Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82662
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李心予zh_TW
dc.contributor.advisorHsinyu Leeen
dc.contributor.author黃浚維zh_TW
dc.contributor.authorChin-Wei Huangen
dc.date.accessioned2022-11-25T07:48:53Z-
dc.date.available2025-12-31-
dc.date.copyright2021-10-21-
dc.date.issued2021-
dc.date.submitted2002-01-01-
dc.identifier.citationReferences

1. Risau, W., Mechanisms of angiogenesis. (0028-0836 (Print)).
2. Hanahan, D. and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. (0092-8674 (Print)).
3. Shibuya, M. and L. Claesson-Welsh, Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. (0014-4827 (Print)).
4. Olsson, A.K., et al., VEGF receptor signalling - in control of vascular function. (1471-0072 (Print)).
5. Shibuya, M., Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. (1947-6027 (Electronic)).
6. Folkman, J., Tumor angiogenesis: therapeutic implications. (0028-4793 (Print)).
7. Dameron, K.M., et al., Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. (0036-8075 (Print)).
8. Chen, J., et al., Metastatic properties of prostate cancer cells are controlled by VEGF. (1541-9061 (Print)).
9. Fauconnet, S., et al., Expression analysis of VEGF-A and VEGF-B: relationship with clinicopathological parameters in bladder cancer. (1021-335X (Print)).
10. Wang, C.Q., et al., MiR-377 suppresses cell proliferation and metastasis in gastric cancer via repressing the expression of VEGFA. (2284-0729 (Electronic)).
11. Zhan, S., C. Wang, and F. Yin, MicroRNA-29c inhibits proliferation and promotes apoptosis in non-small cell lung cancer cells by targeting VEGFA. (1791-3004 (Electronic)).
12. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021. 71(3): p. 209-249.
13. Tanigawa, N., et al., Correlation between expression of vascular endothelial growth factor and tumor vascularity, and patient outcome in human gastric carcinoma. (0732-183X (Print)).
14. Kim, S.-E., et al., The clinicopathological significance of tissue levels of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in gastric cancer. Gut and liver, 2009. 3(2): p. 88-94.
15. Lu, D., et al., Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. (0021-9258 (Print)).
16. Bai, Z.-G. and Z.-T. Zhang, A systematic review and meta-analysis on the effect of angiogenesis blockade for the treatment of gastric cancer. OncoTargets and therapy, 2018. 11: p. 7077-7087.
17. Arora, N., A. Gupta, and P.P. Singh, Biological agents in gastrointestinal cancers: adverse effects and their management. Journal of Gastrointestinal Oncology, 2017. 8(3): p. 485-498.
18. Karijolich, J. and Y.T. Yu, Spliceosomal snRNA modifications and their function. (1555-8584 (Electronic)).
19. Dominissini, D., et al., The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature, 2016. 530(7591): p. 441-446.
20. Bohnsack, K.E., C.A.-O. Höbartner, and M.A.-O. Bohnsack, Eukaryotic 5-methylcytosine (m⁵C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease. LID - 10.3390/genes10020102 [doi] LID - 102. (2073-4425 (Print)).
21. Lin, I.H., Y.-F. Chen, and M.-T. Hsu, Correlated 5-Hydroxymethylcytosine (5hmC) and Gene Expression Profiles Underpin Gene and Organ-Specific Epigenetic Regulation in Adult Mouse Brain and Liver. PloS one, 2017. 12(1): p. e0170779-e0170779.
22. Cowling, V.H., Regulation of mRNA cap methylation. The Biochemical journal, 2009. 425(2): p. 295-302.
23. Meyer, K.D., et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. (1097-4172 (Electronic)).
24. Liu, J., et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol, 2014. 10(2): p. 93-5.
25. Yue, Y., J. Liu, and C. He, RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes & development, 2015. 29(13): p. 1343-1355.
26. Shi, H., J. Wei, and C. He, Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 2019. 74(4): p. 640-650.
27. Wei Cm Fau - Gershowitz, A., B. Gershowitz A Fau - Moss, and B. Moss, Methylated nucleotides block 5' terminus of HeLa cell messenger RNA. (0092-8674 (Print)).
28. Zhao, B.S., I.A. Roundtree, and C. He, Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol, 2017. 18(1): p. 31-42.
29. Meyer, K.D., et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell, 2012. 149(7): p. 1635-46.
30. Dominissini, D., et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012. 485(7397): p. 201-6.
31. Zaccara, S., R.J. Ries, and S.R. Jaffrey, Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol, 2019. 20(10): p. 608-624.
32. Brown, J.A., et al., Methyltransferase-like protein 16 binds the 3'-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci U S A, 2016. 113(49): p. 14013-14018.
33. Chen, X.Y., J. Zhang, and J.S. Zhu, The role of m(6)A RNA methylation in human cancer. Mol Cancer, 2019. 18(1): p. 103.
34. Sun, T., R. Wu, and L. Ming, The role of m6A RNA methylation in cancer. Biomed Pharmacother, 2019. 112: p. 108613.
35. Zeng, C., et al., Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol, 2020. 13(1): p. 117.
36. Yue, B., et al., METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer, 2019. 18(1): p. 142.
37. Zhang, S., et al., m(6)A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell, 2017. 31(4): p. 591-606 e6.
38. Li, J., et al., Downregulation of N(6)-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N(6)-methyladenosine levels. (1949-2553 (Electronic)).
39. Tian, C., et al., Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. International journal of molecular sciences, 2019. 20(3): p. 551.
40. Yang, Z., et al., RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer. J Exp Clin Cancer Res, 2020. 39(1): p. 203.
41. Lee, P.C., et al., Calreticulin regulates vascular endothelial growth factor-A mRNA stability in gastric cancer cells. PLoS One, 2019. 14(11): p. e0225107.
42. Michalak, M., et al., Calreticulin: one protein, one gene, many functions. The Biochemical journal, 1999. 344 Pt 2(Pt 2): p. 281-292.
43. Rojiani, M.V., et al., In vitro interaction of a polypeptide homologous to human Ro/SS-A antigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin alpha subunits. (0006-2960 (Print)).
44. Burns, K., et al., Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. (0028-0836 (Print)).
45. Martin, V., et al., Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin. (0021-9258 (Print)).
46. Krause, K.-H. and M. Michalak, Calreticulin. Cell, 1997. 88(4): p. 439-443.
47. Tjoelker, L.W., et al., Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. (0006-2960 (Print)).
48. Delmotte, P. and G.C. Sieck, Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM). (1205-7541 (Electronic)).
49. Michalak, M., et al., Calreticulin. (0264-6021 (Print)).
50. White, T.K., M.L. Zhu Q Fau - Tanzer, and M.L. Tanzer, Cell surface calreticulin is a putative mannoside lectin which triggers mouse melanoma cell spreading. (0021-9258 (Print)).
51. Papp, S., et al., Kinase-dependent adhesion to fibronectin: regulation by calreticulin. Experimental cell research, 2008. 314(6): p. 1313-1326.
52. Opas, M., et al., Calreticulin modulates cell adhesiveness via regulation of vinculin expression. The Journal of cell biology, 1996. 135(6 Pt 2): p. 1913-1923.
53. Coppolino, M.G. and S. Dedhar, Ligand-specific, transient interaction between integrins and calreticulin during cell adhesion to extracellular matrix proteins is dependent upon phosphorylation/dephosphorylation events. The Biochemical journal, 1999. 340 ( Pt 1)(Pt 1): p. 41-50.
54. Totary-Jain, H., et al., Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circ Res, 2005. 97(10): p. 1001-8.
55. Lu, Y.C., W.C. Weng, and H. Lee, Functional roles of calreticulin in cancer biology. Biomed Res Int, 2015. 2015: p. 526524.
56. Sheng, W., et al., Overexpression of calreticulin contributes to the development and progression of pancreatic cancer. (1097-4652 (Electronic)).
57. Du, X.L., et al., Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. (0946-2716 (Print)).
58. He, D., et al., Ecotropic virus integration-1 and calreticulin as novel prognostic markers in triple-negative breast cancer: A retrospective cohort study. Oncol Lett, 2019. 18(2): p. 1847-1855.
59. Chen, C.N., et al., Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Ann Surg Oncol, 2009. 16(2): p. 524-33.
60. Hsu, W.M., et al., Calreticulin expression in neuroblastoma--a novel independent prognostic factor. (0923-7534 (Print)).
61. Pope, S.D. and R. Medzhitov, Emerging Principles of Gene Expression Programs and Their Regulation. Mol Cell, 2018. 71(3): p. 389-397.
62. Yang, E., et al., Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. (1088-9051 (Print)).
63. Houseley, J. and D. Tollervey, The many pathways of RNA degradation. (1097-4172 (Electronic)).
64. Hollams, E.M., et al., MRNA stability and the control of gene expression: implications for human disease. 2002(0364-3190 (Print)).
65. Hargrove, J.L. and F.H. Schmidt, The role of mRNA and protein stability in gene expression. 1995(0892-6638 (Print)).
66. Chen, C.Y. and A.B. Shyu, AU-rich elements: characterization and importance in mRNA degradation. (0968-0004 (Print)).
67. Otsuka, H., et al., Emerging Evidence of Translational Control by AU-Rich Element-Binding Proteins. (1664-8021 (Print)).
68. Peng, S.S., et al., RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. (0261-4189 (Print)).
69. Tiedje, C., et al., The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. (1553-7404 (Electronic)).
70. Lykke-Andersen, J. and E. Wagner, Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev, 2005. 19(3): p. 351-61.
71. Lu, Y.C., et al., Calreticulin activates beta1 integrin via fucosylation by fucosyltransferase 1 in J82 human bladder cancer cells. Biochem J, 2014. 460(1): p. 69-78.
72. He, L., et al., Functions of N6-methyladenosine and its role in cancer. Mol Cancer, 2019. 18(1): p. 176.
73. Wang, X., et al., N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 2015. 161(6): p. 1388-99.
74. Sheth, U. and R. Parker, Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science (New York, N.Y.), 2003. 300(5620): p. 805-808.
75. Du, H., et al., YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun, 2016. 7: p. 12626.
76. Wang, Y., et al., N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol, 2014. 16(2): p. 191-8.
77. Li, E., et al., METTL3 enhances cell adhesion through stabilizing integrin β1 mRNA via an m6A-HuR-dependent mechanism in prostatic carcinoma. American journal of cancer research, 2020. 10(3): p. 1012-1025.
78. Yang, D.D., et al., METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway. Front Oncol, 2020. 10: p. 115.
79. Gyorffy, B., Z. Lánczky A Fau - Szállási, and Z. Szállási, Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. (1479-6821 (Electronic)).
80. Pendleton, K.E., et al., The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. (1097-4172 (Electronic)).
81. Saito, Y., et al., Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. (0261-4189 (Print)).
82. Raj, H.G., et al., Novel function of calreticulin: Characterization of calreticulin as a transacetylase-mediating protein acetylator independent of acetyl CoA using polyphenolic acetates. Pure and Applied Chemistry, 2006. 78(5): p. 985-992.
83. Wang, X., et al., Calreticulin stabilizes F-actin by acetylating actin and protects microvascular endothelial cells against microwave radiation. Life Sci, 2019. 232: p. 116591.
84. Sharma, A., et al., Trichostatin-A modulates claudin-1 mRNA stability through the modulation of Hu antigen R and tristetraprolin in colon cancer cells. Carcinogenesis, 2013. 34(11): p. 2610-21.
85. Lee, Y., et al., Molecular Mechanisms Driving mRNA Degradation by m(6)A Modification. Trends Genet, 2020. 36(3): p. 177-188.
86. Dominissini, D., et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012. 485(7397): p. 201-206.
87. Scheiba, R.M., et al., The C-terminal RNA binding motif of HuR is a multi-functional domain leading to HuR oligomerization and binding to U-rich RNA targets. RNA biology, 2014. 11(10): p. 1250-1261.
88. Pabis, M., et al., HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs. Nucleic Acids Research, 2019. 47(2): p. 1011-1029.
89. Shriwas, O., et al., The Impact of m6A RNA Modification in Therapy Resistance of Cancer: Implication in Chemotherapy, Radiotherapy, and Immunotherapy. Front Oncol, 2020. 10: p. 612337.
90. Maji, S., et al., Chapter Three - Bcl-2 Antiapoptotic Family Proteins and Chemoresistance in Cancer, in Advances in Cancer Research, K.D. Tew and P.B. Fisher, Editors. 2018, Academic Press. p. 37-75.
91. Esfahani, K., et al., A review of cancer immunotherapy: from the past, to the present, to the future. Current oncology (Toronto, Ont.), 2020. 27(Suppl 2): p. S87-S97.
92. Kakoti, S., et al., DNA Repair and Signaling in Immune-Related Cancer Therapy. Frontiers in molecular biosciences, 2020. 7: p. 205-205.
93. Zheng, H.-C., The molecular mechanisms of chemoresistance in cancers. Oncotarget, 2017. 8(35): p. 59950-59964.
94. D'Alterio, C., et al., Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. (1096-3650 (Electronic)).
95. Zhang, R., et al., TRIM11 facilitates chemoresistance in nasopharyngeal carcinoma by activating the β-catenin/ABCC9 axis via p62-selective autophagic degradation of Daple. Oncogenesis, 2020. 9(5): p. 45.
96. Zhang, C., et al., METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation. Molecular Cell, 2020. 79(3): p. 425-442.e7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82662-
dc.description.abstract血管新生主要由血管內皮生長因子-A(VEGF-A)及其受器所調控,並在癌症的進程以及惡化扮演著極其重要的角色。在胃癌以及其他癌症中,越高的VEGF-A表現量將導致越差的預後狀況。因此,了解VEGF-A的詳細調控機制,將可提供癌症在臨床上新的治療策略。N6-甲基腺苷(N6-methyladenosine, m6A)甲基化為一種在訊息RNA(Messenger RNA, mRNA)上最常見的修飾之一。此甲基化修飾會調控RNA結合蛋白與RNA的結合,進而影響mRNA的表現量。在實驗室先前的研究中證實,鈣網蛋白(Calreticulin, CRT)會間接地結合到VEGF-A的3’未轉譯區(3'UTR)上調控其mRNA穩定性。因此本研究欲探討m6A甲基化在CRT調控VEGF-A mRNA穩定性的機制中所扮演的角色。我們首先透過MeRIP定量檢測驗證在胃癌細胞株AGS中其VEGF-A mRNA上帶有m6A甲基化修飾。藉由小分子干擾RNA (short interfering RNA, siRNA)抑制Mettl3與Mettl14所組成的N6-腺苷-甲基轉移酶複合體後,VEGF-A mRNA上的m6A甲基化修飾減少,造成mRNA的穩定性下降,進而影響mRNA以及蛋白質的表現。在報導基因冷光活性試驗(luciferase reporter assay)結果中,我們發現m6A甲基化修飾確實參與到CRT調控VEGF-A mRNA的機制中。RNA免疫沉澱(RNA-immunoprecipitation, RNA-IP)的結果顯示,當VEGF-A mRNA上的m6A甲基化修飾減少後,CRT與VEGF-A mRNA的結合顯著下降。在本研究中,我們釐清m6A甲基化修飾透過影響CRT與VEGF-A mRNA的結合,進而影響其調控VEGF-A mRNA的穩定性。zh_TW
dc.description.abstractVascular endothelial growth factor-A (VEGF-A) plays a critical role in the angiogenesis and progression of cancers. It is shown that AU rich elements (ARE) in 3’UTR of VEGF-A mRNA governs VEGF-A mRNA stability in manner of post-transcriptional regulation. Furthermore, our previous studies demonstrated that Calreticulin (CRT) acts as RNA binding protein (RBP) to stabilize VEGF-A mRNA via indirectly binding to ARE in 3’ untranslated regions (3’UTRs) of VEGF-A mRNA. CRT is a multifunctional chaperone protein, and elevated levels of VEGF-A and CRT are both highly correlated with poor prognosis in gastric cancers. Notably, RNA N6-methyladenosine (m6A) methylation is reported to promote the progression of gastric cancers. m6A modification has been reported to stabilize mRNA via mediating the interaction of mRNA with RBP. Therefore, this study aimed to investigate if m6A methylation regulates binding of CRT to VEGF-A mRNA. Our MeRIP results evidenced that VEGF-A mRNA contained m6A methylation sites in gastric cancer. The depletion of Mettl3 and Mettl14, m6A methyltransferase complex, destabilized VEGF-A mRNA in AGS, and thus decreased its RNA and protein expression. Luciferase reporter assay suggested that m6A methylation regulates VEGF-A mRNA via the CRT-dependent pathway. Moreover, RNA-immunoprecipitation (RNA-IP) analysis showed that depletion of m6A methylation significantly decreased the binding affinity of CRT to VEGF-A mRNA, and thus interfered the CRT regulation on VEGF-A mRNA stability. In summary, these findings identify the m6A methylation in 3’UTR as a key factor for CRT to recognize VEGF-A mRNA, and regulate VEGF-A mRNA stability.en
dc.description.provenanceMade available in DSpace on 2022-11-25T07:48:53Z (GMT). No. of bitstreams: 1
U0001-0310202116403200.pdf: 3108436 bytes, checksum: 8ca45102431ea0f0e0e4e86184908918 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsContents
論文口試委員審定書 .. I
致謝 II
中文摘要 III
Abstract IV
Contents VI
Table List 1
Figure List 2
1. Introduction 3
1.1 Vascular endothelial growth factor-A (VEGF-A) 3
1.2 m6A RNA modification and its role in cancer 4
1.3 Calreticulin (CRT) and its roles in cancer 7
1.4 mRNA stability 8
2. Specific Aims 11
3. Materials and Methods 12
3.1 Cell Culture 12
3.2 Construction of Luciferase Reporter plasmid for m6A methylation 12
3.3 Transfection of siRNA and plasmid 13
3.4 Total RNA extraction and Reverse transcription quantitative PCR (RT-qPCR) ……………………………………………………………………………….13
3.5 Western blot 14
3.6 Methylated (m6A) RNA immunoprecipitation (MeRIP) 15
3.7 Determination of mRNA stability 15
3.8 Dual-luciferase Reporter assay 16
3.9 RNA immunoprecipitation (RNA-IP) 17
3.10 Survival analysis 18
3.11 Statistical analysis 18
4. Results 20
4.1 VEGF-A mRNA contains m6A modification 20
4.2 Knock-down of Mettl3/14 suppresses the expression level of VEGF-A through m6A methylation pathway in AGS cells 20
4.3 Diminish of Mettl3/14-dependent m6A methylation destabilizes VEGF-A mRNA 21
4.4 Overexpression of CRT increases VEGF-A expression level in AGS cells 22
4.5 Mettl3/14-dependent m6A methylation involves in CRT-dependent mRNA regulation on VEGF-A 23
4.6 Mettl3/14-dependent m6A methylation facilitates the interaction between CRT and VEGF-A transcript 25
5. Discussion 27
5.1 Summary of this study 27
5.2 Individual effects of Mettl3 and Mettl14 on VEGF-A expression level in AGS………………………………………………………………………………….28
5.3 Alternative mechanism of CRT regulates mRNA stability: mediating the acetylation of HuR 29
5.4 The relationship of RNA binding proteins, AU-rich elements and the RNA motif of m6A methylation 30
5.5 Clinical significance of m6A methylation and its impact on chemotherapy resistance in cancers 33
6. References 36
7. Tables ………………………………………………………………………………. .43
8. Figures …………………………………………………………………………… …45
-
dc.language.isoen-
dc.subject血管內皮生長因子-Azh_TW
dc.subject鈣網蛋白zh_TW
dc.subjectmRNA修飾zh_TW
dc.subject胃癌zh_TW
dc.subjectm6A甲基化zh_TW
dc.subjectmRNA穩定性zh_TW
dc.subjectmRNA modificationen
dc.subjectm6A methylationen
dc.subjectVEGF-Aen
dc.subjectCRTen
dc.subjectmRNA stabilityen
dc.subjectgastric canceren
dc.titleN6-甲基腺苷修飾促進鈣網蛋白穩定血管內皮生長因子A mRNA之功能zh_TW
dc.titleThe Role of N6-methyladenosine Modification in the Promotion of Calreticulin Stabilizing VEGF-A mRNA in Gastric Cancer cellsen
dc.typeThesis-
dc.date.schoolyear109-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳炯年;朱家瑩;翁妏謹;吳沛翊zh_TW
dc.contributor.oralexamcommitteeChiung-Nien Chen;Chia-Ying Chu;Wen-Chin Weng;Pei-Yi Wuen
dc.subject.keywordmRNA修飾,m6A甲基化,血管內皮生長因子-A,鈣網蛋白,mRNA穩定性,胃癌,zh_TW
dc.subject.keywordmRNA modification,m6A methylation,VEGF-A,CRT,mRNA stability,gastric cancer,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202103519-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2021-10-05-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
dc.date.embargo-lift2025-12-31-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-109-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved