Exercise regimens other than pelvic floor muscle training cannot increase pelvic muscle strength-a systematic review,' J Bodyw Mov Ther, vol. 24, no. 4, pp. 568-574, 2020. 5. S. Cohen, J. A. Nathan, and A. L. Goldberg, 'Muscle wasting in disease: molecular mechanisms and promising therapies,' Nat Rev Drug Discov, vol. 14, no. 1, pp. 58-74, 2015. 6. T. M. Crisp, E. D. Clegg, R. L. Cooper, W. P. Wood, D. G. Anderson, K. P. Baetcke, J. L. Hoffmann, M. S. Morrow, D. J. Rodier, J. E. Schaeffer, L. W. Touart, M. G. Zeeman, and Y. M. Patel, 'Environmental endocrine disruption: an effects assessment and analysis,' Environ Health Perspect, vol. 106 Suppl 1, no. Suppl 1, pp. 11-56, 1998. 7. N. Frery, C. Nessmann, F. Girard, J. Lafond, T. Moreau, P. Blot, J. Lellouch, and G. Huel, 'Environmental exposure to cadmium and human birthweight,' Toxicology, vol. 79, no. 2, pp. 109-118, 1993. 8. M. Miao, W. Yuan, G. Zhu, X. He, and D.-K. Li, 'In utero exposure to bisphenol-A and its effect on birth weight of offspring,' Reproductive toxicology, vol. 32, no. 1, pp. 64-68, 2011. 9. K. D. Ehman, P. M. Phillips, K. L. McDaniel, S. Barone, Jr., and V. C. Moser, 'Evaluation of developmental neurotoxicity of organotins via drinking water in rats: dimethyl tin,' Neurotoxicol Teratol, vol. 29, no. 6, pp. 622-33, 2007. 10. T. Luan, J. Jin, S. M. Chan, Y. Wong, and N. F. Tam, 'Biosorption and biodegradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris beads in several treatment cycles,' Process biochemistry, vol. 41, no. 7, pp. 1560-1565, 2006. 11. G. Gadd, 'Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate,' Science of the total environment, vol. 258, no. 1-2, pp. 119-127, 2000. 12. A. Belfroid, M. Purperhart, and F. Ariese, 'Organotin levels in seafood,' Marine Pollution Bulletin, vol. 40, no. 3, pp. 226-232, 2000. 13. M. Ohji, T. Arai, and N. Miyazaki, 'Comparison of organotin accumulation in the masu salmon Oncorhynchus masou accompanying migratory histories,' Estuarine, Coastal and Shelf Science, vol. 72, no. 4, pp. 721-731, 2007. 14. I. Davies, and J. McKie, 'Accumulation of total tin and tributyltin in muscle tissue of farmed Atlantic salmon,' Marine Pollution Bulletin, vol. 18, no. 7, pp. 405-407, 1987. 15. A. Filipkowska, I. Złoch, B. Wawrzyniak-Wydrowska, and G. Kowalewska, 'Organotins in fish muscle and liver from the Polish coast of the Baltic Sea: Is the total ban successful?,' Mar Pollut Bull, vol. 111, no. 1-2, pp. 493-499, 2016. 16. S. Yamada, Y. Kubo, D. Yamazaki, Y. Sekino, Y. Nomura, S. Yoshida, and Y. Kanda, 'Tributyltin inhibits neural induction of human induced pluripotent stem cells,' Scientific reports, vol. 8, no. 1, pp. 1-10, 2018. 17. V. Delgado Filho, C. Mancini, I. Silva, D. Pedrosa, A. Destefani, V. Samoto, C. Takiya, and J. Graceli, 'Endocrine disruption induced by triorganotin (IV) compounds: Impacts in the reproductive and genetic function,' Journal of Medical Genetics and Genomics, vol. 2, no. 3, pp. 29-37, 2010. 18. E. Merlo, P. L. Podratz, G. C. Sena, J. F. De Araújo, L. C. Lima, I. S. Alves, L. N. Gama-de-Souza, R. Pelição, L. C. Rodrigues, and P. A. Brandão, 'The environmental pollutant tributyltin chloride disrupts the hypothalamic-pituitary-adrenal axis at different levels in female rats,' Endocrinology, vol. 157, no. 8, pp. 2978-2995, 2016. 19. J. V. Coutinho, L. C. Freitas-Lima, F. F. Freitas, F. P. Freitas, P. L. Podratz, R. P. Magnago, M. L. Porto, S. S. Meyrelles, E. C. Vasquez, and P. A. Brandão, 'Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats,' Toxicology letters, vol. 260, pp. 52-69, 2016. 20. J. Langedijk, A. K. Mantel-Teeuwisse, D. S. Slijkerman, and M. H. Schutjens, 'Drug repositioning and repurposing: terminology and definitions in literature,' Drug Discov Today, vol. 20, no. 8, pp. 1027-34, 2015. 21. M. Boolell, M. J. Allen, S. A. Ballard, S. Gepi-Attee, G. J. Muirhead, A. M. Naylor, I. H. Osterloh, and C. Gingell, 'Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction,' Int J Impot Res, vol. 8, no. 2, pp. 47-52, 1996. 22. L. Calabrese, and A. B. Fleischer Jr, 'Thalidomide: current and potential clinical applications,' The American journal of medicine, vol. 108, no. 6, pp. 487-495, 2000. 23. P. Patrignani, and C. Patrono, 'Aspirin and Cancer,' J Am Coll Cardiol, vol. 68, no. 9, pp. 967-76, 2016. 24. C. S. Marathe, C. K. Rayner, K. L. Jones, and M. Horowitz, 'Glucagon-like peptides 1 and 2 in health and disease: a review,' Peptides, vol. 44, pp. 75-86, 2013. 25. J. A. Lovshin, and D. J. Drucker, 'Incretin-based therapies for type 2 diabetes mellitus,' Nat Rev Endocrinol, vol. 5, no. 5, pp. 262-9, 2009. 26. V. R. Aroda, and R. Ratner, 'The safety and tolerability of GLP-1 receptor agonists in the treatment of type 2 diabetes: a review,' Diabetes Metab Res Rev, vol. 27, no. 6, pp. 528-42, 2011. 27. J. J. Meier, 'GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus,' Nature Reviews Endocrinology, vol. 8, no. 12, pp. 728-742, 2012. 28. M. H. Noyan-Ashraf, M. A. Momen, K. Ban, A.-M. Sadi, Y.-Q. Zhou, A. M. Riazi, L. L. Baggio, R. M. Henkelman, M. Husain, and D. J. Drucker, 'GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice,' Diabetes, vol. 58, no. 4, pp. 975-983, 2009. 29. S. Nizari, M. Basalay, P. Chapman, N. Korte, A. Korsak, I. N. Christie, S. M. Theparambil, S. M. Davidson, F. Reimann, and S. Trapp, 'Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre) conditioning neuroprotection against ischaemic stroke,' Basic Research in Cardiology, vol. 116, no. 1, pp. 1-13, 2021. 30. A. Astrup, R. Carraro, N. Finer, A. Harper, M. Kunesova, M. Lean, L. Niskanen, M. Rasmussen, A. Rissanen, and S. Rössner, 'Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide,' International journal of obesity, vol. 36, no. 6, pp. 843-854, 2012. 31. N. M. Krasner, Y. Ido, N. B. Ruderman, and J. M. Cacicedo, 'Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism,' PLoS One, vol. 9, no. 5, pp. e97554, 2014. 32. Y.-K. Li, D.-X. Ma, Z.-M. Wang, X.-F. Hu, S.-L. Li, H.-Z. Tian, M.-J. Wang, Y.-W. Shu, and J. Yang, 'The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis,' Pharmacological research, vol. 131, pp. 102-111, 2018. 33. T. Inoue, T. Inoguchi, N. Sonoda, H. Hendarto, H. Makimura, S. Sasaki, H. Yokomizo, Y. Fujimura, D. Miura, and R. Takayanagi, 'GLP-1 analog liraglutide protects against cardiac steatosis, oxidative stress and apoptosis in streptozotocin-induced diabetic rats,' Atherosclerosis, vol. 240, no. 1, pp. 250-259, 2015. 34. L. Arnés, P. Moreno, B. Nuche-Berenguer, I. Valverde, and M. L. Villanueva-Peñacarrillo, 'Effect of exendin-4 treatment upon glucose uptake parameters in rat liver and muscle, in normal and type 2 diabetic state,' Regulatory peptides, vol. 153, no. 1-3, pp. 88-92, 2009. 35. J.-S. Choung, Y.-S. Lee, and H.-S. Jun, 'Exendin-4 increases oxygen consumption and thermogenic gene expression in muscle cells,' J Mol Endocrinol, vol. 58, no. 2, pp. 79-90, 2017. 36. Y. Hong, J. H. Lee, K. W. Jeong, C. S. Choi, and H. S. Jun, 'Amelioration of muscle wasting by glucagon‐like peptide‐1 receptor agonist in muscle atrophy,' Journal of cachexia, sarcopenia and muscle, vol. 10, no. 4, pp. 903-918, 2019. 37. A. A. Gurjar, S. Kushwaha, S. Chattopadhyay, N. Das, S. Pal, S. P. China, H. Kumar, A. K. Trivedi, R. Guha, N. Chattopadhyay, and S. Sanyal, 'Long acting GLP-1 analog liraglutide ameliorates skeletal muscle atrophy in rodents,' Metabolism, vol. 103, pp. 154044, 2020. 38. M. Wiciński, M. Socha, B. Malinowski, E. Wódkiewicz, M. Walczak, K. Górski, M. Słupski, and K. Pawlak-Osińska, 'Liraglutide and its Neuroprotective Properties-Focus on Possible Biochemical Mechanisms in Alzheimer's Disease and Cerebral Ischemic Events,' Int J Mol Sci, vol. 20, no. 5, 2019. 39. M. M. Ziaaldini, E. Marzetti, A. Picca, and Z. Murlasits, 'Biochemical Pathways of Sarcopenia and Their Modulation by Physical Exercise: A Narrative Review,' Front Med (Lausanne), vol. 4, pp. 167, 2017. 40. H.-V. Wang, 'Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation,' PLoS One, vol. 10, no. 4, pp. e0124762, 2015. 41. Y.-P. Yen, K.-S. Tsai, Y.-W. Chen, C.-F. Huang, R.-S. Yang, and S.-H. Liu, 'Arsenic inhibits myogenic differentiation and muscle regeneration,' Environmental health perspectives, vol. 118, no. 7, pp. 949-956, 2010. 42. N. Kumar, and C. S. Dey, 'Metformin enhances insulin signalling in insulin‐dependent and‐independent pathways in insulin resistant muscle cells,' British journal of pharmacology, vol. 137, no. 3, pp. 329-336, 2002. 43. C.-Y. Chiu, Y.-P. Yen, K.-S. Tsai, R.-S. Yang, and S.-H. Liu, 'Low-dose benzo (a) pyrene and its epoxide metabolite inhibit myogenic differentiation in human skeletal muscle-derived progenitor cells,' Toxicological Sciences, vol. 138, no. 2, pp. 344-353, 2014. 44. X. Q. Rosales, M. L. Chu, C. Shilling, C. Wall, G. M. Pastores, and J. R. Mendell, 'Fidelity of gamma-glutamyl transferase (GGT) in differentiating skeletal muscle from liver damage,' J Child Neurol, vol. 23, no. 7, pp. 748-51, 2008. 45. R. A. Nathwani, S. Pais, T. B. Reynolds, and N. Kaplowitz, 'Serum alanine aminotransferase in skeletal muscle diseases,' Hepatology, vol. 41, no. 2, pp. 380-2, 2005. 46. Y.-y. Zhang, M. Yang, J.-f. Bao, L.-j. Gu, H.-l. Yu, and W.-j. Yuan, 'Phosphate stimulates myotube atrophy through autophagy activation: evidence of hyperphosphatemia contributing to skeletal muscle wasting in chronic kidney disease,' BMC nephrology, vol. 19, no. 1, pp. 1-7, 2018. 47. L. Yuan, J. Han, Q. Meng, Q. Xi, Q. Zhuang, Y. Jiang, Y. Han, B. Zhang, J. Fang, and G. Wu, 'Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study,' Oncology reports, vol. 33, no. 5, pp. 2261-2268, 2015. 48. S. C. Bodine, and L. M. Baehr, 'Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1,' American Journal of Physiology-Endocrinology and Metabolism, vol. 307, no. 6, pp. E469-E484, 2014. 49. Z. Li, C. L. Ni, Z. Yao, L. M. Chen, and W. Y. Niu, 'Liraglutide enhances glucose transporter 4 translocation via regulation of AMP-activated protein kinase signaling pathways in mouse skeletal muscle cells,' Metabolism, vol. 63, no. 8, pp. 1022-30, 2014. 50. F. Andreozzi, G. A. Raciti, C. Nigro, G. C. Mannino, T. Procopio, A. M. Davalli, F. Beguinot, G. Sesti, C. Miele, and F. Folli, 'The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism,' Journal of translational medicine, vol. 14, no. 1, pp. 1-13, 2016. 51. R. Kjøbsted, J. R. Hingst, J. Fentz, M. Foretz, M. N. Sanz, C. Pehmøller, M. Shum, A. Marette, R. Mounier, and J. T. Treebak, 'AMPK in skeletal muscle function and metabolism,' The FASEB journal, vol. 32, no. 4, pp. 1741-1777, 2018. 52. N. H. Rogers, C. A. Witczak, M. F. Hirshman, L. J. Goodyear, and A. S. Greenberg, 'Estradiol stimulates Akt, AMP-activated protein kinase (AMPK) and TBC1D1/4, but not glucose uptake in rat soleus,' Biochem Biophys Res Commun, vol. 382, no. 4, pp. 646-50, 2009. 53. J. Liu, Y. Peng, X. Wang, Y. Fan, C. Qin, L. Shi, Y. Tang, K. Cao, H. Li, and J. Long, 'Mitochondrial dysfunction launches dexamethasone-induced skeletal muscle atrophy via AMPK/FOXO3 signaling,' Molecular pharmaceutics, vol. 13, no. 1, pp. 73-84, 2016. 54. A. Jaitovich, M. Angulo, E. Lecuona, L. A. Dada, L. C. Welch, Y. Cheng, G. Gusarova, E. Ceco, C. Liu, and M. Shigemura, 'High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1),' Journal of Biological Chemistry, vol. 290, no. 14, pp. 9183-9194, 2015. 55. J. Ke, Y. Liu, J. Yang, R. Lu, Q. Tian, W. Hou, G. Wang, R. Wei, and T. Hong, 'Synergistic effects of metformin with liraglutide against endothelial dysfunction through GLP-1 receptor and PKA signalling pathway,' Sci Rep, vol. 7, pp. 41085, 2017. 56. Y. Le, R. Wei, K. Yang, S. Lang, L. Gu, J. Liu, T. Hong, and J. Yang, 'Liraglutide ameliorates palmitate-induced oxidative injury in islet microvascular endothelial cells through GLP-1 receptor/PKA and GTPCH1/eNOS signaling pathways,' Peptides, vol. 124, pp. 170212, 2020. 57. J. Lee, S.-W. Hong, S. W. Chae, D. H. Kim, J. H. Choi, J. C. Bae, S. E. Park, E.-J. Rhee, C.-Y. Park, and K.-W. Oh, 'Exendin-4 improves steatohepatitis by increasing Sirt1 expression in high-fat diet-induced obese C57BL/6J mice,' PLoS One, vol. 7, no. 2, pp. e31394, 2012. 58. C. J. Yu, D. Ma, L. L. Song, Z. N. Zhai, Y. Tao, Y. Zhang, L. Y. Cai, Y. H. Hou, H. Y. Chen, and L. Wang, 'The role of GLP-1/GIP receptor agonists in Alzheimer’s disease,' Advances in Clinical and Experimental Medicine, vol. 29, no. 6, pp. 661-668, 2020. 59. H. G. Liu, Y. Wang, L. Lian, and L. H. Xu, 'Tributyltin induces DNA damage as well as oxidative damage in rats,' Environmental Toxicology: An International Journal, vol. 21, no. 2, pp. 166-171, 2006. 60. S. Mitra, R. Gera, V. Singh, and S. Khandelwal, 'Comparative toxicity of low dose tributyltin chloride on serum, liver, lung and kidney following subchronic exposure,' Food and chemical toxicology, vol. 64, pp. 335-343, 2014. 61. P. Li, and Z.-H. Li, 'Neurotoxicity and physiological stress in brain of zebrafish chronically exposed to tributyltin,' Journal of Toxicology and Environmental Health, Part A, vol. 84, no. 1, pp. 20-30, 2021. 62. K. Hashizume, and K. Kanda, 'Neuronal dropout is greater in hindlimb motor nuclei than in forelimb motor nuclei in aged rats,' Neuroscience letters, vol. 113, no. 3, pp. 267-269, 1990. 63. K. Hashizume, and K. Kanda, 'Differential effects of aging on motoneurons and peripheral nerves innervating the hindlimb and forelimb muscles of rats,' Neuroscience research, vol. 22, no. 2, pp. 189-196, 1995. 64. J. Weng, P. Zhang, X. Yin, and B. Jiang, 'The whole transcriptome involved in denervated muscle atrophy following peripheral nerve injury,' Frontiers in molecular neuroscience, vol. 11, pp. 69, 2018. 65. J. Talbot, and L. Maves, 'Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease,' Wiley Interdisciplinary Reviews: Developmental Biology, vol. 5, no. 4, pp. 518-534, 2016. 66. V. Augusto, C. R. Padovani, and G. E. R. Campos, 'Skeletal muscle fiber types in C57BL6J mice,' Journal of Morphological Sciences, vol. 21, no. 2, pp. 0-0, 2017. 67. J. E. Stelzer, and J. J. Widrick, 'Effect of hindlimb suspension on the functional properties of slow and fast soleus fibers from three strains of mice,' Journal of Applied Physiology, vol. 95, no. 6, pp. 2425-2433, 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82872 | - |
dc.description.abstract | "肌少症是由多種因素引起的過度肌肉蛋白質降解和肌肉細胞或組織死亡,使肌肉功能受損或質量喪失的現象。肌少症發生在許多疾病中,像是癌症、愛滋病、充血性心力衰竭及腎衰竭等。氯化三丁基錫(tributyltin chloride, TBTCL)是一種內分泌干擾物質,已知內分泌干擾物與肥胖、糖尿病等疾病有關,這些疾病也是肌少症的危險因子。另外,先前研究證實,某些內分泌干擾物與低出生體重有關,例如雙酚A、鎘等。我們過去的研究發現,TBTCL可經由抑制FoxO1訊號路徑來調控肌肉降解相關蛋白E3 ubiquitin ligases的表現,使肌肉萎縮與功能喪失。目前治療肌少症的方法主要以運動和飲食控制來延緩肌肉萎縮,但對於行動不便的患者(如:長期臥病在床的患者或老人)無法有效使用,且更棘手的是,目前臨床上仍然未具有FDA核可之藥物可治療肌少症,因此迫切需要可以改善肌肉萎縮的治療方法。近幾年來,許多醫學研究將已批准的藥物用於新的適應症,與新藥開發相比,老藥新用大幅減少藥物開發的成本和時間,提供了一個重要的優勢。目前有兩類GLP-1R agonists已經廣泛在臨床上治療第二型糖尿病,分別為exendin-4和liraglutide。先前的研究證實,給予exendin-4可以改善囓齒類動物由慢性腎臟病和dexamethasone引起的骨骼肌萎縮。因此本篇研究想得知,exendin-4和liraglutide這兩種GLP-1R agonists是否可以逆轉TBTCL所造成的肌肉萎縮的現象。在in vitro實驗中,首先,我們進行MTT及western blot assay檢測TBTCL誘導C2C12 myotube萎縮的最適濃度,找到以TBTCL 0.25及0.5 M給予myotube 24小時均造成凋亡及萎縮相關因子表達量顯著提升,我們使用對myotube毒性較低的TBTCL 0.25 M進行後續實驗。接著進行exendin-4及liraglutide不同劑量對C2C12 myotube存活率的影響,取各自不會造成myotube毒性的濃度exendin-4 50 nM及liraglutide 200 nM進行後續測試。接著,進行MTT assay及H E staining觀察在單獨給予TBTCL與加入exendin-4和liraglutide之後對C2C12 myotube的myotube存活率及cell morphology影響,顯示exendin-4和liraglutide可以改善TBTCL所造成C2C12 myotube存活率、數量及直徑減少的現象。此外,western blot的結果顯示,單獨給予TBTCL會造成C2C12 myotube中細胞凋亡相關蛋白、E3 ubiquitin ligases及myostatin表達量提升,顯示TBTCL會誘導骨骼肌細胞凋亡及萎縮,然而這些現象可以有效地藉由給予exendin-4和liraglutide改善。此外,TBTCL還會降低GLP-1R在myotube membrane中的含量,並且調節與凋亡和萎縮有關的GLP-1R下游分子,活化JNK、FoxO1並抑制ERK訊號路徑,並且這些反應皆被exendin-4顯著逆轉。在in vivo實驗中,我們發現TBTCL顯著增加小鼠血清中AST、ALT、BUN、creatinine以及P的濃度,這些指標表示腎臟、肝臟及骨骼肌受到損害,而給予exendin-4降低了這些指標的表現。也發現在骨骼肌中,TBTCL顯著降低了soleus的質量及後肢抓力,且exendin-4回復了小鼠的肌肉質量及力量。在soleus組織切片中也觀察到,exendin-4恢復了由TBTCL減少的CSA。接著我們使用western blot檢測soleus中的蛋白質表現,結果顯示TBTCL顯著升高凋亡及萎縮相關蛋白質表現,而這些表現被exendin-4降低。然而我們發現,在soleus中,給予TBTCL及exendin-4治療後AMPK反應皆活化,因此推測exendin-4的治療效果不是透過AMPK。此外,經由IHC發現了exendin-4會提升由TBTCL減弱在soleus中GLP-1R的表現量。最後,我們使用western blot檢測GLP-1R下游訊號因子在soleus中的表現,發現給予TBTCL會抑制ERK並活化JNK、FoxO1訊號路徑,而exendin-4逆轉了這些表現。因此,我們的結論得知,在in vitro及in vivo實驗中,exendin-4和liraglutide可能會透過活化GLP-1R及調節其下游訊號分子來改善由TBTCL誘導的骨骼肌萎縮。我們的研究提供了GLP-1R agonists在治療TBTCL誘導之肌肉萎縮中的潛在應用。" | zh_TW |
dc.description.provenance | Made available in DSpace on 2022-11-25T08:01:26Z (GMT). No. of bitstreams: 1 U0001-0908202110150700.pdf: 3512415 bytes, checksum: bd118d591c46420de001c9f4c945b987 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | "口試委員會審定書 i 誌謝 ii 中文摘要 iv Abstract vi List of abbreviation xi Part 1: Introduction 1 1.1 The severity of sarcopenia 1 1.2 Endocrine disruptor chemicals (EDCs) 2 1.3 The impact of tributyltin chloride (TBTCL) 2 1.4 Drug repurposing 4 1.5 Glucagon-like peptide-1 receptor (GLP-1R) agonists 4 1.6 Myogenesis 7 Part 2: Aims 10 Part 3: Materials and methods 11 3.1 Cell culture 11 3.2 Myogenic differentiation 11 3.3 Tributyltin chloride (TBTCL) and GLP-1 receptor agonists 11 3.4 Differentiated myotubes treatment with TBTCL, exendin-4 and liraglutide 12 3.5 Cell viability and the loss of myotube assay 12 3.6 The cell morphological analysis 13 3.7 Protein extraction and western blot analysis 14 3.8 Rodent animals 15 3.9 In vivo serum biochemical measurement 16 3.10 Muscle fatigue task and grip strength tests 16 3.11 Histological analysis of muscle sections 17 3.12 Immunohistochemistry (IHC) 17 3.13 Statistics 18 Part 4: Results 19 4.1 TBTCL induced myotube loss and atrophy in murine C2C12-derived myotubes. 19 4.2 Lower dose of GLP-1 receptor agonists exendin-4 or liraglutide alone would not change the protein expressions in C2C12 myotubes. 20 4.3 GLP-1 receptor agonists exendin-4 and liraglutide mitigated TBTCL-induced myotube viability decreasing and atrophic effect in C2C12 myotubes. 20 4.4 Exendin-4 and liraglutide ameliorated TBTCL-induced skeletal muscle C2C12 myotube apoptosis and atrophy may via GLP-1R activating. 21 4.5 Exendin-4 protected the abnormal index of serum biochemical profile from TBTCL-impaired male ICR mice. 22 4.6 Exendin-4 recovered protection of muscle mass and hind-limb grip strength in TBTCL-treated mice. 24 4.7 Exendin-4 restored the cross-sectional area in soleus muscle of TBTCL-induced skeletal muscle atrophy ICR mice. 24 4.8 Exendin-4 decreased TBTCL-induced skeletal muscle apoptosis-related protein expressions. 25 4.9 Exendin-4 downregulated the expression of E3 ubiquitin ligases induced by TBTCL in skeletal muscle of male ICR mice. 25 4.10 Exendin-4 increased the GLP-1R expression in soleus of atrophy mice reduced by TBTCL. 26 4.11 Effects of TBTCL and exendin-4-regulated signaling pathway in male ICR mice. 26 Part 5: Discussion 28 Part 6: Conclusion 35 Part 7: Figures and figure legends 36 Part 8: References 59" | |
dc.language.iso | en | |
dc.title | 類升糖素胜肽-1受體致效劑對內分泌干擾物三丁基錫引發的體外和體內肌肉萎縮模型的影響 | zh_TW |
dc.title | Evaluation of the Effects of Glucagon-like Peptide-1 Receptor Agonists on Endocrine Disruptor Tributyltin-triggered Muscle Atrophy in vitro and in vivo | en |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 姜至剛(Hsin-Tsai Liu),洪冠予(Chih-Yang Tseng) | |
dc.subject.keyword | 氯化三丁基錫,類升糖素胜肽-1受體致效劑,骨骼肌,肌肉萎縮,肌少症,凋亡, | zh_TW |
dc.subject.keyword | tributyltin chloride,GLP-1R agonists,skeletal muscle,sarcopenia,muscle wasting,apoptosis, | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU202102196 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2021-08-09 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
dc.date.embargo-lift | 2023-09-01 | - |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0908202110150700.pdf 目前未授權公開取用 | 3.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。