Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82719Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李伯訓(Bor-Shiunn Lee) | |
| dc.contributor.author | De-Hao Lai | en |
| dc.contributor.author | 賴德豪 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:58:26Z | - |
| dc.date.copyright | 2021-11-09 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | 1. Bagan, J., Sarrion, G., Jimenez, Y. (2010). Oral cancer: clinical features. Oral oncology, 46(6), 414-417. 2. Andreadis, C., Vahtsevanos, K., Sidiras, T., Thomaidis, I., Antoniadis, K., Mouratidou, D. (2003). 5-Fluorouracil and cisplatin in the treatment of advanced oral cancer. Oral oncology, 39(4), 380-385. 3. Neville, B. W., Day, T. A. (2002). Oral cancer and precancerous lesions. CA: a cancer journal for clinicians, 52(4), 195-215. 4. Bettendorf, O., Piffko, J., Bankfalvi, A. (2004). Prognostic and predictive factors in oral squamous cell cancer: important tools for planning individual therapy? Oral oncology, 40(2), 110-119. 5. Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., Castedo, M., Kroemer, G. (2012). Molecular mechanisms of cisplatin resistance. Oncogene, 31(15), 1869-1883. 6. Barabas, K., Milner, R., Lurie, D., Adin, C. (2008). Cisplatin: a review of toxicities and therapeutic applications. Veterinary and comparative oncology, 6(1), 1-18. 7. Dasari, S., Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, 740, 364-378. 8. Mourya, V. K., Inamdar, N. N. (2008). Chitosan-modifications and applications: opportunities galore. Reactive and functional polymers, 68(6), 1013-1051. 9. Guy, R. H., Kalia, Y. N., Delgado-Charro, M. B., Merino, V., López, A., Marro, D. (2000). Iontophoresis: electrorepulsion and electroosmosis. Journal of controlled release, 64(1-3), 129-132. 10. Babu, A., Ramesh, R. (2017). Multifaceted applications of chitosan in cancer drug delivery and therapy. Marine drugs, 15(4), 96. 11. Rivera, C. (2015). Essentials of oral cancer. International journal of clinical and experimental pathology, 8(9), 11884. 12. Dissanayaka, W. L., Pitiyage, G., Kumarasiri, P. V. R., Liyanage, R. L. P. R., Dias, K. D., Tilakaratne, W. M. (2012). Clinical and histopathologic parameters in survival of oral squamous cell carcinoma. Oral surgery, oral medicine, oral pathology and oral radiology, 113(4), 518-525. 13. Boyle, P., Macfarlane, G. J., Maisonneuve, P., Zheng, T., Scully, C., Tedesco, B. (1990). Epidemiology of mouth cancer in 1989: a review. Journal of the royal society of medicine, 83(11), 724-730. 14. Day, T. A., Davis, B. K., Gillespie, M. B., Joe, J. K., Kibbey, M., Martin-Harris, B., Neville, B., Reed, S. G., Richardson, M. S., Rosenzweig, S., Sharma, A. K., Smith, M. M., Stewart, S., Stuart, R. K. (2003). Oral cancer treatment. Current treatment options in oncology, 4(1), 27. 15. Lingen, M. W., Kalmar, J. R., Karrison, T., Speight, P. M. (2008). Critical evaluation of diagnostic aids for the detection of oral cancer. Oral oncology, 44(1), 10-22. 16. Andreadis, C., Vahtsevanos, K., Sidiras, T., Thomaidis, I., Antoniadis, K., Mouratidou, D. (2003). 5-Fluorouracil and cisplatin in the treatment of advanced oral cancer. Oral oncology, 39(4), 380-385. 17. Rosenberg, B., Van Camp, L., Krigas, T. (1965). Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 205(4972), 698-699. 18. Shen, D. W., Pouliot, L. M., Hall, M. D., Gottesman, M. M. (2012). Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacological reviews, 64(3), 706-721. 19. Avendaño, C., Menendez, J. C. (2015). DNA alkylating agent. Medicinal chemistry of anticancer drug. USA elsevier science, 197–237. 20. Hamroun, A., Lenain, R., Bigna, J. J., Speyer, E., Bui, L., Chamley, P., Pottier, N., Cauffiez, C., Dewaeles, E., Dhalluin, X., Scherpereel, A., Hazzan, M., Maanaoui, M., Glowacki, F. (2019). Prevention of cisplatin-induced acute kidney injury: a systematic review and meta-analysis. Drugs, 79(14), 1567-1582. 21. Li, Y., Lim, S., Ooi, C. P. (2012). Fabrication of cisplatin-loaded poly (lactide-co-glycolide) composite microspheres for osteosarcoma treatment. Pharmaceutical research, 29(3), 756-769. 22. Kim, B. Y., Rutka, J. T., Chan, W. C. (2010). Nanomedicine. New England journal of medicine, 363(25), 2434-2443. 23. Jain, R. K., Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature reviews clinical oncology, 7(11), 653-664. 24. Langer, R. (1990). New methods of drug delivery. Science, 249(4976), 1527-1533. 25. Moghimi, S. M., Hunter, A. C., Murray, J. C. (2005). Nanomedicine: current status and future prospects. The FASEB journal, 19(3), 311-330. 26. Pinto-Alphandary, H., Andremont, A., Couvreur, P. (2000). Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. International journal of antimicrobial agents, 13(3), 155-168. 27. Lu, X. Y., Wu, D. C., Li, Z. J., Chen, G. Q. (2011). Polymer nanoparticles. Progress in molecular biology and translational science, 104, 299-323. 28. Rao, J. P., Geckeler, K. E. (2011). Polymer nanoparticles: preparation techniques and size-control parameters. Progress in polymer science, 36(7), 887-913. 29. Pinto-Alphandary, H., Andremont, A., Couvreur, P. (2000). Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. International journal of antimicrobial agents, 13(3), 155-168. 30. Couvreur, P., Roland, M., Speiser, P. (1982). Biodegradable submicroscopic particles containing a biologically active substance and compositions containing them. U.S. patent no. 4,329,332. Washington, DC: U.S. patent and trademark office. 31. Zhang, X., Dong, Y., Zeng, X., Liang, X., Li, X., Tao, W., Chen, H., Jiang, Y., Mei, L., Feng, S. S. (2014). The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 35(6), 1932-1943. 32. Sreekumar, S., Goycoolea, F. M., Moerschbacher, B. M., Rivera-Rodriguez, G. R. (2018). Parameters influencing the size of chitosan-TPP nano-and microparticles. Scientific reports, 8(1), 1-11. 33. Janvikul, W., Uppanan, P., Thavornyutikarn, B., Krewraing, J., Prateepasen, R. (2006). In vitro comparative hemostatic studies of chitin, chitosan, and their derivatives. Journal of applied polymer science, 102(1), 445-451. 34. Dodane, V., Vilivalam, V. D. (1998). Pharmaceutical applications of chitosan. Pharmaceutical science technology today, 1(6), 246-253. 35. Sogias, I. A., Williams, A. C., Khutoryanskiy, V. V. (2008). Why is chitosan mucoadhesive?. Biomacromolecules, 9(7), 1837-1842. 36. He, P., Davis, S. S., Illum, L. (1998). In vitro evaluation of the mucoadhesive properties of chitosan microspheres. International journal of pharmaceutics, 166(1), 75-88. 37. Xu, J., Strandman, S., Zhu, J. X., Barralet, J., Cerruti, M. (2015). Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials, 37, 395-404. 38. Yeh, T. H., Hsu, L. W., Tseng, M. T., Lee, P. L., Sonjae, K., Ho, Y. C., Sung, H. W. (2011). Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials, 32(26), 6164-6173. 39. Hsu, L. W., Lee, P. L., Chen, C. T., Mi, F. L., Juang, J. H., Hwang, S. M., Ho, Y. H., Sung, H. W. (2012). Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan. Biomaterials, 33(26), 6254-6263. 40. Gan, Q., Wang, T., Cochrane, C., McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids and surfaces B: biointerfaces, 44(2-3), 65-73. 41. Bugnicourt, L., Alcouffe, P., Ladavière, C. (2014). Elaboration of chitosan nanoparticles: favorable impact of a mild thermal treatment to obtain finely divided, spherical, and colloidally stable objects. Colloids and surfaces A: physicochemical and engineering aspects, 457, 476-486. 42. Ko, J. A., Park, H. J., Hwang, S. J., Park, J. B., Lee, J. S. (2002). Preparation and characterization of chitosan microparticles intended for controlled drug delivery. International journal of pharmaceutics, 249(1-2), 165-174. 43. Vllasaliu, D., Exposito-Harris, R., Heras, A., Casettari, L., Garnett, M., Illum, L., Stolnik, S. (2010). Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution. International journal of pharmaceutics, 400(1-2), 183-193. 44. Moeini, A., Cimmino, A., Dal Poggetto, G., Di Biase, M., Evidente, A., Masi, M., Lavermicocca, P., Valerio, F., Leone, A., Santagata, G., Malinconico, M. (2018). Effect of pH and TPP concentration on chemico-physical properties, release kinetics and antifungal activity of Chitosan-TPP-ungeremine microbeads. Carbohydrate polymers, 195, 631-641. 45. Anton, N., Vandamme, T. F. (2009). The universality of low-energy nano-emulsification. International journal of pharmaceutics, 377(1-2), 142-147. 46. Kwon, H. Y., Lee, J. Y., Choi, S. W., Jang, Y., Kim, J. H. (2001). Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids and surfaces A: physicochemical and engineering aspects, 182(1-3), 123-130. 47. Behrend, O., Ax, K., Schubert, H. (2000). Influence of continuous phase viscosity on emulsification by ultrasound. Ultrasonics sonochemistry, 7(2), 77-85. 48. Modarres-Gheisari, S. M. M., Gavagsaz-Ghoachani, R., Malaki, M., Safarpour, P., Zandi, M. (2019). Ultrasonic nano-emulsification–A review. Ultrasonics sonochemistry, 52, 88-105. 49. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced drug delivery reviews, 64, 18-23. 50. Bikram, M., West, J. L. (2008). Thermo-responsive systems for controlled drug delivery. Expert opinion on drug delivery, 5(10), 1077-1091. 51. Xu, X. D., Wei, H., Zhang, X. Z., Cheng, S. X., Zhuo, R. X. (2007). Fabrication and characterization of a novel composite PNIPAAm hydrogel for controlled drug release. Journal of biomedical materials research part A: an official journal of the society for biomaterials, the japanese society for biomaterials, and the australian society for biomaterials and the korean society for biomaterials, 81(2), 418-426. 52. Zhang, J. T., Huang, S. W., Xue, Y. N., Zhuo, R. X. (2005). Poly (N‐isopropylacrylamide) Nanoparticle‐incorporated PNIPAAm hydrogels with fast shrinking kinetics. Macromolecular rapid communications, 26(16), 1346-1350. 53. Zhang, X. Z., Wu, D. Q., Chu, C. C. (2003). Effect of the crosslinking level on the properties of temperature‐sensitive poly (N‐isopropylacrylamide) hydrogels. Journal of polymer science part b: polymer physics, 41(6), 582-593. 54. Ulbrich, K., Kopeček, J. (1979). Cross‐linked copolymers of N, N‐diethylacrylamide with improved mechanical properties. In Journal of Polymer Science: Polymer symposia (vol. 66, no. 1, pp. 209-219). New York: wiley subscription services, inc., a wiley company. 55. Capella, V., Rivero, R. E., Liaudat, A. C., Ibarra, L. E., Roma, D. A., Alustiza, F., Manas, F., Barbero, C. A., Bosch, P., Rivarola, C. R., Rodriguez, N. (2019). Cytotoxicity and bioadhesive properties of poly-N-isopropylacrylamide hydrogel. Heliyon, 5(4), e01474. 56. Ozdemir, M., Yurteri, C. U., Sadikoglu, H. (1999). Physical polymer surface modification methods and applications in food packaging polymers. Critical reviews in food science and nutrition, 39(5), 457-477. 57. Jia, Z., Du, S., Tian, G. (2007). Surface modification of acrylic fiber by grafting of casein. Journal of macromolecular science, part A: pure and applied chemistry, 44(3), 299-304. 58. Suzuki, M., Kishida, A., Iwata, H., Ikada, Y. (1986). Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge. Macromolecules, 19(7), 1804-1808. 59. Lei, J., Liao, X. (2001). Surface graft copolymerization of acrylic acid onto LDPE film through corona discharge. European polymer journal, 37(4), 771-779. 60. Furtado Filho, A. A. M., Gomes, A. S. (2006). Copolymerization of styrene onto polyethersulfone films induced by gamma ray irradiation. Polymer bulletin, 57(4), 415-421. 61. Behrend, O., Ax, K., Schubert, H. (2000). Influence of continuous phase viscosity on emulsification by ultrasound. Ultrasonics sonochemistry, 7(2), 77-85. 62. Hirvonen, J., Kalia, Y. N., Guy, R. H. (1996). Transdermal delivery of peptides by iontophoresis. Nature biotechnology, 14(13), 1710-1713. 63. Ariura, S., Ogata, T., Kashima, N., Morihata, M. (1984). Iontophoresis device. U.S. patent no. 4,474,570. Washington, DC: U.S. Patent and trademark office. 64. Priya, B., Rashmi, T., Bozena, M. (2006). Transdermal iontophoresis. Expert opinion on drug delivery, 3(1), 127-138. 65. Sloan, J. B., Soltani, K. (1986). Iontophoresis in dermatology: a review. Journal of the American academy of dermatology, 15(4), 671-684. 66. Lingane, P. J., Peters, D. G. (1971). Chronopotentiometry. CRC critical reviews in analytical chemistry, 587-634. 67. Ferry, L. L. (1995). Theoretical model of iontophoresis utilized in transdermal drug delivery. Pharmaceutica acta helvetiae, 70(4), 279-287. 68. Allen, J. Bard., Larry, R. Faulkner. (2001). Electrochemical methods and applications 2nd. 69. Wang, J. (2002). Electrochemical detection for microscale analytical systems: a review. Talanta, 56(2), 223-231. 70. Tığlı Aydın, R. S., Pulat, M. (2012). 5-Fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. Journal of nanomaterials, 2012. 71. Basotra, M., Singh, S. K., Gulati, M. (2013). Development and validation of a simple and sensitive spectrometric method for estimation of cisplatin hydrochloride in tablet dosage forms: application to dissolution studies. International scholarly research notices, 2013. 72. Rwei, S. P., Anh, T. H. N., Chiang, W. Y., Way, T. F., Hsu, Y. J. (2016). Synthesis and drug delivery application of thermo-and pH-sensitive hydrogels: poly (β-CD-co-N-isopropylacrylamide-co-IAM). Materials, 9(12), 1003. 73. Matos, B. N., Pereira, M. N., Bravo, M. D. O., Cunha-Filho, M., Saldanha-Araújo, F., Gratieri, T., Gelfuso, G. M. (2020). Chitosan nanoparticles loading oxaliplatin as a mucoadhesive topical treatment of oral tumors: Iontophoresis further enhances drug delivery ex vivo. International journal of biological macromolecules, 154, 1265-1275. 74. Petrilli, R., Eloy, J. O., Saggioro, F. P., Chesca, D. L., de Souza, M. C., Dias, M. V., DaSilva, L. L. P., Lee, R. J., Lopez, R. F. (2018). Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. Journal of controlled release, 283, 151-162. 75. Nasti, A., Zaki, N. M., De Leonardis, P., Ungphaiboon, S., Sansongsak, P., Rimoli, M. G., Tirelli, N. (2009). Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharmaceutical research, 26(8), 1918-1930. 76. Bugnicourt, L., Alcouffe, P., Ladavière, C. (2014). Elaboration of chitosan nanoparticles: Favorable impact of a mild thermal treatment to obtain finely divided, spherical, and colloidally stable objects. Colloids and surfaces a: physicochemical and engineering aspects, 457, 476-486. 77. Li, X., Deng, X., Yuan, M., Xiong, C., Huang, Z., Zhang, Y., Jia, W. (1999). Investigation on process parameters involved in preparation of poly-DL-lactide-poly (ethylene glycol) microspheres containing Leptospira Interrogans antigens. International journal of pharmaceutics, 178(2), 245-255. 78. Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of microencapsulation, 27(3), 187-197. 79. Gan, Q., Wang, T. (2007). Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids and surfaces B: biointerfaces, 59(1), 24-34. 80. Dhote, V., Bhatnagar, P., Mishra, P. K., Mahajan, S. C., Mishra, D. K. (2012). Iontophoresis: a potential emergence of a transdermal drug delivery system. Scientia pharmaceutica, 80(1), 1-28. 81. Nair, V. B., Panchagnula, R. (2004). Influence of electrical parameters in the iontophoretic delivery of a small peptide: in vitro studies using arginine–vasopressin as a model peptide. Il farmaco, 59(7), 583-593. 82. Clemessy, M., Couarraze, G., Bevan, B., Puisieux, F. (1994). Preservation of skin permeability during in vitro iontophoretic experiments. International journal of pharmaceutics, 101(3), 219-226. 83. Raiman, J., Koljonen, M., Huikko, K., Kostiainen, R., Hirvonen, J. (2004). Delivery and stability of LHRH and nafarelin in human skin: the effect of constant/pulsed iontophoresis. European journal of pharmaceutical sciences, 21(2-3), 371-377. 84. Zakzewski, C. A., Amory, D. W., Jasaitis, D. K., Li, J. K. (1992). Iontophoretically enhanced transdermal delivery of an ACE inhibitor in induced hypertensive rabbits: preliminary report. Cardiovascular drugs and therapy, 6(6), 589-595. 85. Liu, W., Hu, M., Liu, W., Xue, C., Xu, H., Yang, X. (2008). Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. International journal of pharmaceutics, 364(1), 135-141. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82719 | - |
| dc.description.abstract | "口腔癌名列癌症十大死因之一,目前的治療方式以手術、放射線、化療為主,手術切除為最常用的治療,但切除的範圍如果較大容易造成患者外觀與功能上的損害,因此常配合化療藥物的使用,然而化療藥物大多使用高劑量殺死癌細胞,容易造成嚴重之副作用。 cisplatin(順鉑)作為抗癌藥物被廣泛運用在臨床治療,然而cisplatin具有許多副作用,如腎毒性、神經毒性等。為了有效地降低cisplatin帶來的負面影響,本研究將cisplatin包覆在幾丁聚醣奈米載體中,透過動態光散射分析儀(Dynamic light scattering)進行奈米粒子粒徑及表面電位分析,並以穿透式電子顯微鏡(Transmission electron microscope)觀察粒子型態,完成基本性質檢測後,探討不同chitosan:TPP質量比對藥物包覆率及釋放率的影響,使用紫外線/可見光分光光譜儀檢測藥物含量。細胞實驗方面使用口腔癌細胞SAS (human tongue squamous-cell carcinoma cell)進行模擬,經過細胞活性檢測(MTT assay)觀察奈米粒子對癌細胞的毒殺效果。 為了使奈米粒子在特定時間進入患部,我們將粒子與感溫性水凝膠混合,期望水凝膠在接近人體溫度時相轉變,將奈米粒子擠出,接著利用其帶正電的特性,以電化學離子導入法(iontophoresis)將其導入癌組織,且皮膚或黏膜層帶負電,具有陽離子滲透性,能促進抗癌藥物導入癌組織,期望病變區可以縮小,再用手術方式切除,此法不但能降低化療藥物的劑量,也能提升化療藥物對癌組織的專一性,以造福更多的患者。 結果顯示,chitosan:TPP質量比 = 15:1的奈米粒子有較佳的包覆率及緩釋放效果,在細胞毒殺效果上,雖然不同chitosan:TPP質量比的奈米粒子在第5天最大濃度的細胞毒殺效果似乎都是能抑制約2成的癌細胞,但考慮到長期緩釋放效果,仍選擇藥物可以持續釋放約一個月的chitosan:TPP質量比 = 15:1奈米粒子進行電導入試驗。 電導入試驗裝置分為有玻璃槽及無玻璃槽2種,變動電流組(0 <-> 1.5 mA, 2h)為最佳組別,高達10.59 µg/mL的cisplatin能滲透進皮下直至癌組織,其藥量高於cisplatin的IC50 (half maximal inhibitory concentration)值。找出最佳電滲透參數後,為了符合後續臨床動物實驗的應用,我們將玻璃槽拿掉,改以無玻璃槽之電化學裝置架接,作為最佳電滲透組別的DPV 63 cycles, Ei=1.5 V, 2h (變動電壓組)有高達6.74 µg/mL的cisplatin能滲透進豬皮,6.74 µg/mL的cisplatin足以抑制約50 %的癌細胞。整體來說,變動電壓組比變動電流組有更好的電導入效率,其中又以DPV 63 cycles, Ei=1.5 V, 2h (變動電壓組)有最佳的電導入效率。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:58:26Z (GMT). No. of bitstreams: 1 U0001-0910202122014600.pdf: 8537015 bytes, checksum: b958c64bab8b992c548a9359136c063e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 i 致謝 ii 摘要 iii ABSTRACT v 目錄 vii 圖目錄 x 表目錄 xiii Chapter 1 緒論 1 Chapter 2 文獻回顧 2 2.1 口腔癌 2 2.2 順鉑(cisplatin) 2 2.3 奈米粒子 4 2.4 高分子奈米粒子 4 2.5 幾丁聚醣 5 2.5.1 幾丁聚醣黏膜附著性 6 2.5.2 Tight junction 6 2.6 三聚磷酸鈉 (Sodium triphosphate) 7 2.7 乳化法 7 2.8 溫感性水凝膠 8 2.9 UV光接枝聚合 9 2.10 離子電滲療法(Iontophoresis) 10 2.10.1 計時電流法(Chronopotentiometry, CP) 11 2.10.2 微分脈衝伏安法(Differential Pulse Voltammetry, DPV) 13 Chapter 3 材料方法 15 3.1 實驗藥品 15 3.2 實驗儀器 20 3.3 實驗流程圖 21 3.4 幾丁聚醣/順鉑(Chitosan/Cisplatin Cisplatin)奈米粒子製備 22 3.5 奈米粒子基本特性檢測 23 3.5.1 動態光散射分析儀(Dynamic Light Scattering, DLS) 23 3.5.2 穿透式電子顯微鏡(Transmission electron microscope, TEM) 24 3.6 奈米粒子藥物包覆率及控制釋放 24 3.6.1 Cisplatin檢量線製備 24 3.6.2 奈米粒子藥物包覆率計算 25 3.6.3 奈米粒子藥物釋放 25 3.7 細胞培養及藥物測試 26 3.7.1 細胞培養液配製 26 3.7.2 解凍細胞 26 3.7.3 細胞繼代培養 27 3.7.4 冷凍細胞 27 3.8 細胞活性測試 (MTT Assay) 28 3.8.1 MTT溶液配製 28 3.8.2 Chitosan/Cisplatin奈米粒子抗癌效果測試 28 3.9 水膠製備 29 3.10 Iontophoresis離子導入法 29 3.10.1 豬皮組織前製處理 33 3.10.2 電化學裝置架接 33 3.10.3 無玻璃槽之電化學裝置架接 35 Chapter 4 實驗結果 37 4.1 Chitosan/Cisplatin奈米粒子基本性質分析結果 37 4.1.1 動態光散射分析儀(DLS) 37 4.1.2 穿透式電子顯微鏡(TEM) 37 4.2 Chitosan/Cisplatin奈米粒子最佳條件分析結果 38 4.2.1 不同Chitosan:TPP質量比對包覆率影響之探討 38 4.2.2 不同Chitosan:TPP質量比對藥物釋放影響之探討 38 4.3 細胞活性測試(MTT Assay)結果 40 4.3.1 不同Chitosan : TPP質量比之奈米粒子對抗癌細胞效果影響之探討 40 4.4 Chitosan/Cisplatin奈米粒子之電導入試驗結果 42 Chapter 5 討論 66 Chapter 6 結論 73 Chapter 7 參考資料 74" | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 水凝膠 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 順鉑 | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | 離子導入法 | zh_TW |
| dc.subject | hydrogel | en |
| dc.subject | nanoparticle | en |
| dc.subject | chitosan | en |
| dc.subject | cisplatin | en |
| dc.subject | oral cancer | en |
| dc.subject | iontophoresis | en |
| dc.title | 以電化學反應促進口腔癌貼片之藥物滲透效率 | zh_TW |
| dc.title | Promote the penetration efficiency of anti-oral cancer patches by electrochemical reaction | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張哲政(Hsin-Tsai Liu),陳漪紋(Chih-Yang Tseng) | |
| dc.subject.keyword | 口腔癌,順鉑,幾丁聚醣,奈米粒子,水凝膠,離子導入法, | zh_TW |
| dc.subject.keyword | oral cancer,cisplatin,chitosan,nanoparticle,hydrogel,iontophoresis, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU202103636 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-11-01 | - |
| Appears in Collections: | 口腔生物科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-0910202122014600.pdf Restricted Access | 8.34 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
