Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82566
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 黃宣銘(Hsuan-Ming Huang) | |
dc.contributor.author | Cheng-Hsun Yang | en |
dc.contributor.author | 楊承勳 | zh_TW |
dc.date.accessioned | 2022-11-25T07:46:55Z | - |
dc.date.available | 2023-07-31 | |
dc.date.copyright | 2021-07-20 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-07-10 | |
dc.identifier.citation | F. P. Oliveira and J. M. R. Tavares, 'Medical image registration: a review,' Computer methods in biomechanics and biomedical engineering, vol. 17, no. 2, pp. 73-93, 2014. M. Pendergrass et al., 'Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals,' American Journal of Physiology-Endocrinology and Metabolism, vol. 292, no. 1, pp. E92-E100, 2007. L. I. Wiebe, 'PET radiopharmaceuticals for metabolic imaging in oncology,' in International Congress Series, 2004, vol. 1264: Elsevier, pp. 53-76. R. Boellaard et al., 'FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0,' European journal of nuclear medicine and molecular imaging, vol. 37, no. 1, pp. 181-200, 2010. L. Kostakoglu, H. Agress Jr, and S. J. Goldsmith, 'Clinical role of FDG PET in evaluation of cancer patients,' Radiographics, vol. 23, no. 2, pp. 315-340, 2003. F. A. Kotasidis, C. Tsoumpas, and A. Rahmim, 'Advanced kinetic modelling strategies: towards adoption in clinical PET imaging,' Clinical and Translational Imaging, vol. 2, no. 3, pp. 219-237, 2014/06/01 2014, doi: 10.1007/s40336-014-0069-8. R. E. Carson, 'Tracer kinetic modeling in PET,' in Positron Emission Tomography: Springer, 2005, pp. 127-159. B. S. Ko, J. D. Cameron, T. DeFrance, and S. K. Seneviratne, 'CT stress myocardial perfusion imaging using multidetector CT—a review,' Journal of cardiovascular computed tomography, vol. 5, no. 6, pp. 345-356, 2011. T. S. Koh, Q. S. Ng, C. H. Thng, J. W. Kwek, R. Kozarski, and V. Goh, 'Primary colorectal cancer: use of kinetic modeling of dynamic contrast-enhanced CT data to predict clinical outcome,' Radiology, vol. 267, no. 1, pp. 145-154, 2013. I. Jacobs, G. J. Strijkers, H. M. Keizer, H. M. Janssen, K. Nicolay, and M. C. Schabel, 'A novel approach to tracer‐kinetic modeling for (macromolecular) dynamic contrast‐enhanced MRI,' Magnetic Resonance in Medicine, vol. 75, no. 3, pp. 1142-1153, 2016. J. H. Naish, L. E. Kershaw, D. L. Buckley, A. Jackson, J. C. Waterton, and G. J. Parker, 'Modeling of contrast agent kinetics in the lung using T1‐weighted dynamic contrast‐enhanced MRI,' Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 61, no. 6, pp. 1507-1514, 2009. H.-M. Huang, 'Kinetic model with PET for non-invasive assessment of glucose transport and phosphorylation in skeletal muscle,' Case Western Reserve University, 2012. M. Naganawa et al., 'Tracer kinetic modeling of [11C] AFM, a new PET imaging agent for the serotonin transporter,' Journal of Cerebral Blood Flow Metabolism, vol. 33, no. 12, pp. 1886-1896, 2013. G. Wang and J. Qi, 'Direct estimation of kinetic parametric images for dynamic PET,' Theranostics, vol. 3, no. 10, p. 802, 2013. G. Wang and J. Qi, 'PET image reconstruction using kernel method,' IEEE transactions on medical imaging, vol. 34, no. 1, pp. 61-71, 2014. K. Gong, J. Cheng-Liao, G. Wang, K. T. Chen, C. Catana, and J. Qi, 'Direct patlak reconstruction from dynamic PET data using the kernel method with MRI information based on structural similarity,' IEEE transactions on medical imaging, vol. 37, no. 4, pp. 955-965, 2017. M. E. Kamasak, C. A. Bouman, E. D. Morris, and K. Sauer, 'Direct reconstruction of kinetic parameter images from dynamic PET data,' IEEE transactions on medical imaging, vol. 24, no. 5, pp. 636-650, 2005. J. Dutta, R. M. Leahy, and Q. Li, 'Non-local means denoising of dynamic PET images,' PloS one, vol. 8, no. 12, p. e81390, 2013. B. T. Christian, N. T. Vandehey, J. M. Floberg, and C. A. Mistretta, 'Dynamic PET denoising with HYPR processing,' Journal of Nuclear Medicine, vol. 51, no. 7, pp. 1147-1154, 2010. [Online]. Available: http://jnm.snmjournals.org/content/51/7/1147.full.pdf. F. Hashimoto, H. Ohba, K. Ote, A. Teramoto, and H. Tsukada, 'Dynamic PET image denoising using deep convolutional neural networks without prior training datasets,' IEEE Access, vol. 7, pp. 96594-96603, 2019. M. Shidahara, Y. Ikoma, J. Kershaw, Y. Kimura, M. Naganawa, and H. Watabe, 'PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging,' Annals of nuclear medicine, vol. 21, no. 7, p. 379, 2007. H. M. Huang, C. C. Liu, and C. Lin, 'Indirect methods for improving parameter estimation of PET kinetic models,' Medical physics, vol. 46, no. 4, pp. 1777-1784, 2019. K. Herholz, 'Non-stationary spatial filtering and accelerated curve fitting for parametric imaging with dynamic PET,' European journal of nuclear medicine, vol. 14, no. 9-10, pp. 477-484, 1988. L. Lu, D. Hu, X. Ma, J. Ma, A. Rahmim, and W. Chen, 'Dynamic PET denoising incorporating a composite image guided filter,' in 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014: IEEE, pp. 1-4. C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin, 'Deep learning on image denoising: An overview,' Neural Networks, 2020. A. Krizhevsky, I. Sutskever, and G. E. Hinton, 'Imagenet classification with deep convolutional neural networks,' Advances in neural information processing systems, vol. 25, pp. 1097-1105, 2012. O. Russakovsky et al., 'Imagenet large scale visual recognition challenge,' International journal of computer vision, vol. 115, no. 3, pp. 211-252, 2015. C. Szegedy et al., 'Going deeper with convolutions,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9. L. Xu, J. S. Ren, C. Liu, and J. Jia, 'Deep convolutional neural network for image deconvolution,' Advances in neural information processing systems, vol. 27, pp. 1790-1798, 2014. S. Ren, K. He, R. Girshick, and J. Sun, 'Faster r-cnn: Towards real-time object detection with region proposal networks,' arXiv preprint arXiv:1506.01497, 2015. C. Tian, Y. Xu, L. Fei, and K. Yan, 'Deep learning for image denoising: a survey,' in International Conference on Genetic and Evolutionary Computing, 2018: Springer, pp. 563-572. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, 'SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size,' arXiv preprint arXiv:1602.07360, 2016. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, 'Inception-v4, inception-resnet and the impact of residual connections on learning,' in Proceedings of the AAAI Conference on Artificial Intelligence, 2017, vol. 31, no. 1. P. C. Tripathi and S. Bag, 'CNN-DMRI: a convolutional neural network for denoising of magnetic resonance images,' Pattern Recognition Letters, vol. 135, pp. 57-63, 2020. Q. Yang, P. Yan, M. K. Kalra, and G. Wang, 'CT image denoising with perceptive deep neural networks,' arXiv preprint arXiv:1702.07019, 2017. K. Gong, J. Guan, C.-C. Liu, and J. Qi, 'PET image denoising using a deep neural network through fine tuning,' IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 3, no. 2, pp. 153-161, 2018. J. Cui et al., 'PET image denoising using unsupervised deep learning,' European journal of nuclear medicine and molecular imaging, vol. 46, no. 13, pp. 2780-2789, 2019. F. Hashimoto, H. Ohba, K. Ote, A. Kakimoto, H. Tsukada, and Y. Ouchi, '4D deep image prior: dynamic PET image denoising using an unsupervised four-dimensional branch convolutional neural network,' Physics in Medicine Biology, vol. 66, no. 1, p. 015006, 2021. D. Ulyanov, A. Vedaldi, and V. Lempitsky, 'Deep image prior,' in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9446-9454. A. Camuto, M. Willetts, U. Simsekli, S. J. Roberts, and C. C. Holmes, 'Explicit Regularisation in Gaussian Noise Injections,' Advances in Neural Information Processing Systems, vol. 33, 2020. L. Taylor and G. Nitschke, 'Improving deep learning using generic data augmentation,' arXiv preprint arXiv:1708.06020, 2017. C. Kennedy et al., 'Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C] deoxyglucose technique,' Proceedings of the National Academy of Sciences, vol. 73, no. 11, pp. 4230-4234, 1976. M. E. Kamasak, 'Computation of variance in compartment model parameter estimates from dynamic PET data,' Medical physics, vol. 39, no. 5, pp. 2638-2648, 2012. G. Manca et al., '18 F-FDG PET/CT quantification in head and neck squamous cell cancer: principles, technical issues and clinical applications,' European journal of nuclear medicine and molecular imaging, vol. 43, no. 7, pp. 1360-1375, 2016. L. Sokoloff et al., 'The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat 1,' Journal of neurochemistry, vol. 28, no. 5, pp. 897-916, 1977. L. A. Shepp and Y. Vardi, 'Maximum likelihood reconstruction for emission tomography,' IEEE transactions on medical imaging, vol. 1, no. 2, pp. 113-122, 1982. Y. Zhou, W. Ye, J. R. Brašić, and D. F. Wong, 'Multi-graphical analysis of dynamic PET,' Neuroimage, vol. 49, no. 4, pp. 2947-2957, 2010. R. Boellaard, A. Van Lingen, and A. A. Lammertsma, 'Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling,' Journal of Nuclear Medicine, vol. 42, no. 5, pp. 808-817, 2001. M. A. Branch, T. F. Coleman, and Y. Li, 'A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems,' SIAM Journal on Scientific Computing, vol. 21, no. 1, pp. 1-23, 1999. R. H. Byrd, R. B. Schnabel, and G. A. Shultz, 'Approximate solution of the trust region problem by minimization over two-dimensional subspaces,' Mathematical programming, vol. 40, no. 1-3, pp. 247-263, 1988. D. Feng, S.-C. Huang, and X. Wang, 'Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography,' International journal of bio-medical computing, vol. 32, no. 2, pp. 95-110, 1993. J. Tsao and S. Kozerke, 'MRI temporal acceleration techniques,' Journal of Magnetic Resonance Imaging, vol. 36, no. 3, pp. 543-560, 2012. F. Hofheinz et al., 'Suitability of bilateral filtering for edge-preserving noise reduction in PET,' EJNMMI research, vol. 1, no. 1, pp. 1-9, 2011. Q. Zhou, C. Zhou, H. Hu, Y. Chen, S. Chen, and X. Li, 'Towards the Automation of Deep Image Prior,' arXiv preprint arXiv:1911.07185, 2019. C.-C. Liu and J. Qi, 'Higher SNR PET image prediction using a deep learning model and MRI image,' Physics in Medicine Biology, vol. 64, no. 11, p. 115004, 2019. H.-M. Huang, 'Kernel-based curve-fitting method with spatial regularization for generation of parametric images in dynamic PET,' Physics in Medicine Biology, vol. 65, no. 22, p. 225006, 2020. L. Lu, N. A. Karakatsanis, J. Tang, W. Chen, and A. Rahmim, '3.5 D dynamic PET image reconstruction incorporating kinetics-based clusters,' Physics in Medicine Biology, vol. 57, no. 15, p. 5035, 2012. T. Yokota, K. Kawai, M. Sakata, Y. Kimura, and H. Hontani, 'Dynamic PET image reconstruction using nonnegative matrix factorization incorporated with deep image prior,' in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3126-3135. W. Zhu et al., 'A Bayesian spatial temporal mixtures approach to kinetic parametric images in dynamic positron emission tomography,' Medical physics, vol. 43, no. 3, pp. 1222-1234, 2016. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82566 | - |
dc.description.abstract | 從動態正子斷層造影(PET)數據的藥物代謝動力學模型分析獲得的參數圖像是定量示踪劑動力學的有用工具。然而,單一像素的時間活性曲線具有較多的雜訊,這導致參數圖像的影像品質較差,從而影響後續的定量分析。為了解決這一項問題,本論文提出了一種基於深度圖像先驗(DIP)架構的圖像去雜訊方法。在原始的深度圖像先驗方法中,只能對單一影像進行去雜訊;與之不同,本研究提出的深度圖像先驗方法可以同時對所有動態正子斷層造影圖像進行去雜訊。為了進一步提高動態正子斷層造影圖像的品質,本研究提出了一種具有兩種深度圖像先驗架構的雙深度圖像先驗方法。在這種方法中,第一個深度圖像先驗架構用於生成第二個深度圖像先驗架構所需的高質量輸入影像。第二個深度圖像先驗架構將較高質量平均影像作為輸入,並執行類似於第一個深度圖像先驗架構的去雜訊方法,以提供更高質量的所有動態圖像。為了確保所提出方法的性能,本研究利用電腦模擬產生之數據進行評估,並改變不同的影像擷取參數,如:計數(counts) 以及持續期間 (duration),來評估提出方法的一般化程度。本研究將結果與其他傳統的和基於深度學習的去雜訊方法進行比較。與非局部方法、高約束反投影法和原始深度圖像先驗法相比,本研究提出的雙深度圖像先驗方法可以提供更高質量的動態正子斷層造影圖像和參數圖像。不僅如此,本論文所提出的雙深度圖像先驗方法可以比其他去雜訊方法進一步降低均方根誤差,並提高參數圖像的質量。本研究的結果表明,提出的雙深度圖像先驗方法是一種新穎而有效的動態正子斷層造影圖像去雜訊方法。該方法不僅可以同時對所有動態正子斷層造影圖像進行去雜訊,而且可以提高參數圖像的質量。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2022-11-25T07:46:55Z (GMT). No. of bitstreams: 1 U0001-0807202114424600.pdf: 4855434 bytes, checksum: 5055dc5008e42b2286917d5d813db25f (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vi Chapter 1 Introduction 1 1.1 Dynamic positron emission tomography 1 1.2 Kinetic modeling 2 1.3 Traditional denoising method 3 1.4 DL-based denoising method 4 Chapter 2 Methodology 7 2.1 Deep image prior (DIP) 7 2.2 Simulations of dynamic PET data 13 2.2.1 Computer simulations 13 2.2.2 Additional computer simulations 17 2.3 Data analysis 19 Chapter 3 Results 24 Chapter 4 Discussion 39 Chapter 5 Conclusion 46 REFERENCE 47 | |
dc.language.iso | en | |
dc.title | 基於deep image prior (DIP) 之動態正子斷層成像同時去雜訊演算法 | zh_TW |
dc.title | Simultaneous denoising of dynamic PET imaging based on deep image prior (DIP) | en |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張瀚(Hsin-Tsai Liu),蕭穎聰(Chih-Yang Tseng) | |
dc.subject.keyword | 深度圖像先驗,動態正子斷層造影,參數影像,非監督式學習, | zh_TW |
dc.subject.keyword | deep image prior,dynamic PET,parametric imaging,unsupervised learning, | en |
dc.relation.page | 51 | |
dc.identifier.doi | 10.6342/NTU202101344 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2021-07-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫療器材與醫學影像研究所 | zh_TW |
dc.date.embargo-lift | 2023-07-31 | - |
Appears in Collections: | 醫療器材與醫學影像研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-0807202114424600.pdf Access limited in NTU ip range | 4.74 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.