請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82570完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建錦(Chien Chin Chen) | |
| dc.contributor.author | Chih-Yun Chen | en |
| dc.contributor.author | 陳芝妘 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:46:59Z | - |
| dc.date.available | 2023-08-01 | |
| dc.date.copyright | 2021-11-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-07 | |
| dc.identifier.citation | [1] D.A. Adeniyi, Z. Wei, Y. Yongquan, Automated Web Usage Data Mining and Recommendation System using K-Nearest Neighbor (KNN) Classification Method, Applied Computing and Informatics, 12 (2016) 90-108. [2] A. Ansari, C.F. Mela, E-customization, Journal of Marketing Research, 40 (2003) 131-145. [3] A. Antoniou, A. Storkey, H. Edwards, Data Augmentation Generative Adversarial Networks, arXiv preprint arXiv:1711.04340, 2017. [4] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein Generative Adversarial Networks, in: 34th International Conference on Machine Learning, PMLR, 2017, pp. 214-223. [5] R.N. Bolton, A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction, Marketing Science, 17 (1998) 45–65. [6] C. Bowles, L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Hammers, D. Dickie, M. Hern·ndez, J. Wardlaw, D. Rueckert, GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks, arXiv preprint arXiv:1810.10863, 2018. [7] I. Cantador, I. Fernández-Tobías, S. Berkovsky, P. Cremonesi, Cross-Domain Recommender systems, in: Recommender Systems Handbook, Springer, 2015, pp. 919-959. [8] D.-K. Chae, J.-S. Kang, S.-W. Kim, J. Choi, Rating Augmentation with Generative Adversarial Networks towards Accurate Collaborative Filtering, in: The World Wide Web Conference (WWW), ACM, San Francisco, CA, USA, 2019, pp. 2616–2622. [9] D.-K. Chae, J.-S. Kang, S.-W. Kim, J.-T. Lee, CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks, in: 27th ACM International Conference on Information and Knowledge Management (CIKM), ACM, Torino, Italy, 2018, pp. 137–146. [10] D.-K. Chae, J. Kim, D.H. Chau, S.-W. Kim, AR-CF: Augmenting Virtual Users and Items in Collaborative Filtering for Addressing Cold-Start Problems, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, Virtual Event, China, 2020, pp. 1251–1260. [11] C.C. Chen, Y.-H. Wan, M.-C. Chung, Y.-C. Sun, An Effective Recommendation Method for Cold Start New Users using Trust and Distrust Networks, Information Sciences, 224 (2013) 19–36. [12] J. Davidson, B. Liebald, J. Liu, P. Nandy, T.V. Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert, B. Livingston, D. Sampath, The YouTube Video Recommendation System, in: 4th ACM Conference on Recommender Systems, ACM, Barcelona, Spain, 2010, pp. 293–296. [13] M.J. Eppler, J. Mengis, The Concept of Information Overload: A Review of Literature from Organization Science, Accounting, Marketing, MIS, and Related Disciplines, The Information Society, 20 (2004) 325-344. [14] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, H. Greenspan, Synthetic Data Augmentation using GAN for Improved Liver Lesion Classification, in: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI), IEEE, 2018, pp. 289-293. [15] C.A. Gomez-Uribe, N. Hunt, The Netflix Recommender System: Algorithms, Business Value, and Innovation, ACM Transactions on Management Information Systems, 6 (2016) Article 13. [16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks, in: International Conference on Neural Information Processing Systems (NIPS), 2014, pp. 2672–2680. [17] S. Gupta, D. Hanssens, B. Hardie, W. Kahn, V. Kumar, N. Lin, N. Ravishanker, S. Sriram, Modeling Customer Lifetime Value, Journal of Service Research, 9 (2006) 139-155. [18] F.M. Harper, J.A. Konstan, The Movielens Datasets: History and Context, ACM Transactions on Interactive Intelligent Systems (TIIS), 5 (2015) 1-19. [19] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural Collaborative Filtering, in: 26th International Conference on World Wide Web (WWW), 2017, pp. 173-182. [20] X. He, H. Zhang, M.-Y. Kan, T.-S. Chua, Fast Matrix Factorization for Online Recommendation with Implicit Feedback, in: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, ACM, Pisa, Italy, 2016, pp. 549–558. [21] J.H. Huang, Y.F. Chen, Herding in Online Product Choice, Psychology Marketing, 23 (2006) 413-428. [22] F.O. Isinkaye, Y.O. Folajimi, B.A. Ojokoh, Recommendation Systems: Principles, Methods and Evaluation, Egyptian Informatics Journal, 16 (2015) 261-273. [23] K. Järvelin, J. Kekäläinen, Cumulated Gain-based Evaluation of IR Techniques, ACM Transactions on Information Systems (TOIS), 20 (2002) 422-446. [24] Y. Jiang, J. Shang, Y. Liu, Maximizing Customer Satisfaction through an Online Recommendation System: A Novel Associative Classification Model, Decision Support Systems, 48 (2010) 470-479. [25] D.P. Kingma, M. Welling, Auto-encoding Variational Bayes, in: Proceedings of International Conference on Learning Representations, 2014. [26] Y. Koren, Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model, in: Proceedings of the 14th ACM SIGKDD international conference on Knowledge Discovery and Data Mining, ACM, Las Vegas, Nevada, USA, 2008, pp. 426–434. [27] Y. Koren, R. Bell, C. Volinsky, Matrix Factorization Techniques for Recommender Systems, Computer, 42 (2009) 30-37. [28] R. Kübler, R. Seifert, M. Kandziora, Content Valuation Strategies for Digital Subscription Platforms, Journal of Cultural Economics, 45, 296-326, (2021). [29] S.K. Lam, J. Riedl, Shilling Recommender Systems for Fun and Profit, in: Proceedings of the 13th International Conference on World Wide Web (WWW), ACM, New York, NY, USA, 2004, pp. 393–402. [30] J. Li, M. Jing, K. Lu, L. Zhu, Y. Yang, Z. Huang, From Zero-Shot Learning to Cold-Start Recommendation, Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019) 4189-4196. [31] T. Liang, C. Xia, Y. Yin, P.S. Yu, Joint Training Capsule Network for Cold Start Recommendation, in: 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 1769-1772. [32] J. Lin, K. Sugiyama, M.-Y. Kan, T.-S. Chua, Addressing Cold-start in App Recommendation: Latent User Models Constructed from Twitter Followers, in: 36th international ACM SIGIR conference on Research and development in information retrieval, 2013, pp. 283-292. [33] N.K. Malhotra, S.S. Kim, J. Agarwal, Internet Users' Information Privacy Concerns (IUIPC): The Construct, the Scale, and a Causal Model, Information Systems Research, 15 (2004) 336-355. [34] T. Miyato, A.M. Dai, I. Goodfellow, Adversarial Training Methods for Semi-supervised Text Classification, in: International Conference on Learning Representations (ICLR), 2016. [35] J. Ni, J. Li, J. McAuley, Justifying recommendations using distantly-labeled reviews and fine-grained aspects, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 188-197. [36] A. Paterek, Improving Regularized Singular Value Decomposition for Collaborative Filtering, in: Proceedings of KDD cup and workshop,13th ACM Int. Conf. on Knowledge Discovery and Data Mining, San Jose, CA, USA, 2007, pp. 39-42. [37] A.J. Ratner, H.R. Ehrenberg, Z. Hussain, J. Dunnmon, C. Ré, Learning to Compose Domain-Specific Transformations for Data Augmentation, in: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS), December 2017 Pages 3239–3249. [38] F. Ricci, L. Rokach, B. Shapira, Introduction to Recommender Systems Handbook, Springer, 2011. [39] F. Ricci, L. Rokach, B. Shapira, Recommender Systems: Introduction and Challenges, Springer, 2015. [40] S. Ruder, An Overview of Gradient Descent Optimization Algorithms, arXiv preprint arXiv:1609.04747, (2016). [41] R. Salakhutdinov, A. Mnih, Probabilistic Matrix Factorization, in: Proceedings of the 20th International Conference on Neural Information Processing Systems (NIPS), Curran Associates Inc., Vancouver, British Columbia, Canada, 2007, pp. 1257–1264. [42] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Application of Dimensionality Reduction in Recommender System -- A Case Study, WebKDD-2000 Workshop, 2000. [43] S. Sedhain, A.K. Menon, S. Sanner, L. Xie, AutoRec: Autoencoders Meet Collaborative Filtering, in: 24th International Conference on World Wide Web (WWW), 2015, pp. 111-112. [44] S. Sedhain, S. Sanner, D. Braziunas, L. Xie, J. Christensen, Social Collaborative Filtering for Cold-start Recommendations, in: 8th ACM Conference on Recommender Systems, 2014, pp. 345-348. [45] A.P. Singh, G.J. Gordon, Relational Rearning via Collective Matrix Factorization, in: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Las Vegas, Nevada, USA, 2008, pp. 650–658. [46] F. Strub, J. Mary, Collaborative Filtering with Stacked Denoising Autoencoders and Sparse Inputs, in: NIPS workshop on Machine Learning for eCommerce, 2015. [47] J. Tang, K. Wang, Personalized Top-n Sequential Recommendation via Convolutional Sequence Embedding, in: Eleventh ACM International Conference on Web Search and Data Mining (WSDM), 2018, pp. 565-573. [48] Y. Tong, Y. Luo, Z. Zhang, S. Sadiq, P. Cui, Collaborative Generative Adversarial Network for Recommendation Systems, in: 35th International Conference on Data Engineering Workshops (ICDE), IEEE, 2019, pp. 161-168. [49] L.N. Trefethen, D. Bau III, Numerical Linear Algebra, SIAM, 1997. [50] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and Composing Robust Features with Denoising Autoencoders, in: 25th International Conference on Machine learning (ICML), 2008, pp. 1096-1103. [51] M. Volkovs, G.W. Yu, T. Poutanen, DropoutNet: Addressing Cold Start in Recommender Systems, in: 31st International Conference on Neural Information Processing Systems (NIPS), 2017, pp. 4964–4973. [52] M. Wan, R. Misra, N. Nakashole, J. McAuley, Fine-Grained Spoiler Detection from Large-Scale Review Corpora, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019, pp. 2605–2610. [53] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, D. Zhang, IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models, in: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, Shinjuku, Tokyo, Japan, 2017, pp. 515–524. [54] Y. Wu, C. DuBois, A.X. Zheng, M. Ester, Collaborative Denoising Auto-encoders for Top-n Recommender Systems, in: 9th ACM International Conference on Web Search and Data Mining (WSDM), 2016, pp. 153-162. [55] J. Xu, Y. Yao, H. Tong, X. Tao, J. Lu, RaPare: A Generic Strategy for Cold-start Rating Prediction Problem, IEEE Transactions on Knowledge and Data Engineering, 29 (2016) 1296-1309. [56] H.-J. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep Matrix Factorization Models for Recommender Systems, in: 26th International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia, 2017, pp. 3203-3209. [57] S. Zhang, L. Yao, A. Sun, Y. Tay, Deep Learning based Recommender System: A Survey and New Perspectives, ACM Computing Surveys, 52 (2019) 1-38. [58] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, L. Carin, Adversarial Feature Matching for Text Generation, in: International Conference on Machine Learning (ICML), PMLR, 2017, pp. 4006-4015. [59] K. Zhou, S.-H. Yang, H. Zha, Functional Matrix Factorizations for Cold-start Recommendation, in: 34th International ACM SIGIR Conference, 2011, pp. 315-324. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82570 | - |
| dc.description.abstract | 隨著網際網路快速的發展,促進網路服務的多元開發,也讓現代人的生活越來越依賴網路服務平台,其中,對網路服務平台供應商而言,是否能獲得新進使用者的青睞是影響收益的關鍵因素。由於傳統的推薦系統演算法是基於使用者行為來進行產品推薦,在面對新進使用者(new users)時會因為只有他們少許的行為資料,推薦演算法難以從中分析出使用者興趣,而此問題被稱為「新進使用者冷啟動問題」(new user cold-start problem),這樣的情境使得推薦系統難以了解新進使用者的興趣,更降低了推薦的效果。過去的研究試圖使用額外的資訊來解決新進使用者冷啟動問題,例如:使用者的性別、職業或社群網路資訊等等,但是資訊隱私與個人資訊保護使得先前的研究無法應用。 在本篇論文中,我們提出了一個端到端(end-to-end)基於生成式對抗網路(GAN)的推薦演算法來緩解使用者冷啟動的問題,此方法不需使用到額外的資訊,此方法由兩個神經網路組成:生成器與判別器,利用豐富的使用者資訊來訓練生成器,而生成器會學習模擬新進使用者變成豐富使用者的評分分佈,同時,判別器會負責分辨生成器模擬出的資訊與真實資訊,最後訓練完成的生成器就可以替冷啟動使用者進行推薦。此外,我們設計了「返老還童」機制來將豐富使用者還原到他剛加入平台時的冷啟動狀態,根據在三個不同領域資料集的實驗結果,我們提出的方法都遠遠優於其他冷啟動推薦演算法。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:46:59Z (GMT). No. of bitstreams: 1 U0001-0707202109463000.pdf: 2247951 bytes, checksum: 3b742d432abc6ba77f2b55f52a9a3091 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………….………………………………….…… i 誌謝…………………………….……….…………………………………………... ii 中文摘要……………………………..……………………………………………… iii ABSTRACT ………………………………………………………………………… iv 1 Introduction…………………………………………………………………….... 1 2 Related Works………………………………………………………………........ 4 2.1 Collaborative Filtering-based Recommendation……..……...……......…. 4 2.2 GAN-based Recommendation………………………………...…………. 7 2.3 New User Cold-Start Recommendation………...…….………………...… 9 3 The Proposed Model….……………………………………………………….... 12 3.1 GAN Training……..……………………….………………….………..… 14 3.2 The Cold-Start Recommendation Generation.……………..…………..… 18 4 Experiments…………………………………………………………….………. 18 4.1 Experiment settings………………………..………………...………….. 19 4.2 Examination of System Components…………………...…...………….. 23 4.3 Comparison with Other Methods………………………..……..……….. 28 5 Conclusions……………………………………………………….……………. 31 Reference………...…………………………………………………….……………. 33 | |
| dc.language.iso | en | |
| dc.subject | 對抗式生成網路 | zh_TW |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 冷啟動使用者問題 | zh_TW |
| dc.subject | Recommendation Systems | en |
| dc.subject | Generative Adversarial Networks | en |
| dc.subject | New User Cold-Start Problem | en |
| dc.title | 運用生成式對抗網路緩解推薦系統冷啟動使用者問題 | zh_TW |
| dc.title | Mitigating New User Cold-Start Problem in Recommendation Systems with Generative Adversarial Networks | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳孟彰(Hsin-Tsai Liu),張詠淳(Chih-Yang Tseng) | |
| dc.subject.keyword | 推薦系統,冷啟動使用者問題,對抗式生成網路, | zh_TW |
| dc.subject.keyword | Recommendation Systems,New User Cold-Start Problem,Generative Adversarial Networks, | en |
| dc.relation.page | 37 | |
| dc.identifier.doi | 10.6342/NTU202101317 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-08 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-01 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0707202109463000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
