Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorChia-Chun Huangen
dc.contributor.author黃家俊zh_TW
dc.date.accessioned2022-11-25T08:01:08Z-
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-08-17
dc.identifier.citation[1] J. G. BROEKS, G. Lankhorst, K. Rumping, and A. Prevo, 'The long-term outcome of arm function after stroke: results of a follow-up study,' Disability and rehabilitation, vol. 21, no. 8, pp. 357-364, 1999. [2] D. Mozaffarian, E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, S. R. Das, S. De Ferranti, J. P. Després, and H. J. Fullerton, 'Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association,' Circulation, vol. 133, no. 4, pp. 447-454, 2016. [3] Y.-Y. Lin and C.-S. Huang, 'Aging in Taiwan: Building a Society for Active Aging and Aging in Place,' The Gerontologist, vol. 56, no. 2, pp. 176-183, 2016, doi: 10.1093/geront/gnv107. [4] H. Veeger and F. Van Der Helm, 'Shoulder function: the perfect compromise between mobility and stability,' Journal of biomechanics, vol. 40, no. 10, pp. 2119-2129, 2007. [5] M. C. Cirstea and M. F. Levin, 'Compensatory strategies for reaching in stroke,' (in eng), Brain, vol. 123, pp. 940-53, May 2000, doi: 10.1093/brain/123.5.940. [6] J. McCabe, M. Monkiewicz, J. Holcomb, S. Pundik, and J. J. Daly, 'Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial,' Archives of physical medicine and rehabilitation, vol. 96, no. 6, pp. 981-990, 2015. [7] G. Bao, L. Pan, H. Fang, X. Wu, H. Yu, S. Cai, B. Yu, and Y. Wan, 'Academic Review and Perspectives on Robotic Exoskeletons,' IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 11, pp. 2294-2304, 2019, doi: 10.1109/TNSRE.2019.2944655. [8] G. Kwakkel, R. C. Wagenaar, T. W. Koelman, G. J. Lankhorst, and J. C. Koetsier, 'Effects of intensity of rehabilitation after stroke. A research synthesis,' Stroke, vol. 28, no. 8, pp. 1550-6, Aug 1997, doi: 10.1161/01.str.28.8.1550. [9] A. Basteris, S. M. Nijenhuis, A. H. A. Stienen, J. H. Buurke, G. B. Prange, and F. Amirabdollahian, 'Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review,' J. Neuroeng. Rehabil., vol. 11, no. 1, p. 111, 2014/07/10 2014, doi: 10.1186/1743-0003-11-111. [10] L. E. Kahn, M. L. Zygman, W. Z. Rymer, and D. J. Reinkensmeyer, 'Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study,' J. Neuroeng. Rehabil., vol. 3, pp. 12-12, 2006, doi: 10.1186/1743-0003-3-12. [11] M. H. Milot, S. J. Spencer, V. Chan, J. P. Allington, J. Klein, C. Chou, J. E. Bobrow, S. C. Cramer, and D. J. Reinkensmeyer, 'A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES,'J. Neuroeng. Rehabil., vol. 10, p. 112, Dec 19 2013, doi: 10.1186/1743-0003-10-112. [12] L. L. Andersen, M. Kjaer, C. H. Andersen, P. B. Hansen, M. K. Zebis, K. Hansen, and G. Sjøgaard, 'Muscle activation during selected strength exercises in women with chronic neck muscle pain,' Phys. Ther., vol. 88, no. 6, pp. 703-11, Jun 2008, doi: 10.2522/ptj.20070304. [13] B. T. Ballantyne, S. J. O'Hare, J. L. Paschall, M. M. Pavia-Smith, A. M. Pitz, J. F. Gillon, and G. L. Soderberg, 'Electromyographic activity of selected shoulder muscles in commonly used therapeutic exercises,' Phys. Ther., vol. 73, no. 10, pp. 668-77; discussion 677-82, Oct 1993, doi: 10.1093/ptj/73.10.668. [14] R. A. Hintermeister, G. W. Lange, J. M. Schultheis, M. J. Bey, and R. J. Hawkins, 'Electromyographic activity and applied load during shoulder rehabilitation exercises using elastic resistance,' Am. J. Sports Med., vol. 26, no. 2, pp. 210-20, Mar-Apr 1998, doi: 10.1177/03635465980260021001. [15] E. H. Poskanzer, 'Movement Therapy in Hemiplegia: a Neurophysiologic Approach,' J. Gerontol., vol. 27, no. 2, pp. 290-290, 1972, doi: 10.1093/geronj/27.2.290. [16] J. Wang, J. Zhang, G. Zuo, C. Shi, and S. Guo, 'A reward–punishment feedback control strategy based on energy information for wrist rehabilitation,' International Journal of Advanced Robotic Systems, vol. 17, no. 5, p. 1729881420940651, 2020/09/01 2020, doi: 10.1177/1729881420940651. [17] N. Hogan, H. I. Krebs, J. Charnnarong, P. Srikrishna, and A. Sharon, 'MIT-MANUS: a workstation for manual therapy and training. I,' in [1992] Proceedings IEEE International Workshop on Robot and Human Communication, 1992 1992, pp. 161-165, doi: 10.1109/ROMAN.1992.253895. [18] C. G. Burgar, P. S. Lum, P. C. Shor, and H. F. Machiel Van der Loos, 'Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience,' J. Rehabil. Res. Dev., vol. 37, no. 6, pp. 663-73, Nov-Dec 2000. [19] R. Loureiro, F. Amirabdollahian, M. Topping, B. Driessen, and W. Harwin, 'Upper Limb Robot Mediated Stroke Therapy—GENTLE/s Approach,' Autonomous Robots, vol. 15, no. 1, pp. 35-51, 2003/07/01 2003, doi: 10.1023/A:1024436732030. [20] T. Nef, M. Mihelj, G. Kiefer, C. Perndl, R. Muller, and R. Riener, 'ARMin - Exoskeleton for Arm Therapy in Stroke Patients,' in 2007 IEEE 10th International Conference on Rehabilitation Robotics, 13-15 June 2007 2007, pp. 68-74, doi: 10.1109/ICORR.2007.4428408. [21] T. Nef, M. Guidali, and R. Riener, 'ARMin III – Arm Therapy Exoskeleton with an Ergonomic Shoulder Actuation,' Appl. Bionics Biomech., vol. 6, p. 962956, 1900/01/01 2009, doi: 10.1080/11762320902840179. [22] H. Kim, L. M. Miller, I. Fedulow, M. Simkins, G. M. Abrams, N. Byl, and J. Rosen, 'Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system,' IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21, no. 2, pp. 153-64, Mar 2013, doi: 10.1109/tnsre.2012.2207462. [23] Y. Hasegawa and S. Oura, 'Exoskeletal meal assistance system (EMAS II) for progressive muscle dystrophy patient,' IEEE Int Conf Rehabil Robot, vol. 2011, p. 5975444, 2011, doi: 10.1109/icorr.2011.5975444. [24] B. Tsai, W. Wang, L. Hsu, L. Fu, and J. Lai, 'An articulated rehabilitation robot for upper limb physiotherapy and training,' in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 18-22 Oct. 2010 2010, pp. 1470-1475, doi: 10.1109/IROS.2010.5649567. [25] S. H. Chen, W. M. Lien, W. W. Wang, G. D. Lee, L. C. Hsu, K. W. Lee, S. Y. Lin, C. H. Lin, L. C. Fu, J. S. Lai, J. J. Luh, and W. S. Chen, 'Assistive Control System for Upper Limb Rehabilitation Robot,' IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 11, pp. 1199-1209, 2016, doi: 10.1109/TNSRE.2016.2532478. [26] C. Lin, W. Lien, W. Wang, S. Chen, C. Lo, S. Lin, L. Fu, and J. Lai, 'NTUH-II robot arm with dynamic torque gain adjustment method for frozen shoulder rehabilitation,' in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 14-18 Sept. 2014 2014, pp. 3555-3560, doi: 10.1109/IROS.2014.6943059. [27] J. Ren, Y. Chien, E. Chia, L. Fu, and J. Lai, 'Deep Learning based Motion Prediction for Exoskeleton Robot Control in Upper Limb Rehabilitation,' in 2019 International Conference on Robotics and Automation (ICRA), 20-24 May 2019 2019, pp. 5076-5082, doi: 10.1109/ICRA.2019.8794187. [28] L. L. Cai, A. J. Fong, C. K. Otoshi, Y. Liang, J. W. Burdick, R. R. Roy, and V. R. Edgerton, 'Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning,' J. Neurosci., vol. 26, no. 41, pp. 10564-8, Oct 11 2006, doi: 10.1523/jneurosci.2266-06.2006. [29] J. Zhang and C. C. Cheah, 'Passivity and Stability of Human–Robot Interaction Control for Upper-Limb Rehabilitation Robots,' IEEE Transactions on Robotics, vol. 31, no. 2, pp. 233-245, 2015, doi: 10.1109/TRO.2015.2392451. [30] A. U. Pehlivan, D. P. Losey, and M. K. O. Malley, 'Minimal Assist-as-Needed Controller for Upper Limb Robotic Rehabilitation,' IEEE Transactions on Robotics, vol. 32, no. 1, pp. 113-124, 2016, doi: 10.1109/TRO.2015.2503726. [31] A. U. Pehlivan, D. P. Losey, C. G. Rose, and M. K. O. Malley, 'Maintaining subject engagement during robotic rehabilitation with a minimal assist-as-needed (mAAN) controller,' in 2017 International Conference on Rehabilitation Robotics (ICORR), 17-20 July 2017 2017, pp. 62-67, doi: 10.1109/ICORR.2017.8009222. [32] T. Teramae, T. Noda, and J. Morimoto, 'EMG-Based Model Predictive Control for Physical Human–Robot Interaction: Application for Assist-As-Needed Control,' IEEE Robotics and Automation Letters, vol. PP, pp. 1-1, 08/08 2017, doi: 10.1109/LRA.2017.2737478. [33] E. T. Wolbrecht, V. Chan, D. J. Reinkensmeyer, and J. E. Bobrow, 'Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation,' IEEE Trans. Neural Syst. Rehabil. Eng., vol. 16, no. 3, pp. 286-297, 2008, doi: 10.1109/TNSRE.2008.918389. [34] T. Proietti, G. Morel, A. Roby-Brami, and N. Jarrassé, 'Comparison of different error signals driving the adaptation in assist-as-needed controllers for neurorehabilitation with an upper-limb robotic exoskeleton,' in 2017 IEEE International Conference on Robotics and Automation (ICRA), 29 May-3 June 2017 2017, pp. 6645-6650, doi: 10.1109/ICRA.2017.7989784. [35] H. Jabbari, T. Narikiyo, and M. Kawanishi, 'An Assist-as-Needed Velocity Field Control Scheme for Rehabilitation Robots,' 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3322-3327, 2018. [36] H. J. Asl and T. Narikiyo, 'An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field,' in 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 24-28 June 2019 2019, pp. 790-795, doi: 10.1109/ICORR.2019.8779551. [37] U. Keller, G. Rauter, and R. Riener, 'Assist-as-needed path control for the PASCAL rehabilitation robot,' IEEE Int Conf Rehabil Robot, vol. 2013, p. 6650475, Jun 2013, doi: 10.1109/icorr.2013.6650475. [38] P. Agarwal and A. D. Deshpande, 'Subject-Specific Assist-as-Needed Controllers for a Hand Exoskeleton for Rehabilitation,' IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 508-515, 2018, doi: 10.1109/LRA.2017.2768124. [39] X. Chen, Y. Zeng, and Y. Yin, 'Improving the Transparency of an Exoskeleton Knee Joint Based on the Understanding of Motor Intent Using Energy Kernel Method of EMG,' IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 6, pp. 577-588, 2017, doi: 10.1109/TNSRE.2016.2582321. [40] C. Loconsole, S. Dettori, A. Frisoli, C. A. Avizzano, and M. Bergamasco, 'An EMG-based approach for on-line predicted torque control in robotic-assisted rehabilitation,' in 2014 IEEE Haptics Symposium (HAPTICS), 23-26 Feb. 2014 2014, pp. 181-186, doi: 10.1109/HAPTICS.2014.6775452. [41] T. Kawase, T. Sakurada, Y. Koike, and K. Kansaku, 'A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements,' J Neural Eng, vol. 14, no. 1, p. 016015, Feb 2017, doi: 10.1088/1741-2552/aa525f. [42] F. Wang, C. Wu, K. Gan, H. Yu, H. Qi, G. Wang, and D. Rong, 'A close-loop EMG model for continuous joint movements estimation of a rehabilitation robot,' in 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), 5-8 Dec. 2017 2017, pp. 2675-2680, doi: 10.1109/ROBIO.2017.8324823. [43] W. Yang, D. Yang, Y. Liu, and H. Liu, 'Decoding Simultaneous Multi-DOF Wrist Movements From Raw EMG Signals Using a Convolutional Neural Network,' IEEE Transactions on Human-Machine Systems, vol. 49, no. 5, pp. 411-420, 2019, doi: 10.1109/thms.2019.2925191. [44] L. Liao, Y. Tseng, H. Chiang, and W. Wang, 'EMG-based Control Scheme with SVM Classifier for Assistive Robot Arm,' in 2018 International Automatic Control Conference (CACS), 4-7 Nov. 2018 2018, pp. 1-5, doi: 10.1109/CACS.2018.8606762. [45] L. J. Hargrove, E. J. Scheme, K. B. Englehart, and B. S. Hudgins, 'Multiple Binary Classifications via Linear Discriminant Analysis for Improved Controllability of a Powered Prosthesis,' IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 1, pp. 49-57, 2010, doi: 10.1109/TNSRE.2009.2039590. [46] K. Englehart and B. Hudgins, 'A robust, real-time control scheme for multifunction myoelectric control,' IEEE Trans. Biomed. Eng., vol. 50, no. 7, pp. 848-854, 2003, doi: 10.1109/TBME.2003.813539. [47] E. Y. Chia, Y. L. Chen, T. C. Chien, M. L. Chiang, L. C. Fu, J. S. Lai, and L. Lu, 'Velocity Field based Active-Assistive Control for Upper Limb Rehabilitation Exoskeleton Robot,' in 2020 IEEE International Conference on Robotics and Automation (ICRA), 31 May-31 Aug. 2020 2020, pp. 1742-1748, doi: 10.1109/ICRA40945.2020.9196766. [48] C. H. Lin, W. M. Lien, W. W. Wang, S. H. Chen, C. H. Lo, S. Y. Lin, L. C. Fu, and J. S. Lai, 'NTUH-II robot arm with dynamic torque gain adjustment method for frozen shoulder rehabilitation,' in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 14-18 Sept. 2014 2014, pp. 3555-3560, doi: 10.1109/IROS.2014.6943059. [49] M. W. Spong, Robot Dynamics and Control. John Wiley amp; Sons, Inc., 1989. [50] B. Bona and M. Indri, 'Friction Compensation in Robotics: an Overview,' in Proceedings of the 44th IEEE Conference on Decision and Control, 15-15 Dec. 2005 2005, pp. 4360-4367, doi: 10.1109/CDC.2005.1582848. [51] H. Olsson, K. J. Åström, C. Canudas de Wit, M. Gäfvert, and P. Lischinsky, 'Friction Models and Friction Compensation,' European Journal of Control, vol. 4, no. 3, pp. 176-195, 1998/01/01/ 1998, doi: https://doi.org/10.1016/S0947-3580(98)70113-X. [52] L. Liu, T. Chien, Y. Chen, L. Fu, and J. Lai, 'Sensorless Control with Friction and Human Intention Estimation of Exoskeleton Robot for Upper-limb Rehabilitation,' in 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), 6-8 Dec. 2019 2019, pp. 290-296, doi: 10.1109/ROBIO49542.2019.8961760. [53] G. Welch and G. Bishop, 'An Introduction to the Kalman Filter,' University of North Carolina at Chapel Hill, 1995. [54] R. G. Brown and P. Y. C. Hwang, Introduction to random signals and applied Kalman filtering : with MATLAB exercises and solutions. New York: Wiley, 1997. [55] N. Hogan, 'Impedance Control: An Approach to Manipulation,' in 1984 American Control Conference, 6-8 June 1984 1984, pp. 304-313, doi: 10.23919/ACC.1984.4788393. [56] D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, and O. C. Aszmann, 'The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges,' IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4, pp. 797-809, Jul 2014, doi: 10.1109/TNSRE.2014.2305111. [57] A. Strazza, F. Verdini, L. Burattini, S. Fioretti, and F. Di Nardo, 'Time-frequency analysis of surface EMG signals for maximum energy localization during walking,' in EMBEC NBC 2017, Singapore, H. Eskola, O. Väisänen, J. Viik, and J. Hyttinen, Eds., 2018// 2018: Springer Singapore, pp. 494-497. [58] O. W. Samuel, M. G. Asogbon, Y. Geng, A. H. Al-Timemy, S. Pirbhulal, N. Ji, S. Chen, P. Fang, and G. Li, 'Intelligent EMG Pattern Recognition Control Method for Upper-Limb Multifunctional Prostheses: Advances, Current Challenges, and Future Prospects,' IEEE Access, vol. 7, pp. 10150-10165, 2019, doi: 10.1109/access.2019.2891350. [59] E. Bizzi and V. C. K. Cheung, 'The neural origin of muscle synergies,'Front. Comput. Neurosci., vol. 7, pp. 51-51, 2013, doi: 10.3389/fncom.2013.00051. [60] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical analysis. (in English), 2016. [61] P. Y. Li and R. Horowitz, 'Passive velocity field control (PVFC). Part I. Geometry and robustness,' IEEE Transactions on Automatic Control, vol. 46, no. 9, pp. 1346-1359, 2001, doi: 10.1109/9.948463. [62] I. Cervantes, R. Kelly, J. Alvarez-Ramirez, and J. Moreno, 'A robust velocity field control,' IEEE Transactions on Control Systems Technology, vol. 10, no. 6, pp. 888-894, 2002, doi: 10.1109/TCST.2002.804126. [63] M. Najafi, K. Adams, and M. Tavakoli, 'Robotic learning from demonstration of therapist's time-varying assistance to a patient in trajectory-following tasks,' in 2017 International Conference on Rehabilitation Robotics (ICORR), 17-20 July 2017 2017, pp. 888-894, doi: 10.1109/ICORR.2017.8009361. [64] A. D. Dragan and S. S. Srinivasa, 'A policy-blending formalism for shared control,' The International Journal of Robotics Research, vol. 32, no. 7, pp. 790-805, 2013/06/01 2013, doi: 10.1177/0278364913490324. [65] C. Cassisi, P. Montalto, M. Aliotta, A. Cannata, and A. Pulvirenti, 'Similarity Measures and Dimensionality Reduction Techniques for Time Series Data Mining,' 2012. [66] S. Katz, 'Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living,'J. Am. Geriatr. Soc., vol. 31, no. 12, pp. 721-7, Dec 1983, doi: 10.1111/j.1532-5415.1983.tb03391.x. [67] R. H. Chowdhury, M. B. Reaz, M. A. Ali, A. A. Bakar, K. Chellappan, and T. G. Chang, 'Surface electromyography signal processing and classification techniques,' Sensors (Basel), vol. 13, no. 9, pp. 12431-66, Sep 17 2013, doi: 10.3390/s130912431.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82858-
dc.description.abstract中風是一種因為突發性血管阻塞或破裂造成的神經損傷,可能導致患者出現肌肉痙攣、失去完整肌肉控制能力、肌力不足等失能症狀。臨床研究結果,中風患者在治療師的監督幫助下進行長期的復健治療後,能夠有效幫助患者恢復原有運動機能。考量到復健療程的重複性,將機器人引入傳統復健療程,除了可以幫助治療師更有效率的實施復健療程,也能夠透過機器人上的感測器獲取患者額外資訊,進而提供患者即時回饋。此外,中風患者因為神經損傷後容易出現錯誤的肌肉協同作用,因此在復健過程中除了恢復肌力,訓練患者在復健過程中重新習得正確的肌肉協同作用也有其必要性。 本研究針對上肢外骨骼復健機器人,提出一種考量使用者肌肉啟動程度與運動意圖正確性的輔助控制策略。首先,透過表面肌電訊號,可偵測在特定復健任務下主要肌肉的啟動程度;並且透過關節周圍肌肉群的表面肌電訊號,可以評估使用者運動啟動分布的正確性。接著,復健過程中輔助策略會基於速度場理論評估動作的運動誤差,並生成對應於當前位置的輔助速度。最後,本研究提出一個結合使用者的肌肉啟動程度、運動意圖正確性以及基於速度場產生之輔助速度的整合方法,使得使用者在復健過程中能夠透過正確的肌肉施力獲得更多的輔助,並鼓勵使用者透過正確肌肉協同的方式完成復健動作。 本研究提出的輔助控制方法透過健康受試者的實驗來驗證成效。其結果顯示,使用者在復健過程中能夠透過正確的肌肉施力取得更完整的輔助,在正確的肌肉協同下得以取得更大的關節活動範圍,促使使用者在這樣的獎勵機制下更積極主動地完成給定之復健任務,並且透過機台輔助程度的變化給予使用者即時的回饋。於未來展望,本系統需進一步應用於臨床試驗以驗證對於中風患者的復健療效。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T08:01:08Z (GMT). No. of bitstreams: 1
U0001-1708202111451000.pdf: 4141584 bytes, checksum: 40f65782fa13465b71ffcc9f9c3df53e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 ii 中文摘要 iv ABSTRACT vi CONTENTS viii TABLE OF ACRONYMS xii LIST OF FIGURES xiii LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 4 1.2.1 Robotics in Rehabilitation 4 1.2.2 Active-Assistive Therapy with Robots 5 1.3 Contribution 9 1.4 Thesis Organization 10 Chapter 2 Preliminaries 11 2.1 Upper Limb Rehabilitation Robot NTUH-II 11 2.1.1 Hardware Design of NTUH-II 12 2.1.2 Safety Issue 17 2.2 Forward Kinematics and Jacobian Matrix 18 2.2.1 Forward Kinematics 18 2.2.2 Jacobian Matrix in Robotics 20 2.2.3 Angular Velocity 22 2.2.4 Linear Velocity 23 2.2.5 Application to NTUH-II 23 2.3 Robot Dynamics and Kalman Filter 23 2.3.1 Robot Dynamics of NTUH-II 23 2.3.2 Kalman Filter 27 2.4 sEMG Acquisition System 30 Chapter 3 Design of Muscle Activation Based Active-Assistive Control System 33 3.1 Overview of System Block Diagram 33 3.2 Human’s Active Velocity Detection 35 3.2.1 Interactive Torque Observer 35 3.2.2 Admittance Model 38 3.3 Muscle Activation Detector 39 3.3.1 sEMG Signal Acquisition and Communication Protocol 39 3.3.2 sEMG Signal Preprocessing 42 3.3.3 Primary Muscle Activation 44 3.3.4 Normality Index for Muscle Activation Distribution 52 3.4 Muscle Activation Based Active-Assistive Control Strategy 56 3.4.1 Velocity Field Based Task Encoding 56 3.4.2 Muscle Activation Based Assistive Velocity Field Generation 60 3.4.3 Active-Assistive Control Strategy 66 3.5 Controller Design 68 Chapter 4 Experimental and Results 71 4.1 Experiment Setup 71 4.2 Experiment Result 76 Chapter 5 Conclusion 96 REFERENCES 98
dc.language.isoen
dc.subject使用者意圖偵測zh_TW
dc.subjectNTUH-IIzh_TW
dc.subject表面肌電訊號zh_TW
dc.subject復健機器人zh_TW
dc.subject主動輔助復健zh_TW
dc.subjectactive-assistive rehabilitationen
dc.subjectNTUH-IIen
dc.subjectelectromyographyen
dc.subjectrehabilitation roboticsen
dc.subjectuser intention detectionen
dc.title基於肌肉活動之主動輔助控制應用於上肢復健外骨骼機器人zh_TW
dc.titleMuscle Activation Based Active-assistive Control For Upper Limb Rehabilitation Roboten
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴金鑫(Hsin-Tsai Liu),盧璐(Chih-Yang Tseng),陳文翔,連豊力
dc.subject.keyword復健機器人,表面肌電訊號,主動輔助復健,使用者意圖偵測,NTUH-II,zh_TW
dc.subject.keywordrehabilitation robotics,electromyography,active-assistive rehabilitation,user intention detection,NTUH-II,en
dc.relation.page103
dc.identifier.doi10.6342/NTU202102424
dc.rights.note未授權
dc.date.accepted2021-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
dc.date.embargo-lift2024-08-30-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-1708202111451000.pdf
  未授權公開取用
4.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved