Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82825Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 賴育英 | zh_TW |
| dc.contributor.advisor | Yu-Ying Lai | en |
| dc.contributor.author | 陳珮瑜 | zh_TW |
| dc.contributor.author | Pei-Yu Chen | en |
| dc.date.accessioned | 2022-11-25T08:00:25Z | - |
| dc.date.available | 2021-09-01 | - |
| dc.date.copyright | 2021-11-12 | - |
| dc.date.issued | 2021 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1 S. Mohammadi. Bacteriorhodopsin as a nanomemory. Advances in Applied Science Research 2012, 3, 2 J. L. Spudich. The multitalented microbial sensory rhodopsins. Trends in Microbiology 2006, 14, 480-487 3 E. Nango et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 2016, 354, 1552-1557 4 R A Mathies, S W Lin, a. J B Ames & W. T. Pollard. From Femtoseconds to Biology: Mechanism of Bacteriorhodopsin's Light-Driven Proton Pump. Annual Review of Biophysics and Biophysical Chemistry 1991, 20, 491-518 5 R. Rammelsberg, G. Huhn, M. Lübben & K. Gerwert. Bacteriorhodopsin's Intramolecular Proton-Release Pathway Consists of a Hydrogen-Bonded Network. Biochemistry 1998, 37, 5001-5009 6 V. Z. Spassov, H. Luecke, K. Gerwert & D. Bashford. pKa calculations suggest storage of an excess proton in a hydrogen-bonded water network in bacteriorhodopsin11Edited by G. von Heijne. Journal of Molecular Biology 2001, 312, 203-219 7 G. Varo & J. K. Lanyi. Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. Biochemistry 1991, 30, 5008-5015 8 L. Zimányi, M. Chang, B. Ni, R. Needleman & J. K. Lanyi. The Two Consecutive M Substrates in the Photocycle of Bacteriorhodopsin are Affected Specifically by the D85N and D96N Residue Replacements. Photochemistry and Photobiology 1992, 56, 1049-1055 9 W. Kühlbrandt. Bacteriorhodopsin — the movie. Nature 2000, 406, 569-570 10 T. Fischer, M. Neebe, T. Juchem & N. A. Hampp. Biomolecular optical data storage and data encryption. IEEE Transactions on NanoBioscience 2003, 2, 1-5 11 P. Saeedi, J. M. Moosaabadi, M. Behmanesh, A. Eidi & J. Mehrabadi. Bacteriorhodopsin and its Mutants allude a breakthrough impending to artificial retina construction and strategies for curing blindness. Journal of paramedical sciences 2011, 2, 0-0 12 M. I. Samoilovich, A. F. Belyanin, E. P. Grebennikov & A. V. Guriyanov. Bacteriorhodopsin the basis of molecular superfast nanoelectronics. Nanotechnology 2002, 13, 763-767 13 Y. Jin, N. Friedman, M. Sheves, T. He & D. Cahen. Bacteriorhodopsin (bR) as an electronic conduction medium: Current transport through bR-containing monolayers. Proceedings of the National Academy of Sciences 2006, 103, 8601-8606 14 G. Palazzo et al. Electronic Transduction of Proton Translocations in Nanoassembled Lamellae of Bacteriorhodopsin. ACS Nano 2014, 8, 7834-7845 15 Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip & O. D. Jurchescu. Tutorial: Organic field-effect transistors: Materials, structure and operation. Journal of Applied Physics 2018, 124, 071101 16 S. P. Senanayak, S. Guha & K. S. Narayan. Polarization fluctuation dominated electrical transport processes of polymer-based ferroelectric field effect transistors. Physical Review B 2012, 85, 115311 17 A. Laudari & S. Guha. Polarization-induced transport in ferroelectric organic field-effect transistors. Journal of Applied Physics 2015, 117, 105501 18 W. Shockley. A Unipolar "Field-Effect" Transistor. Proceedings of the IRE 1952, 40, 1365-1376 19 C. Reese & Z. Bao. Overestimation of the field-effect mobility via transconductance measurements and the origin of the output/transfer characteristic discrepancy in organic field-effect transistors. Journal of Applied Physics 2009, 105, 024506 20 H. Li, Y. Li, H. Li & J.-L. Brédas. Organic Field-Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometer-Sized Devices. Advanced Functional Materials 2017, 27, 1605715 21 L.-L. Chua, P. K. H. Ho, H. Sirringhaus & R. H. Friend. High-stability ultrathin spin-on benzocyclobutene gate dielectric for polymer field-effect transistors. Applied Physics Letters 2004, 84, 3400-3402 22 H.-I. Un, J.-Y. Wang & J. Pei. Recent Efforts in Understanding and Improving the Nonideal Behaviors of Organic Field-Effect Transistors. Advanced Science 2019, 6, 1900375 23 A. F. Paterson et al. Recent Progress in High-Mobility Organic Transistors: A Reality Check. Advanced Materials 2018, 30, 1801079 24 Z. A. Lamport et al. A simple and robust approach to reducing contact resistance in organic transistors. Nature Communications 2018, 9, 5130 25 E. G. Bittle et al. Dependence of Electrical performance on Structural organization in polymer field effect transistors. Journal of Polymer Science Part B: Polymer Physics 2017, 55, 1063-1074 26 S. Choi et al. A Study on Reducing Contact Resistance in Solution-Processed Organic Field-Effect Transistors. ACS Applied Materials & Interfaces 2016, 8, 24744-24752 27 R. Di Pietro, D. Fazzi, T. B. Kehoe & H. Sirringhaus. Spectroscopic Investigation of Oxygen- and Water-Induced Electron Trapping and Charge Transport Instabilities in n-type Polymer Semiconductors. Journal of the American Chemical Society 2012, 134, 14877-14889 28 T. Cui & G. Liang. Dual-gate pentacene organic field-effect transistors based on a nanoassembled SiO2 nanoparticle thin film as the gate dielectric layer. Applied Physics Letters 2005, 86, 064102 29 Y. M. Park & A. Salleo. Dual-gate organic thin film transistors as chemical sensors. Applied Physics Letters 2009, 95, 133307 30 N. Cho et al. High-Dielectric Constant Side-Chain Polymers Show Reduced Non-Geminate Recombination in Heterojunction Solar Cells. Advanced Energy Materials 2014, 4, 1301857 31 V. V. Brus, C. M. Proctor, N. A. Ran & T.-Q. Nguyen. Capacitance Spectroscopy for Quantifying Recombination Losses in Nonfullerene Small-Molecule Bulk Heterojunction Solar Cells. Advanced Energy Materials 2016, 6, 1502250 32 S. D. Collins, C. M. Proctor, N. A. Ran & T.-Q. Nguyen. Understanding Open-Circuit Voltage Loss through the Density of States in Organic Bulk Heterojunction Solar Cells. Advanced Energy Materials 2016, 6, 1501721 33 M. P. Hughes et al. Determining the Dielectric Constants of Organic Photovoltaic Materials Using Impedance Spectroscopy. Advanced Functional Materials 2018, 28, 1801542 34 E. M. Walker & M. C. Lonergan. Extracting electrode space charge limited current: Charge injection into conjugated polyelectrolytes with a semiconductor electrode. Applied Physics Letters 2016, 108, 213301 35 S. D. Collins et al. Observing Ion Motion in Conjugated Polyelectrolytes with Kelvin Probe Force Microscopy. Advanced Electronic Materials 2017, 3, 1700005 36 C. M. Proctor, C. Kim, D. Neher & T.-Q. Nguyen. Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrrole-Based Solution-Processed Small Molecule Solar Cells. Advanced Functional Materials 2013, 23, 3584-3594 37 J. Tian et al. Optically Tunable Field Effect Transistors with Conjugated Polymer Entailing Azobenzene Groups in the Side Chains. Advanced Functional Materials 2019, 29, 1807176 38 Y. Chen et al. Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor. ACS Applied Materials & Interfaces 2017, 9, 7305-7314 39 Y. Wakayama, R. Hayakawa & H.-S. Seo. Recent progress in photoactive organic field-effect transistors. Science and Technology of Advanced Materials 2014, 15, 024202 40 D. Bléger & S. Hecht. Visible-Light-Activated Molecular Switches. Angewandte Chemie International Edition 2015, 54, 11338-11349 41 M.-F. Hsu et al. Using Haloarcula marismortui Bacteriorhodopsin as a Fusion Tag for Enhancing and Visible Expression of Integral Membrane Proteins in Escherichia coli. PLOS ONE 2013, 8, e56363 42 X. Zhang et al. Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. Journal of the American Chemical Society 2011, 133, 15073-15084 43 X. Guo & M. D. Watson. Conjugated Polymers from Naphthalene Bisimide. Organic Letters 2008, 10, 5333-5336 44 Z. Chen et al. Low Band-Gap Conjugated Polymers with Strong Interchain Aggregation and Very High Hole Mobility Towards Highly Efficient Thick-Film Polymer Solar Cells. Advanced Materials 2014, 26, 2586-2591 45 H.-R. Yang et al. Establishment of the Interconnectivity among P(NDI2OD-T2)s in Organic Field-Effect Transistors by Non-Conjugated Crystalline Polymers. Macromolecules 2020, 53, 10349-10356 46 S. López et al. Synthesis of N-Heteroaryl Retinals and their Artificial Bacteriorhodopsins. ChemBioChem 2005, 6, 2078-2087 47 K. Nakanishi, V. Balogh-Nair, M. Arnaboldi, K. Tsujimoto & B. Honig. An external point-charge model for bacteriorhodopsin to account for its purple color. Journal of the American Chemical Society 1980, 102, 7945-7947 48 G. Váró & J. K. Lanyi. Distortions in the photocycle of bacteriorhodopsin at moderate dehydration. Biophysical Journal 1991, 59, 313-322 49 R. Tóth-Boconádi, A. Dér & L. Keszthelyi. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins. Bioelectrochemistry 2011, 81, 17-21 50 C.-H. Tu, H.-P. Yi, S.-Y. Hsieh, H.-S. Lin & C.-S. Yang. Overexpression of Different Types of Microbial Rhodopsins with a Highly Expressible Bacteriorhodopsin from Haloarcula marismortui as a Single Protein in E. coli. Scientific Reports 2018, 8, 14026 51 J. Panidi et al. Remarkable Enhancement of the Hole Mobility in Several Organic Small-Molecules, Polymers, and Small-Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p-Dopant B(C6F5)3. Advanced Science 2018, 5, 1700290 52 B. Yurash et al. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nature Materials 2019, 18, 1327-1334 53 M. Nikolka et al. Low-Voltage, Dual-Gate Organic Transistors with High Sensitivity and Stability toward Electrostatic Biosensing. ACS Applied Materials & Interfaces 2020, 12, 40581-40589 54 B. Kumar, B. K. Kaushik, Y. S. Negi & V. Goswami. Single and dual gate OTFT based robust organic digital design. Microelectronics Reliability 2014, 54, 100-109 55 N. Jahan et al. Optical force microscopy: combining light with atomic force microscopy for nanomaterial identification. Nanophotonics 2019, 8, 1659-1671 56 D. J. Müller & A. Engel. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophysical Journal 1997, 73, 1633-1644 57 V. Giliberti et al. Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches. Nano Letters 2019, 19, 3104-3114 58 M. Stark, C. Möller, D. J. Müller & R. Guckenberger. From Images to Interactions: High-Resolution Phase Imaging in Tapping-Mode Atomic Force Microscopy. Biophysical Journal 2001, 80, 3009-3018 59 A. Moldovan et al. Simple Cleaning and Conditioning of Silicon Surfaces with UV/Ozone Sources. Energy Procedia 2014, 55, 834-844 60 S. Jena & D. Ray. A systematic approach to reduce non idealities in pentacene bottom-contact bottom-gate transistors. Thin Solid Films 2021, 721, 138542 61 E. Ajami & K.-F. Aguey-Zinsou. Formation of OTS self-assembled monolayers at chemically treated titanium surfaces. Journal of Materials Science: Materials in Medicine 2011, 22, 1813-1824 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82825 | - |
| dc.description.abstract | 從嗜鹽古細菌的細胞膜上發現的細菌視紫紅質HmBRI之突變種 HmBRI-D94N是一種由光驅動的氫離子幫浦。HmBRI-D94N內部的全反式retinal在吸收光能之後改變構形,進而使HmBRI-D94N依序放出和吸收一個氫離子。這個光敏感蛋白質可以在光照下瞬間酸化周遭環境,造成一個短時間的pH值變化。本實驗利用HmBRI-D94N氫離子幫浦探討其對於有機場效電晶體 (OFET) 造成的影響。更進一步,HmBRI-D94N是吸收波長為550 nm附近的綠光而受驅動,期望做出對綠光敏感的光感元件。本實驗使用四種高分子,其中三種屬於主要傳遞電洞的p-type高分子材料—P3HT, PDPPT2, PffBT4T,以及一種屬於主要傳遞電子的n-type高分子材料—PNDIT2。這四種共軛高分子都是典型且常應用在OFET的半導體高分子材料,藉由探討氫離子幫浦對於此四種材料的影響,推測出其元件內可能發生的機制。一般元件使用n-doped的silicon wafer作為底部介電質層,而在本實驗所設計的元件中,將光視作為一閘極偏壓,影響置於半導體層上方的細菌視紫紅質,從實驗結果可得知,在綠光的照射下,對於n-type材料並無顯著變化,然而,對於p-type材料卻有光敏性的提升,因此認為retinal在變化構型時存在一偶極矩的改變,進而影響半導體層,形成一類似於雙閘極有機場效電晶體的元件。 | zh_TW |
| dc.description.abstract | HmBRI-D94N is a light-driven proton pump, which is functioned by a series of conformational changes of the retinal inside the protein under light illumination. Conjugated polymers are potential candidates for biological interfacing because they have structural and transport properties that are intermediate to those of the two extremes: soft biological systems and hard inorganic electronics. In this research, fabrication of dual-gate organic field-effect transistors (DG-OFETs) by integrating HmBRI-D94N with conjugated polymers, i.e. P3HT, PDPPT2, PffBT4T, PNDIT2, respectively, is attempted. Conventional n-doped silicon is chosen as the bottom gate, while light serves as the pseudo top gate to modulate the conformation of HmBRI-D94N locating on top of the polymer charge-transporting layer. As a result, HmBRI-D94N shows a marginal effect on the photosensitivity of n-type material devices. However, the photosensitivity of p-type material devices containing HmBRI-D94N is evident, especially under green-light illumination. It is envisaged that HmBRI-D94N functions as a dielectric layer between light and semiconducting layer. Subsequent to the light absorption, the conformational change of HmBRI-D94N would result in the variation in the interfacial dipole between HmBRI-D94N and a p-type polymer, resulting in the threshold-voltage shift and the apparent photosensitivity. DG-OFETs can thus be realized. | en |
| dc.description.provenance | Made available in DSpace on 2022-11-25T08:00:25Z (GMT). No. of bitstreams: 1 U0001-3008202123471300.pdf: 6281950 bytes, checksum: 98b85e7fba0b5946cbfca0a8d24666f0 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 I Abstract II 謝誌 III 目錄 IV 圖目錄 VIII 表目錄 XIII Chapter 1. Introduction 1-1 細菌視紫紅質HmBRⅠ 2 1-1.1 HmBRⅠ的基本介紹 2 1-1.2 HmBRⅠ的運輸機制 4 1-1.3 HmBRⅠ的吸收光譜 6 1-1.4 HmBRⅠ於光電元件之應用 7 1-2 有機場效電晶體 11 1-2.1 元件結構 11 1-2.2 OFET運作原理及參數 12 1-2.3 ID - VD v.s. ID - VG 14 1-2.4 OFET基本公式推導 16 1-3 Non-idealities in OFETs 19 1-3.1 Metal – Semiconductor interface 21 1-3.2 Dielectric – Semiconductor interface 24 1-4 雙閘極有機場效電晶體 (Dual-gate OFETs) 26 1-4.1 公式上的修正 27 1-4.2 文獻回顧 28 1-5 介電常數 32 1-5.1 有機材料之介電常數 33 1-5.2 阻抗量測儀其參數影響 36 1-6 研究動機 39 Chapter 2. Results and Discussion 2-1 有機高分子材料 41 2-1.1 合成路徑 41 2-1.2 基本性質探討 46 2-2 細菌視紫紅質 (HEBR) 之吸收光譜 49 2-2.1 有機溶劑對蛋白質的影響 49 2-2.2 薄膜態下的吸收 51 2-3 有機場效電晶體之分析 55 2-3.1 半導體層—P3HT 56 2-3.2 半導體層—PDPPT2, PNDIT2, PffBT4T 60 2-4 機構探討 64 2-4.1 膜厚影響 (蛋白質、半導體層) 64 2-4.2 電容的變化 70 2-4.3 X光繞射分析 71 2-4.4 表面電荷密度 72 Chapter 3. Conclusions 結論 75 Chapter 4. Methods 4-1 實驗所需化學試劑列表 77 4-2 實驗儀器 78 4-2.1 手套箱(Glove box) 78 4-2.2 核磁共振光譜儀(Nuclear Magnetic Resonance spectrometer;NMR) 78 4-2.3 旋轉塗佈機(Spin Coater) 78 4-2.4 蒸鍍機(Evaporator) 79 4-2.5 光電二極體陣列偵測器(Photodiode array spectrophotometer;PDA) 79 4-3 有機合成步驟 80 4-4 細菌視紫紅質之製備 88 4-5 有機半導體元件製備 (類雙閘極) 90 4-5.1 Polydimethylsiloxane (PDMS) 製作 90 4-5.2 矽晶圓處理 90 4-5.3 薄膜製備 94 4-5.4 半導體元件電極蒸鍍 94 4-5.5 第二層閘極介電質層製作 (細菌視紫紅質) 94 4-6 有機半導體元件量測 96 4-7 p-value之計算與原理 98 參考文獻 101 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 生物電子元件 | zh_TW |
| dc.subject | 雙閘極有機場效電晶體 | zh_TW |
| dc.subject | 光敏感應器 | zh_TW |
| dc.subject | 細菌視紫紅質 | zh_TW |
| dc.subject | Bacteriorhodopsin | en |
| dc.subject | Photo-sensor | en |
| dc.subject | Bioelectronics | en |
| dc.subject | Dual-gate organic field-effect transistor (DG-OFET) | en |
| dc.title | 利用細菌視紫紅質以探討類雙閘極有機場效電晶體 | zh_TW |
| dc.title | Realization of Pseudo Dual-gate Organic Field-Effect Transistors by Bacteriorhodopsin | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 109-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李君婷;邱昱誠;楊啟伸 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Ting Li;Yu-Cheng Chiu;Chii-Shen Yang | en |
| dc.subject.keyword | 細菌視紫紅質,雙閘極有機場效電晶體,生物電子元件,光敏感應器, | zh_TW |
| dc.subject.keyword | Bacteriorhodopsin,Dual-gate organic field-effect transistor (DG-OFET),Bioelectronics,Photo-sensor, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202102902 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2021-09-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2026-09-01 | - |
| Appears in Collections: | 高分子科學與工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-109-2.pdf Restricted Access | 6.13 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
