Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐尚德(Shang-Te Danny Hsu)
dc.contributor.authorTzu-Jing Yangen
dc.contributor.author楊子靖zh_TW
dc.date.accessioned2022-11-25T07:49:01Z-
dc.date.available2024-02-09
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-02-11
dc.identifier.citation1. Hershko, A. Ciechanover, A. The ubiquitin system. Annu Rev Biochem 67, 425-79 (1998). 2. Scheffner, M., Nuber, U. Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81-3 (1995). 3. Hrdinka, M. Gyrd-Hansen, M. The Met1-Linked Ubiquitin Machinery: Emerging Themes of (De) regulation. Molecular Cell 68, 265-280 (2017). 4. Komander, D. Rape, M. The ubiquitin code. Annu Rev Biochem 81, 203-29 (2012). 5. Swatek, K.N. Komander, D. Ubiquitin modifications. Cell Res 26, 399-422 (2016). 6. Nakagawa, T. Nakayama, K. Protein monoubiquitylation: targets and diverse functions. Genes Cells 20, 543-62 (2015). 7. Haglund, K., Di Fiore, P.P. Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28, 598-603 (2003). 8. Chandrasekharan, M.B., Huang, F. Sun, Z.W. Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proc Natl Acad Sci U S A 106, 16686-91 (2009). 9. Marsh, D.J., Ma, Y. Dickson, K.A. Histone Monoubiquitination in Chromatin Remodelling: Focus on the Histone H2B Interactome and Cancer. Cancers (Basel) 12(2020). 10. Cao, J. Yan, Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2, 26 (2012). 11. Moyal, L. et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell 41, 529-42 (2011). 12. Barbour, H., Daou, S., Hendzel, M. Affar, E.B. Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 11, 5947 (2020). 13. Vissers, J.H.A., Nicassio, F., van Lohuizen, M., Di Fiore, P.P. Citterio, E. The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Division 3(2008). 14. Zhang, T., Cooper, S. Brockdorff, N. The interplay of histone modifications - writers that read. EMBO Rep 16, 1467-81 (2015). 15. Minsky, N. et al. Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol 10, 483-8 (2008). 16. Pavri, R. et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703-17 (2006). 17. Zhu, B. et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 20, 601-11 (2005). 18. Chook, Y.M. Suel, K.E. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta 1813, 1593-606 (2011). 19. Gorlich, D. Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15, 607-60 (1999). 20. Weis, K. Importins and exportins: how to get in and out of the nucleus. Trends Biochem Sci 23, 185-9 (1998). 21. Chen, B.B. Mallampalli, R.K. Masking of a nuclear signal motif by monoubiquitination leads to mislocalization and degradation of the regulatory enzyme cytidylyltransferase. Mol Cell Biol 29, 3062-75 (2009). 22. Nie, L., Sasaki, M. Maki, C.G. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J Biol Chem 282, 14616-25 (2007). 23. Brenkman, A.B., de Keizer, P.L., van den Broek, N.J., Jochemsen, A.G. Burgering, B.M. Mdm2 induces mono-ubiquitination of FOXO4. PLoS One 3, e2819 (2008). 24. van der Horst, A. et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8, 1064-73 (2006). 25. Trotman, L.C. et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128, 141-56 (2007). 26. Whiteman, D.C. et al. Nuclear PTEN expression and clinicopathologic features in a population-based series of primary cutaneous melanoma. Int J Cancer 99, 63-7 (2002). 27. Zhou, X.P. et al. PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers. Am J Pathol 161, 439-47 (2002). 28. Braten, O. et al. Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc Natl Acad Sci U S A 113, E4639-47 (2016). 29. Grice, G.L. Nathan, J.A. The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci 73, 3497-506 (2016). 30. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576-83 (1989). 31. Liu, Z. et al. Structural basis for the recognition of K48-linked Ub chain by proteasomal receptor Rpn13. Cell Discov 5, 19 (2019). 32. Mallette, F.A. Richard, S. K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites. Cell Res 22, 1221-3 (2012). 33. Chaney, J. Das, C. Understanding K11-polyubiquitin recognition at the 26S Proteasome. Faseb Journal 27(2013). 34. Jin, L., Williamson, A., Banerjee, S., Philipp, I. Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653-65 (2008). 35. Matsumoto, M.L. et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 39, 477-84 (2010). 36. Wickliffe, K.E., Williamson, A., Meyer, H.J., Kelly, A. Rape, M. K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 21, 656-63 (2011). 37. Ohtake, F., Tsuchiya, H., Saeki, Y. Tanaka, K. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc Natl Acad Sci U S A 115, E1401-E1408 (2018). 38. Liu, C., Liu, W., Ye, Y. Li, W. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat Commun 8, 14274 (2017). 39. Yuan, W.C. et al. K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. Mol Cell 54, 586-600 (2014). 40. Flotho, A. Melchior, F. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82, 357-85 (2013). 41. Enchev, R.I., Schulman, B.A. Peter, M. Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol 16, 30-44 (2015). 42. Akutsu, M., Ye, Y., Virdee, S., Chin, J.W. Komander, D. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc Natl Acad Sci U S A 108, 2228-33 (2011). 43. Song, L. Luo, Z.Q. Post-translational regulation of ubiquitin signaling. J Cell Biol 218, 1776-1786 (2019). 44. Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell 28, 730-8 (2007). 45. Zhao, Y., Brickner, J.R., Majid, M.C. Mosammaparast, N. Crosstalk between ubiquitin and other post-translational modifications on chromatin during double-strand break repair. Trends Cell Biol 24, 426-34 (2014). 46. Komander, D., Clague, M.J. Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550-63 (2009). 47. Mevissen, T.E.T. Komander, D. Mechanisms of Deubiquitinase Specificity and Regulation. Annu Rev Biochem 86, 159-192 (2017). 48. Cooper, E.M. et al. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 28, 621-31 (2009). 49. Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10, 466-73 (2009). 50. Sato, Y. et al. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455, 358-62 (2008). 51. Abdul Rehman, S.A. et al. MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Mol Cell 63, 146-55 (2016). 52. Takahashi, H. et al. A Human DUB Protein Array for Clarification of Linkage Specificity of Polyubiquitin Chain and Application to Evaluation of Its Inhibitors. Biomedicines 8(2020). 53. Ye, Y. et al. Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. EMBO Rep 12, 350-7 (2011). 54. Faesen, A.C. et al. The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Chem Biol 18, 1550-61 (2011). 55. Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-5 (2014). 56. Cunningham, C.N. et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol 17, 160-9 (2015). 57. Komander, D. et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell 29, 451-64 (2008). 58. Sato, Y. et al. Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nat Struct Mol Biol 22, 222-9 (2015). 59. Mevissen, T.E. et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154, 169-84 (2013). 60. Testa, J.R. et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43, 1022-5 (2011). 61. Harbour, J.W. et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330, 1410-3 (2010). 62. Carbone, M. et al. BAP1 and cancer. Nat Rev Cancer 13, 153-9 (2013). 63. Wang, S.S. et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc Natl Acad Sci U S A 111, 16538-43 (2014). 64. Tesch, M.E. et al. Concurrent germline and somatic pathogenic BAP1 variants in a patient with metastatic bladder cancer. NPJ Genom Med 5, 12 (2020). 65. Jensen, D.E. et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16, 1097-112 (1998). 66. Ventii, K.H. et al. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res 68, 6953-6962 (2008). 67. Masclef, L. et al. Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ 28, 606-625 (2021). 68. Sahtoe, D.D., van Dijk, W.J., Ekkebus, R., Ovaa, H. Sixma, T.K. BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nat Commun 7, 10292 (2016). 69. Ji, Z. et al. The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Res 42, 6232-42 (2014). 70. Yu, H. et al. The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Mol Cell Biol 30, 5071-85 (2010). 71. Misaghi, S. et al. Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol Cell Biol 29, 2181-92 (2009). 72. Machida, Y.J., Machida, Y., Vashisht, A.A., Wohlschlegel, J.A. Dutta, A. The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem 284, 34179-88 (2009). 73. Nishikawa, H. et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res 69, 111-9 (2009). 74. Dey, A. et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337, 1541-6 (2012). 75. Foglizzo, M. et al. A bidentate Polycomb Repressive-Deubiquitinase complex is required for efficient activity on nucleosomes. Nat Commun 9, 3932 (2018). 76. Ruan, H.B. et al. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability. Cell Metab 16, 226-37 (2012). 77. Qin, J. et al. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun 6, 8471 (2015). 78. Ismail, I.H. et al. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 74, 4282-94 (2014). 79. Yu, H. et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A 111, 285-90 (2014). 80. Sime, W. et al. BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma. Cell Death Dis 9, 458 (2018). 81. Nomura, M. et al. 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem 278, 2058-65 (2003). 82. Louie, B.H. Kurzrock, R. BAP1: Not just a BRCA1-associated protein. Cancer Treat Rev 90, 102091 (2020). 83. Fahrenkrog, B. Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4, 757-66 (2003). 84. Stewart, M. et al. Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import. FEBS Lett 498, 145-9 (2001). 85. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8, 195-208 (2007). 86. Mosammaparast, N. Pemberton, L.F. Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 14, 547-56 (2004). 87. Nigg, E.A. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779-87 (1997). 88. Lange, A. et al. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282, 5101-5 (2007). 89. Goldfarb, D.S., Corbett, A.H., Mason, D.A., Harreman, M.T. Adam, S.A. Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 14, 505-14 (2004). 90. Soniat, M. Chook, Y.M. Nuclear localization signals for four distinct karyopherin-beta nuclear import systems. Biochem J 468, 353-62 (2015). 91. Chook, Y.M. Blobel, G. Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature 399, 230-7 (1999). 92. Lee, B.J. et al. Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell 126, 543-558 (2006). 93. Tran, E.J. Wente, S.R. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041-53 (2006). 94. Strawn, L.A., Shen, T., Shulga, N., Goldfarb, D.S. Wente, S.R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol 6, 197-206 (2004). 95. Rout, M.P. Wente, S.R. Pores for thought: nuclear pore complex proteins. Trends Cell Biol 4, 357-65 (1994). 96. Ader, C. et al. Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci U S A 107, 6281-5 (2010). 97. Bayliss, R., Littlewood, T. Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell 102, 99-108 (2000). 98. Lee, S.J., Matsuura, Y., Liu, S.M. Stewart, M. Structural basis for nuclear import complex dissociation by RanGTP. Nature 435, 693-6 (2005). 99. Matsuura, Y. Stewart, M. Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J 24, 3681-9 (2005). 100. Matsuura, Y. Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature 432, 872-7 (2004). 101. Seewald, M.J., Korner, C., Wittinghofer, A. Vetter, I.R. RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, 662-6 (2002). 102. Smith, A., Brownawell, A. Macara, I.G. Nuclear import of Ran is mediated by the transport factor NTF2. Curr Biol 8, 1403-6 (1998). 103. Ribbeck, K., Lipowsky, G., Kent, H.M., Stewart, M. Gorlich, D. NTF2 mediates nuclear import of Ran. EMBO J 17, 6587-98 (1998). 104. Stewart, M., Kent, H.M. McCoy, A.J. The structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2). J Mol Biol 284, 1517-27 (1998). 105. Nemergut, M.E. Macara, I.G. Nuclear import of the ran exchange factor, RCC1, is mediated by at least two distinct mechanisms. J Cell Biol 149, 835-50 (2000). 106. Bischoff, F.R. Ponstingl, H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80-2 (1991). 107. Yamada, M., Mattaj, I.W. Yoneda, Y. An ATP-dependent activity that releases RanGDP from NTF2. J Biol Chem 279, 36228-34 (2004). 108. Baymaz, H.I. et al. MBD5 and MBD6 interact with the human PR-DUB complex through their methyl-CpG-binding domain. Proteomics 14, 2179-89 (2014). 109. Pan, H. et al. BAP1 regulates cell cycle progression through E2F1 target genes and mediates transcriptional silencing via H2A monoubiquitination in uveal melanoma cells. Int J Biochem Cell Biol 60, 176-84 (2015). 110. Eletr, Z.M. Wilkinson, K.D. An emerging model for BAP1's role in regulating cell cycle progression. Cell Biochem Biophys 60, 3-11 (2011). 111. He, M. et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science 364, 283-285 (2019). 112. Koopmans, A.E. et al. Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Mod Pathol 27, 1321-30 (2014). 113. Kalirai, H., Dodson, A., Faqir, S., Damato, B.E. Coupland, S.E. Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. Br J Cancer 111, 1373-80 (2014). 114. Farquhar, N. et al. Patterns of BAP1 protein expression provide insights into prognostic significance and the biology of uveal melanoma. J Pathol Clin Res 4, 26-38 (2018). 115. Carbone, M. et al. Positive nuclear BAP1 immunostaining helps differentiate non-small cell lung carcinomas from malignant mesothelioma. Oncotarget 7, 59314-59321 (2016). 116. Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca(2+) flux to mitochondria suppressing cell transformation. Nature 546, 549-553 (2017). 117. Ullah, K., Zubia, E., Narayan, M., Yang, J. Xu, G. Diverse roles of the E2/E3 hybrid enzyme UBE2O in the regulation of protein ubiquitination, cellular functions, and disease onset. FEBS J 286, 2018-2034 (2019). 118. Klemperer, N.S., Berleth, E.S. Pickart, C.M. A novel, arsenite-sensitive E2 of the ubiquitin pathway: purification and properties. Biochemistry 28, 6035-41 (1989). 119. Berleth, E.S. Pickart, C.M. Mechanism of ubiquitin conjugating enzyme E2-230K: catalysis involving a thiol relay? Biochemistry 35, 1664-71 (1996). 120. Yoshizawa, T. et al. Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173, 693-705 e22 (2018). 121. Huang, R.S., Lai, M.C., Shih, H.A. Lin, S. A robust platform for expansion and genome editing of primary human natural killer cells. J Exp Med 218(2021). 122. Wienert, B., Shin, J., Zelin, E., Pestal, K. Corn, J.E. In vitro-transcribed guide RNAs trigger an innate immune response via the RIG-I pathway. PLoS Biol 16, e2005840 (2018). 123. Kim, S. et al. CRISPR RNAs trigger innate immune responses in human cells. Genome Res (2018). 124. Richardson, C.D., Ray, G.J., Bray, N.L. Corn, J.E. Non-homologous DNA increases gene disruption efficiency by altering DNA repair outcomes. Nat Commun 7, 12463 (2016). 125. Wang, I., Chen, S.Y. Hsu, S.T. Unraveling the folding mechanism of the smallest knotted protein, MJ0366. J Phys Chem B 119, 4359-70 (2015). 126. McCoy, A.J. et al. Phaser crystallographic software. J Appl Crystallogr 40, 658-674 (2007). 127. Emsley, P., Lohkamp, B., Scott, W.G. Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501 (2010). 128. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-21 (2010). 129. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21 (2010). 130. Goddard, T.D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). 131. Pumroy, R.A. Cingolani, G. Diversification of importin-alpha isoforms in cellular trafficking and disease states. Biochem J 466, 13-28 (2015). 132. Twyffels, L., Gueydan, C. Kruys, V. Transportin-1 and Transportin-2: protein nuclear import and beyond. FEBS Lett 588, 1857-68 (2014). 133. Dikic, I., Wakatsuki, S. Walters, K.J. Ubiquitin-binding domains - from structures to functions. Nature Reviews Molecular Cell Biology 10, 659-71 (2009). 134. Cansizoglu, A.E. Chook, Y.M. Conformational heterogeneity of karyopherin beta2 is segmental. Structure 15, 1431-41 (2007). 135. Mashtalir, N. et al. Autodeubiquitination Protects the Tumor Suppressor BAP1 from Cytoplasmic Sequestration Mediated by the Atypical Ubiquitin Ligase UBE2O. Molecular Cell 54, 392-406 (2014). 136. Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20, 1181-1192 (2018). 137. Sowa, M.E., Bennett, E.J., Gygi, S.P. Harper, J.W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389-403 (2009). 138. Hauri, S. et al. A High-Density Map for Navigating the Human Polycomb Complexome. Cell Rep 17, 583-595 (2016). 139. Sen Nkwe, N. et al. A potent nuclear export mechanism imposes USP16 cytoplasmic localization during interphase. J Cell Sci 133(2020). 140. Chen, S. et al. Ubiquitin-conjugating enzyme UBE2O regulates cellular clock function by promoting the degradation of the transcription factor BMAL1. J Biol Chem 293, 11296-11309 (2018). 141. Stewart, M.D., Ritterhoff, T., Klevit, R.E. Brzovic, P.S. E2 enzymes: more than just middle men. Cell Res 26, 423-40 (2016). 142. Mashtalir, N. et al. Autodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2O. Mol Cell 54, 392-406 (2014). 143. Zhang, X., Zhang, J., Zhang, L., van Dam, H. ten Dijke, P. UBE2O negatively regulates TRAF6-mediated NF-kappaB activation by inhibiting TRAF6 polyubiquitination. Cell Res 23, 366-77 (2013). 144. Zhang, X. et al. Fine-tuning BMP7 signalling in adipogenesis by UBE2O/E2-230K-mediated monoubiquitination of SMAD6. EMBO J 32, 996-1007 (2013). 145. Yanagitani, K., Juszkiewicz, S. Hegde, R.S. UBE2O is a quality control factor for orphans of multiprotein complexes. Science 357, 472-+ (2017). 146. Nguyen, A.T. et al. UBE2O remodels the proteome during terminal erythroid differentiation. Science 357(2017). 147. Liang, K. et al. Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia. Cell 168, 59-72 e13 (2017). 148. Vila, I.K. et al. A UBE2O-AMPK alpha 2 Axis that Promotes Tumor Initiation and Progression Offers Opportunities for Therapy. Cancer Cell 31, 208-224 (2017). 149. Qamar, S. et al. FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-pi Interactions. Cell 173, 720-734 e15 (2018). 150. Hofweber, M. et al. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 173, 706-719 e13 (2018). 151. Guo, L. et al. Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell 173, 677-692 e20 (2018). 152. Bhattacharya, S., Hanpude, P. Maiti, T.K. Cancer associated missense mutations in BAP1 catalytic domain induce amyloidogenic aggregation: A new insight in enzymatic inactivation. Sci Rep 5, 18462 (2015). 153. Bott, M. et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43, 668-72 (2011). 154. Lupas, A.N. Bassler, J. Coiled Coils - A Model System for the 21st Century. Trends Biochem Sci 42, 130-140 (2017). 155. Erdos, G., Pajkos, M. Dosztanyi, Z. IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res 49, W297-W303 (2021). 156. Montisano, D.F., Cascarano, J., Pickett, C.B. James, T.W. Association between mitochondria and rough endoplasmic reticulum in rat liver. Anat Rec 203, 441-50 (1982). 157. Cascarano, J., Montisano, D.F., Pickett, C.B. James, T.W. Rough endoplasmic reticulum-mitochondrial complexes from rat liver. An extramitochondrial succinic dehydrogenase associated with this rough endoplasmic reticulum. Exp Cell Res 139, 39-50 (1982). 158. Copeland, D.E. Dalton, A.J. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J Biophys Biochem Cytol 5, 393-6 (1959). 159. Pickett, C.B., Montisano, D., Eisner, D. Cascarano, J. The physical association between rat liver mitochondria and rough endoplasmic reticulum. I. Isolation, electron microscopic examination and sedimentation equilibrium centrifugation analyses of rough endoplasmic reticulum-mitochondrial complexes. Exp Cell Res 128, 343-52 (1980). 160. Hayashi, T., Rizzuto, R., Hajnoczky, G. Su, T.P. MAM: more than just a housekeeper. Trends Cell Biol 19, 81-8 (2009). 161. Csordas, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174, 915-21 (2006). 162. Sood, A. et al. A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver. Proc Natl Acad Sci U S A 111, 16017-22 (2014). 163. Giacomello, M. Pellegrini, L. The coming of age of the mitochondria-ER contact: a matter of thickness. Cell Death Differ 23, 1417-27 (2016). 164. Wu, W. et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J 35, 1368-84 (2016). 165. Bravo, R. et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 124, 2143-52 (2011). 166. Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175, 901-11 (2006). 167. De Vos, K.J. et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Human Molecular Genetics 21, 1299-1311 (2012). 168. Galmes, R. et al. ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep 17, 800-10 (2016). 169. Yoon, Y., Krueger, E.W., Oswald, B.J. McNiven, M.A. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23, 5409-20 (2003). 170. Iwasawa, R., Mahul-Mellier, A.L., Datler, C., Pazarentzos, E. Grimm, S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J 30, 556-68 (2011). 171. de Brito, O.M. Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605-10 (2008). 172. Naon, D. et al. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci U S A 113, 11249-11254 (2016). 173. Friedman, J.R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358-62 (2011). 174. Schon, E.A. Area-Gomez, E. Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 55, 26-36 (2013). 175. Danese, A. et al. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim Biophys Acta Bioenerg 1858, 615-627 (2017). 176. Decuypere, J.P. et al. The IP(3) receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 1813, 1003-13 (2011). 177. Kania, E., Roest, G., Vervliet, T., Parys, J.B. Bultynck, G. IP3 Receptor-Mediated Calcium Signaling and Its Role in Autophagy in Cancer. Front Oncol 7, 140 (2017). 178. Bartok, A. et al. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nat Commun 10, 3726 (2019). 179. Mendes, C.C. et al. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280, 40892-900 (2005). 180. De Stefani, D. et al. VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19, 267-73 (2012). 181. Pallafacchina, G., Zanin, S. Rizzuto, R. Recent advances in the molecular mechanism of mitochondrial calcium uptake. F1000Res 7(2018). 182. Boyman, L., Karbowski, M. Lederer, W.J. Regulation of Mitochondrial ATP Production: Ca(2+) Signaling and Quality Control. Trends Mol Med 26, 21-39 (2020). 183. Rizzuto, R., De Stefani, D., Raffaello, A. Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13, 566-78 (2012). 184. Orrenius, S., Zhivotovsky, B. Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4, 552-65 (2003). 185. Pinton, P., Giorgi, C., Siviero, R., Zecchini, E. Rizzuto, R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27, 6407-18 (2008). 186. Giorgi, C., Romagnoli, A., Pinton, P. Rizzuto, R. Ca2+ signaling, mitochondria and cell death. Curr Mol Med 8, 119-30 (2008). 187. Clarke, A.J. Simon, A.K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol 19, 170-183 (2019). 188. Suzanne, M. Steller, H. Shaping organisms with apoptosis. Cell Death Differ 20, 669-75 (2013). 189. Roos, W.P. Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol Med 12, 440-50 (2006). 190. Suski, J.M. et al. Isolation of plasma membrane-associated membranes from rat liver. Nat Protoc 9, 312-22 (2014). 191. Wieckowski, M.R., Giorgi, C., Lebiedzinska, M., Duszynski, J. Pinton, P. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4, 1582-90 (2009). 192. Dormann, D. et al. Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J 31, 4258-75 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82668-
dc.description.abstract"BRCA1-associated protein 1 (BAP1) 是一重要的腫瘤抑制因子 (tumor suppressor),屬於泛素碳端水解酶 (ubiquitin C-terminal hydrolase, UCH) 家族。BAP1 藉由其去泛素化活性(deubiquitination activity) 參與多種細胞內調控路徑,包括轉錄調控、染色質重塑、細胞週期進程、細胞分化和凋亡、 DNA 損傷反應和 DNA 修復。據報導,多種人類惡性腫瘤中帶有突變型 BAP1基因,其中包括惡性間皮瘤、葡萄膜黑色素瘤、腎透明細胞癌。許多研究中均顯示多種癌症相關的突變位點可導致 BAP1 的去泛素化活性受損,以及異常的細胞質分佈,從而促進腫瘤生長。相反之,重新導入具有功能性的 BAP1 則可抑制癌細胞的生長。因此, BAP1 的腫瘤抑制活性 (tumor suppressor activity) 取決於其酵素活性和正確的細胞內定位。此外,利用觀察 BAP1 的細胞內定位染色結果,將可作為上述惡性癌症的預後標記。 由於 BAP1 的進核機制尚未明確,我們在本研究中確認 Tranportin-1 (TNPO1) 透過辨識 BAP1 的碳端脯氨酸-酪氨酸核定位訊號 (PY-NLS) 作為主要調控者控制 BAP1 的進核機轉。此外,我們發現碳端功能區塊 (CTD) 具有調控 BAP1 的自我聚集能力。TNPO1 則可藉由與 CTD 結合來調控 BAP1 聚集的程度,並以 1:1 的方式形成 TNPO1: BAP1CTD 異二聚體。 我們進一步解析 TNPO1 與 BAP1PY-NLS 複合體的晶體結構以提供 TNPO1 與 BAP1PY-NLS 交互作用的分子決定機制。UBE2O 為一種非典型的 E2/E3 泛素結合酶,可針對 BAP1 的核定位訊號進行單泛素化修飾 (NLS monoubiquitination) 調控其細胞內定位。然而,我們發現 TNPO1 結合 BAP1PY-NLS 後,可利用立體障礙掩蓋 PY-NLS 序列中的四個單泛素化 (mUb) 位點,從而阻礙UBE2O進行隨後的核定位訊號單泛素化修飾。 我們接著證明 BAP1 是一種容易自我聚集 (aggregation) 的蛋白質。當 BAP1 分別攜帶與癌症相關的 UCH 功能區塊突變位: N78S 或G128R 時, 可以觀察到此二種BAP1突變型重組蛋白容易形成蛋白聚集物 (protein aggregates) 或是在細胞內大量聚集在細胞質中。儘管這些突變型保留了與 TNPO1 相互作用的能力,但研究結果表明這些突變增強了 BAP1 的聚集特性,進而導致 BAP1 無法順利轉運至細胞核內。 雖然 BAP1 主要分布在細胞核內,仍有一小部分 BAP1 被發現位於粒腺體-內質網接觸位點 (Mitochondria-ER contact sites)。 BAP1 在細胞質中的生物學相關性被描述為它通過去泛素化調節 IP3R3 受體的蛋白質穩定性。由於 IP3R3 受體可作為鈣離子控制裝置(IP3R3-VDAC1-GRP75 複合體)的組成部分。因此,該機制穩定了此控制裝置的穩定性進而促進了鈣離子從內質網流入粒腺體和隨後由鈣離子調節的細胞凋亡機轉。在這項工作的最後一章中,我們著力於從人類細胞中分離出粒腺體-內質網接觸位點並建立系統,此系統將有助於未來進一步了解 BAP1 如何與 IP3R3 交互作用的分子機制。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:49:01Z (GMT). No. of bitstreams: 1
U0001-0702202211563200.pdf: 17598910 bytes, checksum: a1d1ab710c826da3f694bb0936132712 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES x LIST OF TABLES xiii Abbreviations xiv Chapter 1 General Introduction 1 1.1 Ubiquitination 2 1.2 The erasers of ubiquitin-code work: Deubiquitinating enzymes (DUBs) 6 1.3 BRCA1-associated protein 1 (BAP1) 7 1.4 Mechanism of nuclear import cycle 11 Chapter 2 Transportin-1 (TNPO1) governs the nuclear import of the tumor suppressor BAP1 14 2.1 Abstract 15 2.2 Introduction 15 2.3 Materials and Methods 17 2.3.1 Molecular cloning, protein expression and purification. 17 2.3.2 Subcellular localization and phenotypic profiling of BAP1 variants 18 2.3.3 Cas9 Ribonucleoprotein (RNP) Nucleofection 19 2.3.4 Genomic PCR amplification and editing analysis 20 2.3.5 Establish homozygous gene knock-out HEK293T single cell clone 20 2.3.6 Size-exclusion chromatography-coupled with multiangle static light scattering (SEC-MALS) analysis 21 2.3.7 In vitro monoubiquitination assay 21 2.3.8 Protein in-solution digestion 22 2.3.9 Shotgun proteomic identifications 22 2.3.10 Fluorescence polarization 23 2.3.11 Crystallization, data collection and structure determination. 23 2.4 Associated content 24 2.5 Results 25 2.5.1 Identification of nuclear import factor of BAP1 25 2.5.2 The nuclear import of BAP1 is primarily mediated by TNPO1. 31 2.5.3 TNPO1 regulates CTD-mediated self-association of BAP1. 37 2.5.4 TNPO1 regulates the UBE2O-dependent monoubiquitination of BAP1. 39 2.6 Discussion 46 Chapter 3 Establishment of in vitro monoubiquitination of BAP1 48 3.1 Introduction 49 3.2 Materials and Methods 51 3.2.1 Construction, protein expression and purification 51 3.2.2 Fluorescein-labeling of Cys-UbWT and Cys-UbK0 52 3.2.3 In vitro monoubiquitination assay 52 3.3 Results and Discussion 53 3.3.1 Purification of an E2/E3 hybrid ubiquitin ligase, UBE2O 53 3.3.2 Purification of BAP1CTD as the substrate 53 3.3.3 Purification of engineered ubiquitin with an additionally N-terminal cysteine for fluorescein labelling. 54 3.3.4 Establishment of in vitro UBE2O-mediated monoubiquitination 60 3.3.5 Site-specific identification identified by mass spectrometry 61 Chapter 4 Aggregation tendency of the tumor suppressor BAP1 67 4.1 Introduction 68 4.2 Materials and Methods 69 4.2.1 Molecular cloning, protein expression and purification. 69 4.2.2 Subcellular localization and phenotypic profiling of BAP1 variants 69 4.3 Results and Discussion 71 4.3.1 Cancer-associated mutations enhances the aggregation tendency of BAP1 in cells 71 4.3.2 BAP1 is an aggregation-prone protein in vitro 74 Chapter 5 Isolation of Mitochondria-Associated Endoplasmic reticulum (ER) membranes (MAMs) 78 5.1 Introduction 79 5.2 Procedure 83 5.2.1 Cell preparation (step 1-2) 83 5.2.2 Homogenization (step 3-6) 84 5.2.3 Fractionation of cytosolic organelle (step 7) 85 5.2.4 Fractionation of crude mitochondria. (step 8-12) 85 5.2.5 MAM isolation from crude mitochondria (step 13-17) 86 5.2.6 Further isolation of pure MAM from the crude MAM fraction (step 18-23) 87 5.2.7 Further isolation of pure mitochondria from the crude mitochondria (step 24-27) 87 5.2.8 Confirmation of MAM preparation by western blotting 89 5.3 Materials 91 5.4 Equipment 91 5.5 Buffer recipes 92 Chapter 6 Conclusion and Perspectives 93 References 97 Curriculum Vitae 112"
dc.language.isoen
dc.subject去泛素化酶zh_TW
dc.subject核輸入zh_TW
dc.subject腫瘤抑制蛋白zh_TW
dc.subject泛素化zh_TW
dc.subjectubiquitinationen
dc.subjectDeubiquitinating enzymeen
dc.subjectBRCA1-associated protein 1en
dc.subjectTransportin-1en
dc.subjectNuclear importen
dc.subjectTumor suppressoren
dc.title解析腫瘤抑制蛋白BAP1特性及其進核之調控機制zh_TW
dc.titleDissecting the nuclear import mechanism and characterization of the tumor suppressor BRCA1-assocated protein 1 (BAP1)en
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳瑞華(Sheng-Jean Huang),吳昆峯(Jau-Yih Tsauo),凌嘉鴻(Shih-Liang Shih),王慧菁
dc.subject.keyword去泛素化酶,泛素化,腫瘤抑制蛋白,核輸入,zh_TW
dc.subject.keywordBRCA1-associated protein 1,Deubiquitinating enzyme,ubiquitination,Tumor suppressor,Nuclear import,Transportin-1,en
dc.relation.page115
dc.identifier.doi10.6342/NTU202200321
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-02-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2024-02-09-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0702202211563200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
17.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved