Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8283
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民(Li-Min Wang)
dc.contributor.authorLi-Cheng Chuen
dc.contributor.author褚勵丞zh_TW
dc.date.accessioned2021-05-20T00:51:17Z-
dc.date.available2020-08-25
dc.date.available2021-05-20T00:51:17Z-
dc.date.copyright2020-08-25
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citation[1] J. Hänisch, K. Iida, R. Hühne, C. Tarantini, Supercond. Sci. Technol. 32(09), 093001 (2019)
[2] Y. Mizuguchi, Y. Takano, J. Phys. Soc. Jpn. 79(10), 102001 (2010)
[3] G. R. Stewart, Rev. Mod. Phys. 83(4), 1989 (2011)
[4] Y. Kamihara, T. Watanabe, M. Hirano, J. Am. Chem. Soc. 130(11), 3296–3297 (2008)
[5] F.C. Hsu et al., Proc. Natl Acad. Sci. USA 105(38), 14262-14264 (2008)
[6] K. W. Yeh et al., Europhys. Lett. 84(3), 37002 (2008)
[7] K. W. Yeh et al., Cryst. Growth Des. 9(11), 4847-4851 (2009)
[8] W. D. Si et al., Nat. Commun. 4, 1347 (2013)
[9] S. Molatta et al., Sci. Rep. 5, 16334 (2015)
[10] S. C. Speller et. al., Supercond. Sci. Technol. 24(7), 075023 (2011)
[11] T. Mousavi et. al., J. Mater. Sci. 50, 6970-6978 (2015)
[12] A. J. Williams et. al., Solid State Commun. 149, 1507-1509 (2009)
[13] U. Patel et. al., Appl. Phys. Lett. 94, 82508 (2009)
[14] R. Viennois et. al., J. Solid State Chem. 183, 769-775 (2010)
[15] R. Schneider et. al., Supercond. Sci. Technol. 26(5), 55014 (2013)
[16] Q. L. Chai et. al., Physica C 471(13-14), 428-431 (2011)
[17] E. Venzmer et. al., arXiv:1505.02630 [cond-mat.supr-con]
[18] T. Mousavi et. al., IEEE Trans. Appl. Supercond. 25(3), 1-4 (2015)
[19] Y. Han et. al., J. Phys: Condens. Matter 21(23), 235702 (2009)
[20] Y. Imai et. al., Appl. Phys. Express 3(4), 43102 (2010)
[21] T. G. Kumary et. al., Supercond. Sci. Technol. 22, 95018 (2009)
[22] A. Ichinose et. al., Supercond. Sci. Technol. 26, 75002 (2013)
[23] W. Qiu et. al., ACS Appl. Mater. Interfaces 9, 37446-37453 (2017)
[24] L. Fu, C. L. Kane, Phys. Rev. Lett. 100, 96407 (2008)
[25] J. Xu et. al., Phys. Rev. Lett. 112, 217001 (2014)
[26] H. Liu et. al., Sci. Rep. 6, 26168 (2016)
[27] P. Zhang et. al., Science 360, 182-186 (2018)
[28] X. Shi et. al., Sci. Bul. 62, 503 (2017)
[29] H. K. Onnes, KNAW Proceedings 11, 168-185 (1908)
[30] H. K. Onnes, Comm. Phys. Lab. Univ. Leiden 122, 122-124 (1911)
[31] W. Meissner, R. Ochsenfeld, Naturwissenschaften 21, 787-788 (1933)
[32] F. London, H. London, Proc. R. Soc. Lond. A 149, 71–88 (1935)
[33] A. B. Pippard, Proc. R. Soc. Lond. A 203, 210–223 (1950)
[34] V. L. Ginzburg, L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950)
[35] A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442–1452 (1957)
[36] E. Maxwell, Phys. Rev. 78, 477 (1950)
[37] C. A. Reynolds et. al., Phys. Rev. 78, 487 (1950)
[38] H. Fröhlich, Phys. Rev. 79, 845 (1950)
[39] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 108, 1175 (1957)
[40] L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 37, 1407-1416 (1959)
[41] B. D. Josephson, Phys. Lett. 1, 251 (1962)
[42] J. R. Gavaler, Appl. Phys. Lett. 23, 480 (1973)
[43] J. G. Bednorz, K. A. Müller, Z. Phys. B 64, 189-193 (1986)
[44] M. K. Wu et. al., Phys. Rev. Lett. 58, 908 (1987)
[45] H. K. Onnes, Comm. Phys. Lab. Univ. Leiden. Suppl. 29 (1911)
[46] By PJRay - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46193149
[47] A. P. Drozdov et. al., Nature 525, 73-76 (2015)
[48] A. P. Drozdov et. al., Nature 569, 528-531 (2019)
[49] C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley Sons, Inc., Hoboken, 2005), p. 262
[50] C. Rey, Superconductors in the Power Grid, 1st ed. (Elsevier Ltd., Cambridge, 2015), p. 31
[51] 張裕恒,超導物理(中國科學技術大學出版社,合肥,2012)
[52] C. J. Gorter, H. B. Casimir, Physica 1, 306 (1934)
[53] A. B. Pippard, Proc. R. Soc. Lond. A 215, 547 (1953)
[54] 林秀豪,熱統計物理講義(國立清華大學開放式課程,新竹,2012)
[55] R. Winter, A hint of Landau theory, https://users.aber.ac.uk/ruw/teach/334/landau.php
[56] C. L. Henley, Lectures on Ginzburg-Landau theory of superconductivity (Cornell University, New York, 2011)
[57] C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley Sons, Inc., Hoboken, 2005), p. 264
[58] T. Orlando, Lectures on Applied Superconductivity (MIT, Massachusetts, 2003)
[59] J. E. Evetts et. al., Phil. Mag. 10, 339 (1964)
[60] C. P. Bean, Phys. Rev. Lett. 8, 250-253 (1962)
[61] C. P. Bean, Rev. Mod. Phys. 36, 31 (1964)
[62] C. P. Bean, J. D. Livingston, Phys. Rev. Lett. 12, 14 (1964)
[63] P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962)
[64] Y. B. Kim et. al., Phys. Rev. 131, 2486 (1963)
[65] P. W. Anderson, Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964)
[66] 王立民,超導物理導論講義(國立台灣大學,台北,2017)
[67] H. Okamoto, J. Phase Equilib. 12, 383 (1991)
[68] 張景淵,鐵基超導 鐵-硒-碲 之縱向與橫向霍爾電阻率之研究:釘扎效應與異常電傳輸性質,碩士論文,國立台灣大學,台北,2015
[69] 馬沛綸,高溫超導釔鋇銅氧薄膜之反鄰近效應研究與碲化鉍/釔鋇銅氧之拓撲 /超導異質界面特性之研究,碩士論文,國立台灣大學,台北,2018
[70] By Acarlso3 - Transferred from en.wikipedia to Commons., Public Domain, https://commons.wikimedia.org/w/index.php?curid=63350291
[71] 許常仁等,基礎物理實驗講義(國立台灣大學,台北,2019)
[72] Horiba, GDOES, the Analytical Companion Tool for Magnetron Sputtering Deposition, https://www.horiba.com/en_en/applications/materials/nonmetallic-minerals/coatings/gdoes-the-analytical-companion-tool-for-magnetron-sputtering-deposition/, (accessed 20/07/19)
[73] T. W. Yang (private communication, 2019)
[74] S. Seo et. al., Sci. Rep. 7, 9994 (2017)
[75] N. R. Werthamer, E. Helfand, P. C. Hohenberg, Phys. Rev 147, 295 (1966)
[76] R. X. Cao et. al., AIP Adv. 9, 054220 (2019)
[77] H. Lei et. al., Phys. Rev. B 81, 094518 (2010)
[78] M. Fang et. al., Phys. Rev. B 81, 020509(R) (2010)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8283-
dc.description.abstract鐵基超導發展至今已十來年,雖熱潮稍退,但近年由於拓撲超導相關研究群起,鐵基超導材料再度引發關注,包含與拓撲材料結合形成二維介面拓撲超導、於厚度極小之鐵基超導表面觀察到拓撲特性等。
本實驗利用射頻磁控濺鍍成長鐵-硒-碲超導薄膜於氧化鎂和氟化鈣基板上,透過成長溫度、電流源功率、腔體氣壓、靶材與基板間距等參數之調整,以及X射線繞射分析(XRD)、能量色散光譜分析(EDS)等數據判斷薄膜品質,試圖穩定並優化製程,其中發現靶材之成份比例與薄膜樣品有一定程度之落差,在此我們亦探討其背後機制,包含元素之熔點、蒸氣壓等,並以元素之間鍵結能力之強弱其影響尤甚。經XRD數據得知晶相為多晶tetragonal超導相,而於較低溫成長時會部分混雜hexagonal非超導相,甚至使tetragonal相消失。依據EDS數據判定薄膜成分,發現其元素比例和濺鍍靶材有很大落差。由於Fe-Se的鍵結能力遠比Fe-Te大,若靶材中提供過量的Se元素,成長薄膜時,所有Fe元素會被迫和Se進行鍵結,使Te元素無法順利與Fe鍵結而揮發逸散,無法留在薄膜結構內。
研究後期亦利用商業化SQUID量測系統,針對較佳樣品進行電性與磁性的測量。我們無觀察到超導態特有之抗磁性現象,顯示該樣品其超導相的佔比不高。透過電性量測OP45樣品,發現於低溫時有明顯轉折,其Tc-onset約為12.5 K,接近鐵-硒-碲塊材之臨界溫度,但直至2 K仍未抵達零電阻,顯示該樣品超導相並不完全。透過Werthamer-Helfand-Hohenberg理論與Ginzburg-Landau理論計算樣品之超導相干長度ξab(0) = 21.1 nm,與參考文獻相比大了約一個數量級。透過Kim – Anderson熱激發磁通蠕動理論計算釘扎能與外加磁場的關係,發現不符三維超導體系應有之數值。
zh_TW
dc.description.abstractIt has been a decade since the discovery of the iron-based superconductivity. Although the related popularity has slightly gone down a couple years ago, it rises up again due to the research of the topological superconductivity. For example, topological superconductivity can be made from the combination of an iron-based superconducting material and a topological material, two-dimensional topological superconductivity can also be observed on the surface of an ultra-thin iron-based superconductor thin film.
In this research we fabricated Fe-Se-Te (FST) superconducting thin films on MgO and CaF2 single crystal substrates by radio-frequency magnetron sputtering. By the adjustments of the related parameters such as substrate temperature, sputtering power, chamber pressure, the distance between the target and the substrate, and the judgements from the X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) data, we tried to stabilize and optimize the process of the fabrication. We found that the stoichiometry of the thin film samples was different from that of the targets, therefore we discussed the probable mechanism or parameters behind this, including the melting point and vapor pressure of the related elements, and the bond energy of different elements. According to XRD data, the crystalline phase was a polycrystalline tetragonal superconducting phase for samples grown at a higher temperature, while for samples grown at a lower temperature, the crystalline phase was partially mixed with a hexagonal non-superconducting phase and the tetragonal phase even disappeared. The composition of the FST films was judged based on the EDS data, and it was found that there was a big difference of element ratio between the FST thin films and the sputtering target. Since the bonding ability of Fe-Se is much greater than that of Fe-Te, if excessive Se elements are provided in the target material, most Fe elements will be forced to bond with Se, making Te elements unable to bond with Fe smoothly. Thus the Te atoms escape and cannot stay in the structure of FST thin films.
We also made some electric and magnetic measurements on an optimum sample using a commercial SQUID system. We did not observed the diamagnetic phenomenon for the superconducting state, indicating that the sample has a low proportion of superconducting phase. Through electrical measurement, a significant resistive transition low temperatures was observed. The Tc-onset is about 12.5 K, being close to the critical temperature of FST bulk material, but it did not reach zero resistance until 2 K, indicating that the superconducting phase in this sample was not complete. The superconducting coherence length ξab(0) of the sample was calculated by Werthamer-Helfand-Hohenberg theory and Ginzburg-Landau theory, and obtained that ξab(0) = 21.1 nm, which was about an order of magnitude larger than those reported in the references. The relationship between the pinning energy and the applied magnetic field was calculated based on the Kim-Anderson thermal excitation magnetic flux creep theory, and it was found that it did not match the relationship that a three-dimensional superconducting system should have.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:51:17Z (GMT). No. of bitstreams: 1
U0001-0908202004385200.pdf: 5636085 bytes, checksum: 65eb357b7efe2d589aa726066b04117f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 xi
Chapter 1 序論 1
1.1 鐵-硒-碲薄膜簡介[1][2][3] 1
1.2 文獻回顧 2
1.2.1 FST之元素間比例 2
1.2.2 以RF磁控濺鍍方式成長FST薄膜 3
1.2.3 FST薄膜其特性隨成長溫度之變化 5
1.2.4 FST薄膜其特性隨退火製程、膜厚之變化 6
1.2.5 FST薄膜其特性隨基板選擇之變化 7
1.3 研究動機 9
Chapter 2 理論背景與原理介紹 11
2.1 超導體發展簡史 11
2.2 超導體特性 12
2.2.1 零電阻現象 12
2.2.2 麥斯納效應 15
2.3 超導體理論 16
2.3.1 London理論[51] 16
2.3.2 Pippard理論[51] 19
2.3.3 Ginzburg-Landau理論[51][54] 21
2.3.4 第一類超導體與第二類超導體 24
2.3.5 渦旋態 25
2.3.6 釘扎力 26
2.3.7 Bean模型[60][61][62] 27
2.3.8 Kim-Anderson磁通蠕動理論[63][64][65][66] 27
Chapter 3 實驗步驟、方法、技術與量測 30
3.1 研究流程 30
3.2 靶材製備 31
3.3 真空及薄膜技術 33
3.3.1 真空系統[68] 33
3.3.2 射頻磁控濺鍍 35
3.4 基板選用 37
3.4.1 考量因素 37
3.4.2 清洗步驟 37
3.5 濺鍍製程 38
3.6 量測系統 40
3.6.1 X射線繞射儀 40
3.6.2 掃描式電子顯微鏡 41
3.6.3 能量色散光譜儀 42
3.6.4 原子力顯微鏡 42
3.6.5 SQUID量測系統 42
Chapter 4 實驗結果與數據討論 44
4.1 FST薄膜XRD晶相分析 44
4.2 FST薄膜EDS成分分析 51
4.3 FST薄膜電阻率對溫度之關係 56
4.4 FST薄膜磁化率對溫度之關係 57
4.5 FST薄膜上臨界磁場與相干長度探討 59
4.6 FST薄膜釘扎能相關探討 60
Chapter 5 結論 62
參考文獻 63
dc.language.isozh-TW
dc.title以濺鍍方式成長鐵-硒-碲超導薄膜之製程與特性研究zh_TW
dc.titleFabrication and Characterization of FeySe1−xTex Thin Films Grown by Radio Frequency Sputtering
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖書賢(Shu-Xian Liao),陳昭翰(Zhao-Han Chen)
dc.subject.keyword鐵基超導,鐵硒碲,射頻磁控濺鍍,釘扎能,zh_TW
dc.subject.keywordiron-based superconductivity,iron selenide telluride,radio-frequency magnetron sputtering,pinning energy,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202002697
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-0908202004385200.pdf5.5 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved