請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82503
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇剛毅(Kang-Yi Su) | |
dc.contributor.author | Chiu-En Lin | en |
dc.contributor.author | 林裘恩 | zh_TW |
dc.date.accessioned | 2022-11-25T07:45:52Z | - |
dc.date.available | 2023-08-31 | |
dc.date.copyright | 2021-09-16 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-08-19 | |
dc.identifier.citation | 1. GIRMA, A., PREVALENCE OF OVERNUTRITION AND ASSOCIATED FACTORS AMONG ELEMENTARY SCHOOL STUDENTS IN BISHOFTU TOWN, ETHIOIPIA. 2020. 2. Hernández-García, J., D. Navas-Carrillo, and E. Orenes-Piñero, Alterations of circadian rhythms and their impact on obesity, metabolic syndrome and cardiovascular diseases. Critical reviews in food science and nutrition, 2020. 60(6): p. 1038-1047. 3. Jepsen, S., J. Suvan, and J. Deschner, The association of periodontal diseases with metabolic syndrome and obesity. Periodontology 2000, 2020. 83(1): p. 125-153. 4. Moore, K.J. and R. Shah, Introduction to the obesity, metabolic syndrome, and CVD compendium. Circulation research, 2020. 126(11): p. 1475-1476. 5. Lega, I.C. and L.L. Lipscombe, diabetes, obesity, and cancer—pathophysiology and clinical implications. Endocrine reviews, 2020. 41(1): p. 33-52. 6. Torres, N., A. Vargas-Castillo, and A. Tovar, Adipose Tissue: White Adipose Tissue Structure and Function. 2016. 7. Kieffer, T.J. and J.F. Habener, The adipoinsular axis: effects of leptin on pancreatic β-cells. American Journal of Physiology-Endocrinology And Metabolism, 2000. 278(1): p. E1-E14. 8. Siersbæk, R., R. Nielsen, and S. Mandrup, PPARγ in adipocyte differentiation and metabolism–novel insights from genome-wide studies. FEBS letters, 2010. 584(15): p. 3242-3249. 9. Yamauchi, T., et al., The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature medicine, 2001. 7(8): p. 941-946. 10. Okamoto, Y., et al., Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 2002. 106(22): p. 2767-2770. 11. Salans, L.B., J.L. Knittle, and J. Hirsch, The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. The Journal of clinical investigation, 1968. 47(1): p. 153-165. 12. Halberg, N., et al., Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Molecular and cellular biology, 2009. 29(16): p. 4467-4483. 13. Ghaben, A.L. and P.E. Scherer, Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019. 20(4): p. 242-258. 14. Rosen, E.D., et al., Transcriptional regulation of adipogenesis. Genes Development, 2000. 14(11): p. 1293-1307. 15. Cristancho, A.G. and M.A. Lazar, Forming functional fat: a growing understanding of adipocyte differentiation. Nature Reviews Molecular Cell Biology, 2011. 12(11): p. 722-734. 16. Rosen, E.D., et al., PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Molecular cell, 1999. 4(4): p. 611-617. 17. Kajno, E., T.E. McGraw, and E. Gonzalez, Development of a new model system to dissect isoform specific Akt signalling in adipocytes. Biochemical Journal, 2015. 468(3): p. 425-434. 18. Kersten, S., Peroxisome proliferator activated receptors and obesity. European journal of pharmacology, 2002. 440(2-3): p. 223-234. 19. Christodoulides, C. and A. Vidal-Puig, PPARs and adipocyte function. Molecular and cellular endocrinology, 2010. 318(1-2): p. 61-68. 20. Lefebvre, P., et al., Sorting out the roles of PPARα in energy metabolism and vascular homeostasis. The Journal of clinical investigation, 2006. 116(3): p. 571-580. 21. He, W., et al., Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proceedings of the National Academy of Sciences, 2003. 100(26): p. 15712-15717. 22. Perrini, S., et al., Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells. Diabetologia, 2008. 51(1): p. 155-164. 23. Evans, R.M., G.D. Barish, and Y.-X. Wang, PPARs and the complex journey to obesity. Nature medicine, 2004. 10(4): p. 355-361. 24. Wu, Z., et al., Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Molecular cell, 1999. 3(2): p. 151-158. 25. Lefterova, M.I., et al., PPAR gamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Development, 2008. 22(21): p. 2941-2952. 26. Okuno, A., et al., Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. The Journal of clinical investigation, 1998. 101(6): p. 1354-1361. 27. Burns, K.A. and J.P.V. Heuvel, Modulation of PPAR activity via phosphorylation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2007. 1771(8): p. 952-960. 28. Diradourian, C., J. Girard, and J.-P. Pégorier, Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie, 2005. 87(1): p. 33-38. 29. Ristow, M., et al., Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. New England Journal of Medicine, 1998. 339(14): p. 953-959. 30. Rangwala, S.M., et al., Genetic modulation of PPARγ phosphorylation regulates insulin sensitivity. Developmental cell, 2003. 5(4): p. 657-663. 31. Cignarelli, A., et al., Insulin and Insulin Receptors in Adipose Tissue Development. International Journal of Molecular Sciences, 2019. 20(3): p. 20. 32. Gregoire, F.M., C.M. Smas, and H.S. Sul, Understanding adipocyte differentiation. Physiological reviews, 1998. 78(3): p. 783-809. 33. Schmidt, W., G. Pöll-Jordan, and G. Löffler, Adipose conversion of 3T3-L1 cells in a serum-free culture system depends on epidermal growth factor, insulin-like growth factor I, corticosterone, and cyclic AMP. Journal of Biological Chemistry, 1990. 265(26): p. 15489-15495. 34. Smith, P.J., et al., Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. Journal of Biological Chemistry, 1988. 263(19): p. 9402-9408. 35. Deslex, S., R. Negrel, and G. Ailhaud, Development of a chemically defined serum-free medium for differentiation of rat adipose precursor cells. Experimental cell research, 1987. 168(1): p. 15-30. 36. Nougues, J., Y. Reyne, and J. Dulor, Differentiation of rabbit adipocyte precursors in primary culture. International journal of obesity, 1988. 12(4): p. 321-333. 37. Reyne, Y., J. Nouguès, and J.-P. Dulor, Differentiation of rabbit adipocyte precursor cells in a serum-free medium. In vitro cellular developmental biology, 1989. 25(8): p. 747-752. 38. Kohn, A.D., et al., Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. Journal of Biological Chemistry, 1996. 271(49): p. 31372-31378. 39. Jia, Y., et al., Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt. The Journal of nutritional biochemistry, 2016. 28: p. 9-18. 40. Summers, S.A., E.L. Whiteman, and M.J. Birnbaum, Insulin signaling in the adipocyte. International Journal of Obesity, 2000. 24: p. S67-S70. 41. Mueckler, M. and B. Thorens, The SLC2 (GLUT) family of membrane transporters. Molecular aspects of medicine, 2013. 34(2-3): p. 121-138. 42. Wardzala, L. and B. Jeanrenaud, Potential mechanism of insulin action on glucose transport in the isolated rat diaphragm. Apparent translocation of intracellular transport units to the plasma membrane. Journal of Biological Chemistry, 1981. 256(14): p. 7090-7093. 43. Klip, A., et al., Insulin‐induced translocation of glucose transporters in rat hindlimb muscles. FEBS letters, 1987. 224(1): p. 224-230. 44. Govers, R., A.C. Coster, and D.E. James, Insulin increases cell surface GLUT4 levels by dose dependently discharging GLUT4 into a cell surface recycling pathway. Molecular and cellular biology, 2004. 24(14): p. 6456. 45. Roberts, R., et al., Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia, 2009. 52(5): p. 882-890. 46. Eissing, L., et al., De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nature communications, 2013. 4(1): p. 1-11. 47. Duncan, R.E., et al., Regulation of lipolysis in adipocytes. Annu. Rev. Nutr., 2007. 27: p. 79-101. 48. Jaworski, K., et al., Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2007. 293(1): p. G1-G4. 49. Zhou, P., et al., PAHSAs enhance hepatic and systemic insulin sensitivity through direct and indirect mechanisms. The Journal of clinical investigation, 2019. 129(10): p. 4138-4150. 50. Vidal-Puig, A.J., et al., Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. The Journal of clinical investigation, 1997. 99(10): p. 2416-2422. 51. Yoon, M.S., et al., Mechanistic target of rapamycin controls homeostasis of adipogenesis. Journal of Lipid Research, 2013. 54(8): p. 2166-2173. 52. Park, J.-Y., et al., Inhibition of Adipogenesis by Oligonol through Akt-mTOR Inhibition in 3T3-L1 Adipocytes. Evidence-Based Complementary and Alternative Medicine, 2014. 2014: p. 895272. 53. Horton, J.D., J.L. Goldstein, and M.S. Brown, SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of clinical investigation, 2002. 109(9): p. 1125-1131. 54. Shimano, H., et al., Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. The Journal of clinical investigation, 1997. 99(5): p. 846-854. 55. Yahagi, N., et al., Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lepob/Lepob mice. Journal of Biological Chemistry, 2002. 277(22): p. 19353-19357. 56. Zoncu, R., A. Efeyan, and D.M. Sabatini, mTOR: from growth signal integration to cancer, diabetes and ageing. Nature reviews Molecular cell biology, 2011. 12(1): p. 21-35. 57. Li, S., et al., Role of S6K1 in regulation of SREBP1c expression in the liver. Biochemical and biophysical research communications, 2011. 412(2): p. 197-202. 58. Ozcan, U., et al., Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Molecular cell, 2008. 29(5): p. 541-551. 59. Kammoun, H.L., et al., GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. The Journal of clinical investigation, 2009. 119(5): p. 1201-1215. 60. Pearson, G., et al., Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 2001. 22(2): p. 153-183. 61. Zhang, W. and H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research, 2002. 12(1): p. 9-18. 62. Yu, J.B., et al., Regulation of Host Immune Responses against Influenza A Virus Infection by Mitogen-Activated Protein Kinases (MAPKs). Microorganisms, 2020. 8(7): p. 17. 63. Camp, H.S. and S.R. Tafuri, Regulation of peroxisome proliferator-activated receptor γ activity by mitogen-activated protein kinase. Journal of Biological Chemistry, 1997. 272(16): p. 10811-10816. 64. Hu, E., et al., Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science, 1996. 274(5295): p. 2100-2103. 65. Aouadi, M., et al., Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes, 2006. 55(2): p. 281-289. 66. Aouadi, M., et al., p38MAP Kinase activity is required for human primary adipocyte differentiation. FEBS letters, 2007. 581(29): p. 5591-5596. 67. Camp, H.S., S.R. Tafuri, and T. Leff, c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-γ1 and negatively regulates its transcriptional activity. Endocrinology, 1999. 140(1): p. 392-397. 68. Takeno, A., et al., Phloretin Promotes Adipogenesis via Mitogen-Activated Protein Kinase Pathways in Mouse Marrow Stromal ST2 Cells. International journal of molecular sciences, 2018. 19(6): p. 1772. 69. Kadowaki, T. and T. Yamauchi, Adiponectin and adiponectin receptors. Endocrine reviews, 2005. 26(3): p. 439-451. 70. Achari, A.E. and S.K. Jain, Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. International journal of molecular sciences, 2017. 18(6): p. 1321. 71. MacDougald, O.A., et al., Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proceedings of the National Academy of Sciences, 1995. 92(20): p. 9034-9037. 72. Saladin, R., et al., Transient increase in obese gene expression after food intake or insulin administration. Nature, 1995. 377(6549): p. 527-528. 73. Lynes, M.D., S.D. Kodani, and Y.-H. Tseng, Lipokines and thermogenesis. Endocrinology, 2019. 160(10): p. 2314-2325. 74. Pant, M., N.C. Bal, and M. Periasamy, Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle. Trends in Endocrinology Metabolism, 2016. 27(12): p. 881-892. 75. Periasamy, M., J.L. Herrera, and F.C. Reis, Skeletal muscle thermogenesis and its role in whole body energy metabolism. Diabetes metabolism journal, 2017. 41(5): p. 327-336. 76. Ferrannini, E., et al., The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism, 1988. 37(1): p. 79-85. 77. Winn, N.C., et al., Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2017. 312(1): p. R74-R84. 78. Alvarez-Crespo, M., et al., Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Molecular metabolism, 2016. 5(4): p. 271-282. 79. Seale, P., et al., Transcriptional control of brown fat determination by PRDM16. Cell metabolism, 2007. 6(1): p. 38-54. 80. Seale, P., et al., Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. The Journal of clinical investigation, 2011. 121(1): p. 96-105. 81. Seale, P., et al., PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008. 454(7207): p. 961-967. 82. Wu, Z., et al., Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999. 98(1): p. 115-124. 83. Puigserver, P., et al., A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998. 92(6): p. 829-839. 84. Uldry, M., et al., Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell metabolism, 2006. 3(5): p. 333-341. 85. Cao, W., et al., p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Molecular and cellular biology, 2004. 24(7): p. 3057-3067. 86. Ježek, P., M. Jabůrek, and R.K. Porter, Uncoupling mechanism and redox regulation of mitochondrial uncoupling protein 1 (UCP1). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2019. 1860(3): p. 259-269. 87. Orava, J., et al., Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell metabolism, 2011. 14(2): p. 272-279. 88. Ouellet, V., et al., Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. The Journal of clinical investigation, 2012. 122(2): p. 545-552. 89. Brandao, B.B., A. Poojari, and A. Rabiee, Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. International Journal of Molecular Sciences, 2021. 22(11). 90. Roth, C.L., F. Molica, and B.R. Kwak, Browning of White Adipose Tissue as a Therapeutic Tool in the Fight against Atherosclerosis. Metabolites, 2021. 11(5). 91. Lizcano, F. and F. Arroyave, Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites, 2020. 10(11). 92. Hao, M.J., et al., Huang-Qi San ameliorates hyperlipidemia with obesity rats via activating brown adipocytes and converting white adipocytes into brown-like adipocytes. Phytomedicine, 2020. 78. 93. Pan, R.P., et al., Metabolic Improvement via Enhancing Thermogenic Fat-Mediated Non-shivering Thermogenesis: From Rodents to Humans. Frontiers in Endocrinology, 2020. 11. 94. Challa, T.D., et al., A Genetic Model to Study the Contribution of Brown and Brite Adipocytes to Metabolism. Cell Reports, 2020. 30(10): p. 3424-3433. e4. 95. Craig, E.A., B.D. Gambill, and R.J. Nelson, Heat shock proteins: molecular chaperones of protein biogenesis. Microbiology and Molecular Biology Reviews, 1993. 57(2): p. 402-414. 96. Liu, Y. and A. Chang, Heat shock response relieves ER stress. The EMBO journal, 2008. 27(7): p. 1049-1059. 97. Yamamoto, K., et al., Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress. Molecular biology of the cell, 2010. 21(17): p. 2975-2986. 98. Malhi, H. and R.J. Kaufman, Endoplasmic reticulum stress in liver disease. Journal of hepatology, 2011. 54(4): p. 795-809. 99. Zhang, K., et al., The unfolded protein response transducer IRE1α prevents ER stress‐induced hepatic steatosis. The EMBO journal, 2011. 30(7): p. 1357-1375. 100. Rutkowski, D.T., et al., UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Developmental cell, 2008. 15(6): p. 829-840. 101. Liu, Z.J., et al., Reducing Smad3/ATF4 was essential for Sirt1 inhibiting ER stress-induced apoptosis in mice brown adipose tissue. Oncotarget, 2017. 8(6): p. 9267-9279. 102. Zhang, J., N. Fan, and Y. Peng, Heat shock protein 70 promotes lipogenesis in HepG2 cells. Lipids in health and disease, 2018. 17(1): p. 73. 103. Wheeler, M.C. and N. Gekakis, Hsp90 modulates PPARγ activity in a mouse model of nonalcoholic fatty liver disease. Journal of lipid research, 2014. 55(8): p. 1702-1710. 104. Saibil, H., Chaperone machines for protein folding, unfolding and disaggregation. Nature reviews Molecular cell biology, 2013. 14(10): p. 630-642. 105. Lai, Y.H., et al., The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis, 2013. 34(5): p. 1069-1080. 106. Lin, S.Y., et al., HLJ1 is a novel caspase-3 substrate and its expression enhances UV-induced apoptosis in non-small cell lung carcinoma. Nucleic Acids Research, 2010. 38(18): p. 6148-6158. 107. Chen, C.H., et al., Acidic stress facilitates tyrosine phosphorylation of HLJ1 to associate with actin cytoskeleton in lung cancer cells. Experimental Cell Research, 2010. 316(17): p. 2910-2921. 108. Chang, T.P., et al., Tumor Suppressor HLJ1 Binds and Functionally Alters Nucleophosmin via Activating Enhancer Binding Protein 2 alpha Complex Formation. Cancer Research, 2010. 70(4): p. 1656-1667. 109. Chen, C.H., et al., HLJ1 is an endogenous Src inhibitor suppressing cancer progression through dual mechanisms. Oncogene, 2016. 35(43): p. 5674-5685. 110. Kim, W.-K., et al., Regulation of adipogenic differentiation by LAR tyrosine phosphatase in human mesenchymal stem cells and 3T3-L1 preadipocytes. Journal of cell science, 2009. 122(22): p. 4160-4167. 111. Choi, S.-S., et al., Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes. Journal of Natural Medicines, 2011. 65(3): p. 424-430. 112. Rhee, Y.-H., et al., mTOR and ROS regulation by anethole on adipogenic differentiation in human mesenchymal stem cells. BMC Cell Biology, 2018. 19(1): p. 12. 113. Zhang, H.H., et al., Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PloS one, 2009. 4(7): p. e6189. 114. Collins, S., β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Frontiers in endocrinology, 2012. 2: p. 102. 115. Bouillaud, F.d.r., et al., Acquirement of brown fat cell features by human white adipocytes. Journal of Biological Chemistry, 2003. 278(35): p. 33370-33376. 116. Song, W.X., et al., Organic cation transporter 3 (Oct3) is a distinct catecholamines clearance route in adipocytes mediating the beiging of white adipose tissue. Plos Biology, 2019. 17(1). 117. Peeraully, M.R., J.R. Jenkins, and P. Trayhurn, NGF gene expression and secretion in white adipose tissue: regulation in 3T3-L1 adipocytes by hormones and inflammatory cytokines. American Journal of Physiology-Endocrinology and Metabolism, 2004. 287(2): p. E331-E339. 118. Kim, J.B. and B.M. Spiegelman, ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes development, 1996. 10(9): p. 1096-1107. 119. Kuan, Y.-C., et al., Heat shock protein 90 modulates lipid homeostasis by regulating the stability and function of sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein. Journal of Biological Chemistry, 2017. 292(7): p. 3016-3028. 120. Wheeler, M.C. and N. Gekakis, Hsp90 modulates PPARγ activity in a mouse model of nonalcoholic fatty liver disease [S]. Journal of lipid research, 2014. 55(8): p. 1702-1710. 121. Mulyani, W.R.W., et al., Chaperone-Based therapeutic target innovation: heat shock protein 70 (Hsp70) for type 2 diabetes mellitus. Diabetes, metabolic syndrome and obesity: targets and therapy, 2020. 13: p. 559. 122. Archer, A.E., A.T. Von Schulze, and P.C. Geiger, Exercise, heat shock proteins and insulin resistance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018. 373(1738): p. 20160529. 123. Krause, M., et al., The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediators of inflammation, 2015. 2015. 124. Yoshimura, K., et al., Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. Journal of cellular physiology, 2006. 208(1): p. 64-76. 125. Haliakon, S., et al., Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes, 1997. 46(9): p. 1393-1399. 126. Rosen, E.D. and B.M. Spiegelman, PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. Journal of Biological Chemistry, 2001. 276(41): p. 37731-37734. 127. Wu, Z., et al., PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. The Journal of clinical investigation, 1998. 101(1): p. 22-32. 128. Saltiel, A.R. and J.M. Olefsky, Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes, 1996. 45(12): p. 1661-1669. 129. Nugent, C., et al., Potentiation of glucose uptake in 3T3-L1 adipocytes by PPARγ agonists is maintained in cells expressing a PPARγ dominant-negative mutant: evidence for selectivity in the downstream responses to PPARγ activation. Molecular Endocrinology, 2001. 15(10): p. 1729-1738. 130. Zebisch, K., et al., Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Analytical Biochemistry, 2012. 425(1): p. 88-90. 131. Johnson, J.A., et al., Prolonged decrease of adipocyte size after rosiglitazone treatment in high‐and low‐fat‐fed rats. Obesity, 2007. 15(11): p. 2653-2663. 132. Yamauchi, T., et al., The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. Journal of Biological Chemistry, 2001. 276(44): p. 41245-41254. 133. Sakaue, H., et al., Posttranscriptional control of adipocyte differentiation through activation of phosphoinositide 3-kinase. Journal of Biological Chemistry, 1998. 273(44): p. 28945-28952. 134. Choi, E.O., et al., Zanthoxylum schinifolium leaf ethanol extract inhibits adipocyte differentiation through inactivation of the extracellular signal regulated kinase and phosphoinositide 3-kinase/Akt signaling pathways in 3T3-L1 pre-adipocytes. Mol Med Rep, 2015. 12(1): p. 1314-1320. 135. Yeh, W.-C., B.E. Bierer, and S.L. McKnight, Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proceedings of the National Academy of Sciences, 1995. 92(24): p. 11086-11090. 136. Haeusler, R.A., T.E. McGraw, and D. Accili, Biochemical and cellular properties of insulin receptor signalling. Nature Reviews Molecular Cell Biology, 2018. 19(1): p. 31. 137. Inoki, K., et al., TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature cell biology, 2002. 4(9): p. 648-657. 138. Manning, B.D., et al., Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Molecular cell, 2002. 10(1): p. 151-162. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82503 | - |
dc.description.abstract | "隨著生活習慣改變與飲食的精緻化,肥胖等代謝性疾病,漸漸成為最為普遍並受矚目的健康議題,研究脂肪組織調控代謝的議題,是我們感興趣的。 人體脂肪組織按照分佈位置與功能可以分為:白色脂肪(White)、棕色脂肪(Brown),白色脂肪為人體主要儲存多餘能量的場所,透過三酸甘油質的型態將多餘能量儲存,需要時再分解、釋放,白色脂肪主要分布於皮下與臟器周圍,因此也有隔熱與保護臟器等功能;棕色脂肪是身體重要的產熱器官,透過UCP1表達,產出熱能維持體溫,同時增強葡萄糖的利用與脂肪分解;白色脂肪也有產熱的功能,當身體受到冷刺激時,去甲基腎上腺素便會分泌刺激白色脂肪棕化,形成在形態和功能上都和棕色脂肪相似的棕化(Beige)細胞。 近期許多研究證明,刺激體內棕化細胞生成或活化棕色脂肪,都能有效調控身體代謝,促進血糖與脂肪代謝,進而達到減肥的效果。在過去實驗室的研究中,我們發現HLJ1剔除小鼠的白色脂肪組織相較於野生型有較大的油滴,而在受到冷刺激時,白色脂肪組織棕化現象較為明顯,產熱基因Ucp1較WT小鼠表現量高,我們也透過RNA-seq資料進行GSEA和MetaCore分析,發現HLJ1剔除小鼠的白色脂肪組織,在脂肪生成和氧化途徑相關基因表現較WT高,種種結果證明HLJ1參與在脂肪生成和產熱功能當中,但機制尚未釐清,因此本篇研究專注在,探討HLJ1與脂肪生成以及產熱功能的機制研究。 我們利用primary iWAT preadipocyte, primary BAT preadipocyte, 3T3-L1三種脂肪幹細胞建立脂肪細胞分化模型,在三種模型中都可以發現,相較於野生型細胞株,HLJ1默化的細胞中有較高比例的幹細胞分化為成熟脂肪細胞,接著透過基因表現和蛋白表達量證明,HLJ1表達減少會促進轉錄因子PPARγ表達與活化,並刺激下游脂肪生成相關基因轉錄:Leptin, Glut4, AdipoQ隨之上升。我們進一步探討HLJ1對PPARγ的調控機轉,發現HLJ1缺失的細胞胰島素訊號途徑活化較不明顯,而mTOR表現量卻增加,推測HLJ1缺失透過某種機制促進mTOR以及PPARγ表達,而負向回饋抑制胰島素訊號傳遞途徑,進而對生物體造成脂肪組織增生以及胰島素抗性升高等影響。另一方面,HLJ1缺乏也促使粒線體生成基因Pgc1α表達增加,所生成的脂肪細胞相較於HLJ1表現正常的脂肪細胞具有較高的產熱基因(Ucp1)表現,而細胞功能上,粒線體功能、脂肪分解與產熱功能、醣類代謝功能等仍待進一步實驗釐清。 " | zh_TW |
dc.description.provenance | Made available in DSpace on 2022-11-25T07:45:52Z (GMT). No. of bitstreams: 1 U0001-1708202115374400.pdf: 15919065 bytes, checksum: 2529fe640a947d0ce2fcfb2f07484cbe (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 致謝 3 中文摘要 4 Abstract 6 ABBREVIATION 7 Chapter 1 Introduction 12 Obesity 13 Adipose tissue 13 Adipose tissue expansion 14 Molecular mechanisms of adipogenesis 14 The Role of Peroxisome Proliferator-Activated Receptors in Adipogenesis 15 The Role of PPAR gamma in Adipocyte Differentiation. 16 PPAR gamma Phosphorylation and Physiology 17 Insulin signaling in preadipocyte 17 Insulin signaling in adipocyte 18 Impact of mTOR on lipogenesis. 18 The role of MAPKs in adipogenesis 19 Adipokines 20 Thermogenesis 20 Regulation of Adipocyte Thermogenesis 21 Biological Functions of Thermogenic Adipose Tissues 22 Heat shock protein 22 Heat shock protein 40 (DNAJB4) 23 Chapter 2 Specific Aim 24 Chapter 3 Materials and Methods 26 3.1 Animals 27 3.2 Isolation of primary White and Brown preadipocytes 27 3.3 Differentiation of primary preadipocytes 28 3.4 Cell culture 28 3.5 3T3L1 differentiation into adipocyte 29 3.6 Establishment of Thermogenic Adipocyte. 29 3.7 Oil red O staining 29 3.8 LipdTOX staining 30 3.9 RNA extraction and real-time PCR 30 3.10 Protein Extraction and Western Blotting 31 3.11 MTT assay 32 3.12 Lentivirus titration and transduction 32 3.13 Generating single HLJ1 stable silencing 3T3L1 with Lentivirus 33 3.14 Cell Transfection 33 3.15 Insulin Signaling Study 33 3.16 Lipolysis Assay 34 3.17 Statistical Analysis 34 Chapter 4 Results 35 4.1 Differentiation of mature adipocyte from preadipocytes 36 4.2 HLJ1 is Highly Express During Adipogenesis. 36 4.3 Depletion of HLJ1 promotes lipid accumulation in cultured iWAT adipocytes. 37 4.4 Generation of Stable Lentivirus-mediated HLJ1-silencing 3T3L1 preadipocyte 38 4.5 Reduction of HLJ1 increased adipogenesis in 3T3L1. 38 4.6 Absent of HLJ1 in brown preadipocyte has an increased differentiation efficiency. 39 4.7 Insulin signaling and HLJ1 39 4.8 Investigation of Thermogenic Function in HLJ1 Depletion Adipocytes. 41 Chapter 5 Discussions 44 5.1 HLJ1 and Lipid Accumulation 45 5.2 Indeterminate gene regulation in primary iWAT adipocyte. 45 5.3 PPARγ activity and Adipocyte Size 46 5.4 Enhanced Adipogenesis or Insulin Resistant 47 Chapter 6 Figures 50 6.1 GSEA compared iWAT samples from HLJ1 KO (red) against WT (blue) mice. 51 6.2 Differentiation of Mature Adipocyte from Preadipocytes 55 6.3 HLJ1 is highly Expressed During Adipogenesis. 57 6.4 Depletion of HLJ1 promotes lipid accumulation in cultured iWAT adipocytes. 58 6.5 Generation of Stable Lentivirus-mediated HLJ1-silencing 3T3L1 preadipocyte. 60 6.6 Reduction of HLJ1 increased adipogenesis in 3T3L1. 61 6.7 Absent of HLJ1 in brown preadipocyte has an increased differentiation efficiency. 64 6.8 Insulin signaling pathway and HLJ1 65 6.9 Investigation of Thermogenic Function in HLJ1 depletion adipocytes. 70 6.10 Investigation of lipolysis ability of HLJ1 depletion adipocyte. 72 Chapter 7 Tables 74 Table 1. Primer Sequences Used in Quantitative PCR Test. 75 Table.2 Antibodies Used in Western Blotting. 76 References 77 | |
dc.language.iso | en | |
dc.title | 探討 HLJ1 蛋白在脂肪組織生成與產熱功能所扮演之角色與機制 | zh_TW |
dc.title | Investigate the Role of HLJ1 in Adipose Tissue Adipogenesis and Thermogenesis | en |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭靜穎(Hsin-Tsai Liu),林亮音(Chih-Yang Tseng),楊雅倩 | |
dc.subject.keyword | HLJ1,脂肪細胞,脂肪分化,脂肪產熱,胰島素訊號, | zh_TW |
dc.subject.keyword | HLJ1,Adipocyte,Adipogenesis,Thermogenesis,Insulin signaling, | en |
dc.relation.page | 87 | |
dc.identifier.doi | 10.6342/NTU202102434 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2021-08-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-31 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202115374400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 15.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。