請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Chieh-Fan Yin | en |
| dc.contributor.author | 鄞偈帆 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:58:39Z | - |
| dc.date.copyright | 2021-11-19 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | [1] Zhou S-F, Yuan C-X, Zhou Z-W, Yang Y-X, He Z, Zhang X, et al. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells. Drug Design, Development and Therapy 2015;9:1293. [2] Toda K, Nagasaka T, Umeda Y, Tanaka T, Kawai T, Fuji T, et al. Genetic and epigenetic alterations of netrin-1 receptors in gastric cancer with chromosomal instability. Clinical Epigenetics 2015;7:73. [3] Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma. Nature Reviews Disease Primers 2017;3:17036. [4] Sitarz R, Skierucha M, Mielko J, Offerhaus J, Maciejewski R, Polkowski W. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Management and Research 2018;10:239-48. [5] Carden CP, Sarker D, Postel-Vinay S, Yap TA, Attard G, Banerji U, et al. Can molecular biomarker-based patient selection in Phase I trials accelerate anticancer drug development? Drug Discovery Today 2010;15:88-97. [6] Akaberi M, Iranshahi M, Mehri S. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology. Phytotherapy Research 2016;30:878-93. [7] Lin L-L, Hsia C-R, Hsu C-L, Huang H-C, Juan H-F. Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. BMC Genomics 2015;16:41. [8] Cao E-H, Liu Xq, Wang J-J, Xu N-F. Effect of Natural Antioxidant Tanshinone II-A on DNA Damage by Lipid Peroxidation in Liver Cells. Free Radical Biology Medicine 1996;20:801-6. [9] Zhou L, Zuo Z, Chow MSS. Danshen: An Overview of Its Chemistry, Pharmacology, Pharmacokinetics, and Clinical Use. The Journal of Clinical Pharmacology 2005;45:1345-59. [10] Tang C, Xue H, Bai C, Fu R, Wu A. The effects of Tanshinone IIA on blood brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 2010;17:1145-9. [11] Liu T, Jin H, Sun Q-R, Xu J-H, Hu H-T. The neuroprotective effects of tanshinone IIA on β-amyloid-induced toxicity in rat cortical neurons. Neuropharmacology 2010;59:595-604. [12] Wu W-L, Chang W-L, Chen C-F. Cytotoxic Activities of Tanshinones Against Human Carcinoma Cell Lines. The American Journal of Chinese Medicine 1991;19:207-16. [13] Yuan S-L. Growth inhibition and apoptosis induction of tanshinone II-A on human hepatocellular carcinoma cells. World Journal of Gastroenterology 2004;10:2024. [14] Mosaddik MA. In vitro cytotoxicity of Tanshinones isolated from Salvia miltiorrhiza Bunge against P388 lymphocytic leukemia cells. Phytomedicine 2003;10:682-5. [15] He J, Zhou Q, Yuan S, Wang Y, Chen X, Qin J. Apoptosis-inducing effect of Tanshinone and its molecular mechanism on human lung cancer cells. Zhongguo fei ai za zhi = Chinese journal of lung cancer 2002;5:257-9. [16] Zhang J, Wang J, Jiang J-Y, Liu S-D, Fu K, Liu H-Y. Tanshinone IIA induces cytochrome c-mediated caspase cascade apoptosis in A549 human lung cancer cells via the JNK pathway. International Journal of Oncology 2014;45:683-90. [17] Munagala R, Aqil F, Jeyabalan J, Gupta RC. Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Letters 2014;356(2):536–46. [18] Chiu S-C, Huang S-Y, Chang S-F, Chen S-P, Chen C-C, Lin T-H, et al. Potential Therapeutic Roles of Tanshinone IIA in Human Bladder Cancer Cells. International Journal of Molecular Sciences 2014;15:15622-37. [19] Zhou L-H, Hu Q, Sui H, Ci S-J, Wang Y, Liu X, et al. Tanshinone II-A Inhibits Angiogenesis through Down Regulation of COX-2 in Human Colorectal Cancer. Asian Pacific Journal of Cancer Prevention 2012;13:4453-8. [20] Chen G-Y, Shu Y-C, Chuang D-Y, Wang Y-C. Inflammatory and Apoptotic Regulatory Activity of Tanshinone IIA in Helicobacter pylori-Infected Cells. The American Journal of Chinese Medicine 2016;44:1187-206. [21] Su C-C. Tanshinone IIA decreases the migratory ability of AGS cells by decreasing the protein expression of matrix metalloproteinases, nuclear factor κB-p65 and cyclooxygenase-2. Molecular Medicine Reports 2016;13:1263-8. [22] Ubersax JA, Ferrell Jr JE. Mechanisms of specificity in protein phosphorylation. Nature Reviews: Molecular Cell Biology 2007;8(7):530-41. [23] Humphrey SJ, James DE, Mann M, Metabolism. Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends in Endocrinology and Metabolism 2015;26(12):676-87. [24] Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. International journal of molecular medicine 2017;40(2):271-80. [25] Macek B, Mann M, Olsen JV. Global and site-specific quantitative phosphoproteomics: principles and applications. Annual review of pharmacology and toxicology 2009;49:199-221. [26] Harsha H, Pandey A. Phosphoproteomics in cancer. Molecular oncology 2010;4(6):482-95. [27] Dunn JD, Reid GE, Bruening ML. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrometry Reviews 2009;29:29– 54. [28] Nakagami H. StageTip-Based HAMMOC, an Efficient and Inexpensive Phosphopeptide Enrichment Method for Plant Shotgun Phosphoproteomics. In: Jorrin-Novo J. KS, Weckwerth W., Wienkoop S., editor Plant Proteomics. Methods in molecular biology (Clifton, N.J.): Humana Press; 2014, p. 595-607. [29] Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. Embo j 2008;27(2):433-46. [30] Wang H, Gao Z, Liu X, Agarwal P, Zhao S, Conroy DW, et al. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun 2018;9(1):562. [31] Losón OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Molecular biology of the cell 2013;24(5):659-67. [32] Anderson GR, Wardell SE, Cakir M, Yip C, Ahn YR, Ali M, et al. Dysregulation of mitochondrial dynamics proteins are a targetable feature of human tumors. Nat Commun 2018;9(1):1677. [33] Kalia R, Wang RY, Yusuf A, Thomas PV, Agard DA, Shaw JM, et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 2018;558(7710):401-5. [34] Tanaka A, Youle RJ. A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis. Mol Cell 2008;29(4):409-10. [35] Han H, Tan J, Wang R, Wan H, He Y, Yan X, et al. PINK1 phosphorylates Drp1(S616) to regulate mitophagy-independent mitochondrial dynamics. EMBO Rep 2020;21(8):e48686. [36] Chang CR, Blackstone C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 2007;282(30):21583-7. [37] Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 2012;15(2):186-200. [38] Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, et al. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 2008;182(3):573-85. [39] James DI, Parone PA, Mattenberger Y, Martinou JC. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 2003;278(38):36373-9. [40] Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 2010;191(6):1141-58. [41] Yu R, Jin SB, Lendahl U, Nistér M, Zhao J. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. Embo j 2019;38(8). [42] Wong YC, Ysselstein D, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 2018;554(7692):382-6. [43] Hanada Y, Ishihara N, Wang L, Otera H, Ishihara T, Koshiba T, et al. MAVS is energized by Mff which senses mitochondrial metabolism via AMPK for acute antiviral immunity. Nat Commun 2020;11(1):5711. [44] Chen H, Ren S, Clish C, Jain M, Mootha V, McCaffery JM, et al. Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. J Cell Biol 2015;211(4):795-805. [45] Li YJ, Cao YL, Feng JX, Qi Y, Meng S, Yang JF, et al. Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset. Nat Commun 2019;10(1):4914. [46] Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 2014;204(6):919-29. [47] Cao YL, Meng S, Chen Y, Feng JX, Gu DD, Yu B, et al. MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 2017;542(7641):372-6. [48] Mishra P, Carelli V, Manfredi G, Chan DC. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab 2014;19(4):630-41. [49] Franco A, Kitsis RN, Fleischer JA, Gavathiotis E, Kornfeld OS, Gong G, et al. Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature 2016;540(7631):74-9. [50] Rocha AG, Franco A, Krezel AM, Rumsey JM, Alberti JM, Knight WC, et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science 2018;360(6386):336-41. [51] Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F, Lakshminaranayan S, et al. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci U S A 2016;113(40):11249-54. [52] Ban T, Ishihara T, Kohno H, Saita S, Ichimura A, Maenaka K, et al. Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat Cell Biol 2017;19(7):856-63. [53] Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ, Yao JL, et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 2015;57(3):521-36. [54] Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 2008;26:1367-72. [55] Herwig R, Hardt C, Lienhard M, Kamburov A. Analyzing and interpreting genome data at the network level with ConsensusPathDB. Nature Protocols 2016;11:1889-907. [56] Hsu C-L, Wang J-K, Lu P-C, Huang H-C, Juan H-FJB. DynaPho: a web platform for inferring the dynamics of time-series phosphoproteomics. Bioinformatics 2017;33(22):3664-6. [57] Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. [58] Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166-9. [59] Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 2010;11:R25. [60] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 2005;102:15545-50. [61] Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009;25(8):1091-3. [62] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 2003;13(11):2498-504. [63] De Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, et al. Icy: an open bioimage informatics platform for extended reproducible research. Nature Methods 2012;9(7):690. [64] Pagliuso A, Tham TN, Stevens JK, Lagache T, Persson R, Salles A, et al. A role for septin 2 in Drp1‐mediated mitochondrial fission. EMBO Reports 2016;17(6):858-73. [65] Kao S-C. Temporal Phosphoproteome Dynamics Reveal Response Pathways of Tanshinone IIA in Gastric Cancer AGS Cells. Master Thesis. Institute of Molecular and Cellular Biology. National Taiwan University; 2015:1-123. [66] Hu C-W, Hsu C-L, Wang Y-C, Ishihama Y, Ku W-C, Huang H-C, et al. Temporal phosphoproteome dynamics induced by an ATP synthase inhibitor citreoviridin. Molecular Cellular Proteomics 2015;14(12):3284-98. [67] Wu R, Dephoure N, Haas W, Huttlin EL, Zhai B, Sowa ME, et al. Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Molecular Cellular Proteomics 2011;10(8):1–12. [68] Ahmad FH, Wu XN, Stintzi A, Schaller A, Schulze WX. The systemin signaling cascade as derived from time course analyses of the systemin-responsive phosphoproteome. Molecular Cellular Proteomics 2019;18(8):1526-42. [69] Wu X, Sklodowski K, Encke B, Schulze WX. A kinase-phosphatase signaling module with BSK8 and BSL2 involved in regulation of sucrose-phosphate synthase. Journal of proteome research 2014;13(7):3397-409. [70] Zhang X-H, Wu H, Tang S, Li Q-N, Xu J, Zhang M, et al. Apoptosis in response to heat stress is positively associated with heat-shock protein 90 expression in chicken myocardial cells in vitro. Journal of veterinary science 2017;18(2):129-40. [71] Gu Z, Li L, Wu F, Zhao P, Yang H, Liu Y, et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca 2+ dyshomeostasis and the subsequent Bax mitochondrial translocation. Scientific reports 2015;5(1):1-15. [72] Velichko AK, Petrova NV, Razin SV, Kantidze OL. Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress. Nucleic acids research 2015;43(13):6309-20. [73] Petrova NV, Velichko AK, Razin SV, Kantidze OL. Early S-phase cell hypersensitivity to heat stress. Cell Cycle 2016;15(3):337-44. [74] Dubrez L, Causse S, Bonan NB, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene 2019:1-14. [75] Houston BJ, Nixon B, Martin JH, De Iuliis GN, Trigg NA, Bromfield EG, et al. Heat exposure induces oxidative stress and DNA damage in the male germ line. Biology of Reproduction 2018;98(4):593-606. [76] Kimball AL, McCue PM, Petrie MA, Shields RK. Whole body heat exposure modulates acute glucose metabolism. International Journal of Hyperthermia 2018;35(1):644-51. [77] Belhadj Slimen I, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. International journal of hyperthermia 2014;30(7):513-23. [78] Vidyasagar A, Wilson NA, Djamali A. Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair 2012;5:7. [79] Homma T, Fujii J. Heat stress promotes the down-regulation of IRE1α in cells: An atypical modulation of the UPR pathway. Experimental cell research 2016;349(1):128-38. [80] Ježek J, Cooper KF, Strich RJA. Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants 2018;7(1):13. [81] Bruey J-M, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nature Cell Biology 2000;2:645-52. [82] Katsogiannou M, Andrieu C, Rocchi P. Heat shock protein 27 phosphorylation state is associated with cancer progression. Frontiers in Genetics 2014;5:346. [83] Choi S-K, Kam H, Kim K-Y, Park SI, Lee Y-S. Targeting heat shock protein 27 in cancer: a druggable target for cancer treatment? Cancers 2019;11(8):1195. [84] Yuan J, Rozengurt E. PKD, PKD2, and p38 MAPK mediate Hsp27 serine‐82 phosphorylation induced by neurotensin in pancreatic cancer PANC‐1 cells. Journal of cellular biochemistry 2008;103(2):648-62. [85] Su C-C, Chiu T-L. Tanshinone IIA decreases the protein expression of EGFR, and IGFR blocking the PI3K/Akt/mTOR pathway in gastric carcinoma AGS cells both in vitro and in vivo. Oncology Reports 2016;36:1173-9. [86] Su C-C. Tanshinone IIA inhibits gastric carcinoma AGS cells through increasing p-p38, p-JNK and p53 but reducing p-ERK, CDC2 and cyclin B1 expression. Anticancer research 2014;34:7097-110. [87] Su CC. Tanshinone IIA inhibits human gastric carcinoma AGS cell growth by decreasing BiP, TCTP, Mcl1 and BclxL and increasing Bax and CHOP protein expression. International Journal of Molecular Medicine 2014;34:1661-8. [88] Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nature Reviews: Molecular Cell Biology 2007;8(9):722. [89] Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates 2004;7(2):97-110. [90] Moon D-O, Kim M-O, Choi YH, Hyun JW, Chang WY, Kim G-Y. Butein induces G2/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer letters 2010;288(2):204-13. [91] Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proceedings of the National Academy of Sciences 2006;103(8):2653-8. [92] Vahid S, Thaper D, Gibson KF, Bishop JL, Zoubeidi A. Molecular chaperone Hsp27 regulates the Hippo tumor suppressor pathway in cancer. Scientific Reports 2016;6:31842. [93] Lv C, Zeng H-W, Wang J-X, Yuan X, Zhang C, Fang T, et al. The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG. Cell Death Disease 2018;9:165. [94] Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 2012;150:549-62. [95] Brunet Simioni M, De Thonel A, Hammann A, Joly AL, Bossis G, Fourmaux E, et al. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene 2009;28:3332-44. [96] Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 2015;57(3):537-51. [97] Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 2012;26(5):2175-86. [98] Malhotra A, Dey A, Prasad N, Kenney AM. Sonic Hedgehog Signaling Drives Mitochondrial Fragmentation by Suppressing Mitofusins in Cerebellar Granule Neuron Precursors and Medulloblastoma. Mol Cancer Res 2016;14(1):114-24. [99] Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 2015;18(4):501-10. [100] Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013;32(40):4814-24. [101] Ferreira-da-Silva A, Valacca C, Rios E, Pópulo H, Soares P, Sobrinho-Simões M, et al. Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS One 2015;10(3):e0122308. [102] Jung JU, Ravi S, Lee DW, McFadden K, Kamradt ML, Toussaint LG, et al. NIK/MAP3K14 Regulates Mitochondrial Dynamics and Trafficking to Promote Cell Invasion. Curr Biol 2016;26(24):3288-302. [103] Xu K, Chen G, Li X, Wu X, Chang Z, Xu J, et al. MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci Rep 2017;7:41718. [104] Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 2005;437(7062):1173-8. [105] Paik H, Heo HS, Ban HJ, Cho SB. Unraveling human protein interaction networks underlying co-occurrences of diseases and pathological conditions. J Transl Med 2014;12:99. [106] Li Z, Ivanov AA, Su R, Gonzalez-Pecchi V, Qi Q, Liu S, et al. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nat Commun 2017;8:14356. [107] Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015;43(Database issue):D447-52. [108] Herkenne S, Ek O, Zamberlan M, Pellattiero A, Chergova M, Chivite I, et al. Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. Cell Metab 2020;31(5):987-1003.e8. [109] Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, et al. The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species. Dev Cell 2017;40(6):583-94.e6. [110] Smith G, Gallo G. To mdivi-1 or not to mdivi-1: Is that the question? Dev Neurobiol 2017;77(11):1260-8. [111] Manczak M, Kandimalla R, Yin X, Reddy PH. Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet 2019;28(2):177-99. [112] Wu D, Dasgupta A, Chen KH, Neuber-Hess M, Patel J, Hurst TE, et al. Identification of novel dynamin-related protein 1 (Drp1) GTPase inhibitors: Therapeutic potential of Drpitor1 and Drpitor1a in cancer and cardiac ischemia-reperfusion injury. FASEB J 2020;34(1):1447-64. [113] Miyaji Y, Walter S, Chen L, Kurihara A, Ishizuka T, Saito M, et al. Distribution of KAI-9803, a novel δ-protein kinase C inhibitor, after intravenous administration to rats. Drug Metab Dispos 2011;39(10):1946-53. [114] Qi X, Qvit N, Su YC, Mochly-Rosen D. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 2013;126(Pt 3):789-802. [115] Kornfeld OS, Qvit N, Haileselassie B, Shamloo M, Bernardi P, Mochly-Rosen D. Interaction of mitochondrial fission factor with dynamin related protein 1 governs physiological mitochondrial function in vivo. Sci Rep 2018;8(1):14034. [116] Joshi AU, Saw NL, Vogel H, Cunnigham AD, Shamloo M, Mochly-Rosen D. Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol Med 2018;10(3):e8166. [117] Serasinghe MN, Seneviratne AM, Smrcka AV, Yoon Y. Identification and characterization of unique proline-rich peptides binding to the mitochondrial fission protein hFis1. J Biol Chem 2010;285(1):620-30. [118] Bhave M, Mettlen M, Wang X, Schmid SL. Early and nonredundant functions of dynamin isoforms in clathrin-mediated endocytosis. Mol Biol Cell 2020;31(18):2035-47. [119] Kong L, Sochacki KA, Wang H, Fang S, Canagarajah B, Kehr AD, et al. Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 2018;560(7717):258-62. [120] Lee JE, Westrate LM, Wu H, Page C, Voeltz GK. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 2016;540(7631):139-43. [121] Hill T, Odell LR, Edwards JK, Graham ME, McGeachie AB, Rusak J, et al. Small molecule inhibitors of dynamin I GTPase activity: development of dimeric tyrphostins. J Med Chem 2005;48(24):7781-8. [122] Hill TA, Gordon CP, McGeachie AB, Venn-Brown B, Odell LR, Chau N, et al. Inhibition of dynamin mediated endocytosis by the dynoles--synthesis and functional activity of a family of indoles. J Med Chem 2009;52(12):3762-73. [123] McCluskey A, Daniel JA, Hadzic G, Chau N, Clayton EL, Mariana A, et al. Building a better dynasore: the dyngo compounds potently inhibit dynamin and endocytosis. Traffic 2013;14(12):1272-89. [124] Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis 2019;10(10):687. [125] Eppinga RD, Krueger EW, Weller SG, Zhang L, Cao H, McNiven MA. Increased expression of the large GTPase dynamin 2 potentiates metastatic migration and invasion of pancreatic ductal carcinoma. Oncogene 2012;31(10):1228-41. [126] Joshi S, Braithwaite AW, Robinson PJ, Chircop M. Dynamin inhibitors induce caspase-mediated apoptosis following cytokinesis failure in human cancer cells and this is blocked by Bcl-2 overexpression. Mol Cancer 2011;10:78. [127] Hee Kim Y, Kim KY, Jun do Y, Kim JS, Kim YH. Inhibition of autophagy enhances dynamin inhibitor-induced apoptosis via promoting Bak activation and mitochondrial damage in human Jurkat T cells. Biochem Biophys Res Commun 2016;478(4):1609-16. [128] Ge Z, Gu Y, Han Q, Zhao G, Li M, Li J, et al. Targeting High Dynamin-2 (DNM2) Expression by Restoring Ikaros Function in Acute Lymphoblastic Leukemia. Sci Rep 2016;6:38004. [129] Luwor R, Morokoff AP, Amiridis S, D'Abaco G, Paradiso L, Stylli SS, et al. Targeting Glioma Stem Cells by Functional Inhibition of Dynamin 2: A Novel Treatment Strategy for Glioblastoma. Cancer Invest 2019;37(3):144-55. [130] Chircop M, Perera S, Mariana A, Lau H, Ma MP, Gilbert J, et al. Inhibition of dynamin by dynole 34-2 induces cell death following cytokinesis failure in cancer cells. Mol Cancer Ther 2011;10(9):1553-62. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82733 | - |
| dc.description.abstract | 胃癌是世界上許多人患有的癌症之一,然而目前尚未發現有效的治療策略。許多之前的研究顯示,從傳統草藥材:丹參 (Salvia miltiorrhiza) ,其中提取的丹參酮 IIA 可以對抗對多種癌症。在我們先前的研究結果有提到,丹參酮 IIA 會誘導胃癌細胞株走向細胞死亡,但是確切的訊號機制及其反應路徑仍不是非常清楚。而我們也知道在廣泛的癌症生理過程中,癌細胞的轉譯後修飾會發揮其重要作用去調節許多細胞相關的反應路徑以及訊號傳訊級聯反應。於是在本篇研究中,我們先是整合了轉錄體學和動態磷酸蛋白質體學,並以多體學的方式揭開胃癌細胞中由丹參酮 IIA 所觸發的調控網絡。接著我們確定了丹參酮 IIA 會導致熱休克蛋白 27 其絲氨酸 82 的位置磷酸化,從而導致活性氧的累積、蛋白折疊不全反應以及粒線體形態分裂。我們也從文獻上知道,線粒體在各種類型的細胞中的融合和分裂以及處於不同的環境或壓力下,線粒體會呈現高度動態的狀態。也有越來越多的證據提出,粒線體動態的失衡最後會導致多種人類相關癌症的死亡。因此,未來針對調控線粒體動態平衡可以說是一個有潛力的治療目標。從我們結果可以看到,細胞壓力的累積進一步增加了熱休克因子1的表達水平。而熱休克因子1 會同時參與熱休克壓力和細胞凋亡反應,其下游調控的基因也在丹參酮 IIA 處理組中被活化。總結來說,我們運用了多體學的方法在胃癌細胞中建立了以丹參酮 IIA 為影響因子的調控網絡。然後觀察到丹參酮 IIA 首先會透過增加熱休克蛋白 27 其絲氨酸 82 的位置磷酸化並對胃癌細胞產生壓力,接著活化胃癌細胞中熱休克因子1的反應路徑,最後誘導胃癌細胞往計畫性細胞死亡邁進。本篇研究為胃癌治療策略的開發上提供了全面性且有建設性的見解。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:58:39Z (GMT). No. of bitstreams: 1 U0001-0610202113311000.pdf: 62842570 bytes, checksum: 66dfac4f00351a86638b191c819d859a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 中文摘要 i Abstract ii Contents iv List of Tables vii List of Figures viii Chapter 1. Introduction 1 1.1 Gastric cancer 1 1.2 Tanshinone IIA 1 1.3 Phosphoproteomics 2 1.4 Mitochondrial dynamics 2 1.4.1 Mitochondrial fission 3 1.4.2 Mitochondrial fusion 5 1.5 Motivation 7 Chapter 2. Materials and Methods 8 2.1 Cell culture 8 2.2 Drug treatments 8 2.3 Cell line processing protocol for phosphoproteomic analysis 8 2.4 Dimethyl labeling of peptides 9 2.5 Enrichment of phosphopeptides 9 2.6 Strong cation exchange (SCX) chromatography of phosphopeptides 10 2.7 NanoLC−MS/MS analysis for phosphoproteome 10 2.8 Experimental design and statistical rationale for cell-line phosphoproteomes 11 2.9 Pathway enrichment analysis and functional profiling 12 2.10 Kinase enrichment analysis 13 2.11 Transcription factor enrichment analysis 14 2.12 Functional analysis of HSF1 targets 14 2.13 Proliferation assay 14 2.14 Flow cytometry detection of reactive oxygen species 15 2.15 Western blot analysis 15 2.16 Immunocytochemistry and image analysis 16 2.17 RNA extraction and cDNA preparation from cell cultures 16 2.18 Real-time polymerase chain reaction (RT-PCR) 17 2.19 Cloning and site-directed mutagenesis of HSP27 17 2.20 Cell Transfection 18 2.21 Statistical analysis 18 Chapter 3. Results 20 3.1 Overall experimental design for profiling the phosphoproteome and transcriptome regulated by TIIA in gastric cancer 20 3.2 Quantitative phosphoproteome response to TIIA treatment in gastric cancer 21 3.3 Functional networks of TIIA treatment-regulated proteins in gastric cancer 21 3.4 TIIA induced mitochondrial fission of AGS cells 23 3.5 Temporal TIIA treatment increased phosphorylation of HSP27 at serine 82 23 3.6 TIIA regulated relationship between phosphorylation of HSP27 and expression of HSF1 in long-term treatment 24 3.7 TIIA regulated HSF1-related genes during long-term treatment 25 Chapter 4. Discussion 26 Chapter 5. Conclusion 38 Reference 39 Tables 61 Figures 68 Appendix. Publication List 93 | |
| dc.language.iso | en | |
| dc.subject | 丹參酮IIA | zh_TW |
| dc.subject | 粒線體動態平衡 | zh_TW |
| dc.subject | 胃癌 | zh_TW |
| dc.subject | 熱休克因子1 | zh_TW |
| dc.subject | 粒線體分裂 | zh_TW |
| dc.subject | 癌症治療 | zh_TW |
| dc.subject | 粒線體融合 | zh_TW |
| dc.subject | 磷酸蛋白體 | zh_TW |
| dc.subject | 熱休克蛋白27 | zh_TW |
| dc.subject | Gastric cancer | en |
| dc.subject | Cancer therapy | en |
| dc.subject | Mitochondrial fusion | en |
| dc.subject | Mitochondrial fission | en |
| dc.subject | Mitochondria dynamics | en |
| dc.subject | Heat shock factor 1 (HSF1) | en |
| dc.subject | Heat shock protein 27 (HSP27) | en |
| dc.subject | Phosphoproteome | en |
| dc.subject | Tanshinone IIA | en |
| dc.title | 丹參酮 IIA 經由熱休克蛋白 27 之磷酸化與粒線體動態變化而誘導細胞死亡 | zh_TW |
| dc.title | Tanshinone IIA-Induced Cell Death via Heat Shock Protein 27 Phosphorylation and Mitochondria Dynamics | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃宣誠(Hsin-Tsai Liu),黃翠琴(Chih-Yang Tseng),張心儀,許家郎 | |
| dc.subject.keyword | 胃癌,丹參酮IIA,磷酸蛋白體,熱休克蛋白27,熱休克因子1,粒線體動態平衡,粒線體分裂,粒線體融合,癌症治療, | zh_TW |
| dc.subject.keyword | Gastric cancer,Tanshinone IIA,Phosphoproteome,Heat shock protein 27 (HSP27),Heat shock factor 1 (HSF1),Mitochondria dynamics,Mitochondrial fission,Mitochondrial fusion,Cancer therapy, | en |
| dc.relation.page | 114 | |
| dc.identifier.doi | 10.6342/NTU202103581 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-10-31 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0610202113311000.pdf 未授權公開取用 | 61.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
