Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82502
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorXiao-He Wangen
dc.contributor.author王霄鶴zh_TW
dc.date.accessioned2022-11-25T07:45:51Z-
dc.date.available2024-08-17
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-08-17
dc.identifier.citation[1] Levack, W. M. , Weatherall, M. , Hay-Smith, E. , Dean, S. G. , Siegert, R. J. . 'Goal setting and strategies to enhance goal pursuit for adults with acquired disability participating in rehabilitation. ' Cochrane database of systematic reviews (Online) 7.7(2015):CD009727. [2] Donnan GA, Fisher M. , Macleod M. , Davis S.M. . 'Stroke. ' Lancet 371.9624(2008):1612-1623. [3] Lee, Pkw . 'Defining Physiatry and Future Scope of Rehabilitation Medicine.' Annals of Rehabilitation Medicine 35.4(2011):445-449. [4] J. McCabe, M. Monkiewicz, J. Holcomb, S. Pundik, and J. J. Daly, 'Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial,' Archives of physical medicine and rehabilitation, vol. 96, no. 6, pp. 981-990, 2015. [5] Hashemi, J. , Morin, E. , Mousavi, P. , Mountjoy, K. , Hashtrudi-Zaad, K. . 'EMG–force modeling using parallel cascade identification.' Journal of Electromyography Kinesiology Official Journal of the International Society of Electrophysiological Kinesiology 22.3(2012):469-477. [6] Tang, G. , H. Wang , and T. Yang . 'sEMG-Based Estimation of Knee Joint Angles and Motion Intention Recognition.' International Conference on Intelligent Human-machine Systems Cybernetics IEEE, 2017. [7] Johan, N. , Axel, S. , Edmar, C. , Daryl, C. , Leonardo, M. C. . 'Preliminary design of an Intention-based sEMG-controlled 3 DOF upper limb exoskeleton for assisted therapy in activities of daily life in patients with hemiparesis.' 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) IEEE, 2020. [8] Widmaier, E. P. , H. Raff , and K. T. Strang . 'In Vander's Human Physiology: The Mechanisms of Body Function.' McGraw-Hill (2003). [9] Boyas, S. , and A Guével. 'Neuromuscular fatigue in healthy muscle: Underlying factors and adaptation mechanisms.' Annals of Physical Rehabilitation Medicine 54.2(2011):88-108. [10] Kumar, D. K. , S. P. Arjunan , and G. R. Naik . 'Measuring increase in synchronization to identify muscle endurance limit.' IEEE Transactions on Neural Systems Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine Biology Society 19.5(2011):578. [11] Lynch, C. L. , and M. R. Popovic . 'Functional electrical stimulation: closed-loop control of induced muscle contractions. ' Agu Fall Meeting AGU Fall Meeting Abstracts, 2012. [12] Nurhazimah, N. , Mohd, A. R. , Shin-Ichiroh, Y. , Siti, A. , Hairi, Z. , Saiful, M. . 'A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions.' Sensors 16.8(2016):1304. [13] Greco, A. , Valenza, G. , Bicchi, A. , Bianchi, M. , Scilingo, E. P. . 'Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates.' Biomedical signal processing and control 51.MAY(2019):42-49. [14] Asefi, M. , Moghimi, S. , Kalani, H. , Moghimi, A. . 'Dynamic modeling of SEMG–force relation in the presence of muscle fatigue during isometric contractions.' Biomedical Signal Processing Control 28.jul.(2016):41-49. [15] Wang, J. , Y. Sun , and S. Sun . 'Recognition of Muscle Fatigue Status Based on Improved Wavelet Threshold and CNN-SVM.' IEEE Access 8(2020):207914-207922. [16] Li, M. , J. Li , and M. Shu . 'Detection of Muscle Fatigue by Fusion of Agonist and Synergistic Muscle sEMG Signals.' 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) IEEE, 2020. [17] Gale, A. 'Some EEG Correlates of Sustained Attention', Springer US, 1977. [18] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. 'Big data: The next frontier for innovation, competition, and productivity.'http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation (2011). [19] Kallenberg LAC, Schulte E, Disselhorst‐Klug C Hermens HJ. 'Myoelectric manifestations of fatigue at low contraction levels in subjects with and without chronic pain.' Journal of Electromyography Kinesiology 17.3(2007):264-274. [20] Knicker AJ, Renshaw I, Oldham AR, Cairns SP. 'Interactive Processes Link the Multiple Symptoms of Fatigue in Sport Competition.' Sports Medicine 41.4(2011):307-328. [21] Linnamo, V. , K. Hkkinen , and P. V. Komi . 'Neuromuscular fatigue and recovery in maximal compared to explosive strength loading.' European Journal of Applied Physiology and Occupational Physiology 77.1(1997):176-181. [22] Girard O, Lattier G, Micallef JP, Millet GP. 'Changes in exercise characteristics, maximal voluntary contraction, and explosive strength during prolonged tennis playing.' British Journal of Sports Medicine 40.6(2006):521. [23] Dimitrova, N. A. , and G. V. Dimitrov . 'Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies.' Journal of Electromyography Kinesiology 13. 1(2003):13-36. [24] T. Lenzi, S. M. M. De Rossi, N. Vitiello, and M. C. Carrozza, 'Intention-based EMG control for powered exoskeletons,' IEEE transactions on biomedical engineering, vol. 59, no. 8, pp. 2180-2190, 2012. [25] Farina, D. , and R. Merletti . 'Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions.' J Electromyogr Kinesiol 10.5(2000):337-349. [26] Petrofsky, J. S. , and A. R. Lind . 'Frequency analysis of the surface electromyogram during sustained isometric contractions.' European Journal of Applied Physiology Occupational Physiology 43.2(1980):173-182. [27] Luca, C. , Sabbahi, M. A. , Stulen, F. B. , Bilotto, G. . 'Some properties of the median frequency of the myoelectric signal during localized muscle fatigue.' (1983). [28] Deluca, C. . 'Myoelectric manifestations of localized muscle fatigue in humans.' Crc Crit Rev Biomed Eng 11.4(1985):251-279. [29] Cifrek, M. , Medved, V. , Tonkovi, S. , Ostoji, S. . 'Surface EMG based muscle fatigue evaluation in biomechanics.' Clinical Biomechanic 24.4(2009):327-340. [30] M. Yochum, T. Bakir, R. Lepers and S. Binczak. 'Estimation of Muscular Fatigue under Electromyostimulation Using CWT.' IEEE transactions on bio-medical engineering 59.12(2012):3372. [31] Karthick, P., A. , Ghosh, Maitra, D. , Ramakrishnan, S. . 'Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.' COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE (2018). [32] Li-Wei,Ko,Oleksii,Komarov,W.David,Hairston,Tzyy-Ping,Jung,Chin-Teng. 'Sustained Attention in Real Classroom Settings: An EEG Study.' Frontiers in Human Neuroscience 11(2017):388. [33] Sangtae, A. , Thien, N. , Hyojung, J. , Kim, J. G. , Jun, S. C. . 'Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data.' Frontiers in Human Neuroscience 10.848(2016). [34] Tanaka, M. , Shigihara, Y. , Ishii, A. , Funakura, M. , Kanai, E. , Watanabe, Y. , “Effect of mental fatigue on the central nervous system: An electroencephalography study,” Behav Brain Funct vol. 8, pp. 48, Sep. 2012. [35] Foong, R. , Kai, K. A. , Chai, Q. , Guan, C. , Chua, K. . 'Assessment of the Efficacy of EEG-based MI-BCI with Visual Feedback and EEG Correlates of Mental Fatigue for Upper-Limb Stroke Rehabilitation.' IEEE Transactions on Biomedical Engineering PP.99(2019):1-1. [36] Li, X. , Z. Ping , and A. S. Aruin . 'Teager–Kaiser Energy Operation of Surface EMG Improves Muscle Activity Onset Detection.' Annals of Biomedical Engineering 35.9(2007):1532-1538. [37] 'Upper Extremity,' MeSH. Retrieved June 2011 [38] Raghavan, P. , Lu, Y. , Mirchandani, M. , Stecco, A. . 'Human Recombinant Hyaluronidase Injections For Upper Limb Muscle Stiffness in Individuals With Cerebral Injury: A Case Series.' EBioMedicine, 9(2016).. [39] Lippert, L. . Clinical Kinesiology and Anatomy. F.A. Davis, 2011. [40] Widmaier, E. P. , H. Raff , and K. T. Strang . 'In Vander's Human Physiology: The Mechanisms of Body Function.' McGraw-Hill (2003). [41] Biewener, Andrew A. (2003). 'Muscles and skeletons: The building blocks of animal movement,', Animal Locomotion. Oxford Animal Biology Series. New York, NY: Oxford University Press. pp. 15–45. [42] D Shier, J Butler, and R Lewis. Hole's Human Anatomy Physiology. WCB/McGraw-Hill, 2013. [43] Faulkner, and A. John . 'Terminology for contractions of muscles during shortening, while isometric, and during lengthening.' Journal of Applied Physiology 95.2(2003):455-459. [44] Nikolaidis MG, Kyparos A, Spanou C, Paschalis V, Theodorou AA, Vrabas IS. 'Redox biology of exercise: an integrative and comparative consideration of some overlooked issues.' Journal of Experimental Biology 215.10(2012). [45] Colliander EB, Tesch PA (1990). 'Effects of eccentric and concentric muscle actions in resistance training,', Acta Physiol. Scand. 140 (1): 31–9. [46] Robertson DGE, Caldwell GE, Hamill J, Researchmethods in biomechanics. Champaign, IL: Human Kinetics, 2004. [47] Kobylarz, Jhonatan; Bird, Jordan J.; Faria, Diego R.; Ribeiro, Eduardo Parente; Ekárt, Anikó (2020-03-07). 'Thumbs up, thumbs down: non-verbal human-robot interaction through real-time EMG classification via inductive and supervised transductive transfer learning'. Journal of Ambient Intelligence and Humanized Computing. Springer Science and Business Media LLC. 11 (12): 6021–6031. [48] Cifrek, M., Medved, V., Tonković, S., Ostojić, S. . 'Surface EMG based muscle fatigue evaluation in biomechanics.' Clinical Biomechanic 24.4(2009):327-340. [49] Niedermeyer E. and da Silva F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincot Williams Wilkins. 2004. [50] Chernecky, Cynthia C.; Berger, Barbara J. (2013). Laboratory tests and diagnostic procedures (6th ed.). St. Louis, Mo.: Elsevier. [51] Tatum, W. O. . 'Ellen R. grass lecture: Extraordinary EEG.' American Journal of Eeg Technology 54.1(2014):3-21. [52] Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Physiology (EEG Suppl. 52) Editors: G. Deuschl and A. Eisen q 1999 International Federation of Clinical Neurophysiology. All rights reserved. Published by Elsevier Science B.V. [53] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Chap. 7, 2ndedition, Prentice Hall, New Jersey, 2002. [54] Polikar R . The wavelet tutorial[J]. 2009. [55] Sejdic, E.; Djurovic, I.; Stankovic, L. (August 2008). 'Quantitative Performance Analysis of Scalogram as Instantaneous Frequency Estimator,', IEEE Transactions on Signal Processing. 56 (8): 3837–3845. [56] Triwiyanto, T. , Wahyunggoro, O. , Nugroho, H. A. , Herianto, H. . 'Continuous Wavelet Transform Analysis of Surface Electromyography for Muscle Fatigue Assessment on the Elbow Joint Motion.' Advances in Electrical and Electronic Engineering (2017). [57] Iranmanesh, Saam; Rodriguez-Villegas, Esther (2017). 'A 950 nW Analog-Based Data Reduction Chip for Wearable EEG Systems in Epilepsy,', IEEE Journal of Solid-State Circuits. 52 (9): 2362–2373. [58] Stockwell, B. R. , Mansinha, L. , Lowe, R. . 'Localization of the complex spectrum: the S transform.' Signal Processing, IEEE Transactions on 44.4(1996):998-1001. [59] McCallum, Andrew. 'Graphical Models, Lecture2: Bayesian Network Represention' (PDF). Retrieved 22 October 2019. [60] Cortes, Corinna; Vapnik, Vladimir N. (1995). 'Support-vector networks' (PDF). Machine Learning. 20 (3): 273–297. [61] Le, C. , Boser, Y. , Denker, B. , Henderson, D. , Jackel, L. D., 'Backpropagation Applied to Handwritten Zip Code Recognition,' Neural Computation, 1, pp. 541–551, 1989. [62] Li, Xiangang; Wu, Xihong (15 October 2014). 'Constructing Long Short-Term Memory based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition'. [63] Chowdhury, R. , Reaz, M. , Ali, M. , Bakar, A. , Chellappan, K. , Chang, T. 'Surface Electromyography Signal Processing and Classification Techniques.' Sensors 13.9(2013):12431-12466. [64] Teager, H. M., and S. M. Teager. A Phenomenological Model for Vowel Production in Vocal Tract. San Diego, CA: College-Hill Press, pp. 73–109, 1983. [65] Kaiser, J. F. . 'On Teager''s Energy Algorithm, its Generalization to Continuous Signals.' Digital Signal Processing (1990). [66] P. Bonato, S.H. Roy, M. Knaflitz, C.J. De Luca. 'Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions.' IEEE Trans Biomed Eng 48.7(2001):745-753. [67] B Boashash, G Azemi, NA Khan. Principles of time-frequency feature extraction for change detection in non-stationary signals: Applications to newborn EEG abnormality detection[J]. Pattern Recognition: The Journal of the Pattern Recognition Society, 2015, 48(3):616-627. [68] Ouelha, Samir, Boashash, Boualem. 'Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study.' Knowledge-based systems 106.Aug.15(2016):38-50. [69] Gang, W. , Yan, Z. , Xiao, H. , Xie, H. , Wang, Z. 'Classification of surface EMG signals using harmonic wavelet packet transform.' Medical Biological Engineering Computing 44.10(2006):865-872. [70] Coelli, S. , Sclocco, R. , Barbieri, R. , Reni, G. , Zucca, C. , Bianchi, A. M. 'EEG-based index for engagement level monitoring during sustained attention.' International Conference of the IEEE Engineering in Medicine Biology Society IEEE, 2015:1512-1515. [71] Trejo, L. , Kubitz, K. , Rosipal, R. , Kochavi, R. Montgomery, L. 'EEG-Based Estimation and Classification of Mental Fatigue.' Psychology 6.6(2015):572-589.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82502-
dc.description.abstract復健医学致力于帮助患者面对导致残疾的损伤或疾病,在有限的范围内发挥最大的功能。患者在復健過程中,追求快速恢復的同時,常會忽略肌肉的疲勞而進行高強度的訓練。這樣的情況則可能會削弱複健療程的效果,甚至有可能危害到患者的人身安全。因此,即時檢測患者肌肉的疲勞狀態,可以更好地説明醫師瞭解患者目前肌肉情況,給予更客觀的資料供醫師參考。 由於通過採血檢測血液中的血乳酸是否快速地增加來判斷患者是否肌肉疲勞,會對患者造成侵入式的影響。而通過運動自覺量表(RPE)判斷肌肉疲勞,則會較大程度上受到患者主觀因素的干擾,同時具有較差的即時性。因此,近年來通過表面肌電信號(sEMG)來監測肌肉疲勞狀態的方法被大家廣泛使用。 於相關文獻中,仍有部分研究者選擇通過表面肌電信號監測肌肉在等長收縮而非等張收縮狀態下的疲勞狀態。而在肌肉等張收縮狀態下,如何通過表面肌電信號來檢測肌肉的啟動,以及在後續的信號處理過程上均會有更大的挑戰性。此外,大多數文獻選擇判斷肌肉是否進入疲勞狀態的依據是:(1)受試者聲稱自己疲勞;(2)受試者在運動過程中有明顯的姿勢變形;(3)受試者不能按要求的速率繼續運動。但在運動過程中,除了肌肉疲勞外,患者的注意力等問題也會導致上述情況。 基於以上原因,本文提出了一種基於表面肌電信號針對肌肉等張收縮的疲勞監測系統。通過TKE運算元及高解析度時頻分析的方法處理表面肌電信號,並配合機器學習方法分析和判斷肌肉疲勞狀態。同時,也將輔以非侵入式的腦電設備(EEG)監測持續注意力狀態,以減少持續注意力狀態對肌肉疲勞偵測造成的干擾,增加監測系統的準確性。在最終實驗中,十位受試者在同時佩戴肌電信號及腦波信號設備狀態下進行動作,證明本文所提出的方法可以更精准地即時檢測肌肉等張收縮疲勞狀態,並可以準確排除持續注意力下降等問題對系統的影響。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:45:51Z (GMT). No. of bitstreams: 1
U0001-1708202119063800.pdf: 4509736 bytes, checksum: ea826cf6a1d5eb615194ac00acabc447 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi TABLE OF ACRONYMS ix LIST OF FIGURES xii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 4 1.3 Contribution 6 1.4 Thesis Organization 8 Chapter 2 System Overview and Preliminaries 9 2.1 Muscle Contractions 9 2.1.1 Upper Limb Muscles 9 2.1.2 Muscle Contraction 11 2.2 Introduction and Collection of sEMG 13 2.2.1 Introduction of sEMG 13 2.2.2 sEMG Collection Instrument 16 2.3 Introduction and Collection of EEG 17 2.3.1 Introduction of EEG 18 2.3.2 EEG Collection Instrument 21 2.4 Time-Frequency Distributions (TFDs) 23 2.4.1 Continuous Wavelet Transform (CWT) 23 2.4.2 Stockwell Transform (ST) 25 2.5 Machine Learning Model 27 2.5.1 Naive Bayes 27 2.5.2 Support Vector Machine (SVM) 29 2.5.3 Artificial Neural Network (ANN) 30 Chapter 3 Design Muscle Fatigue Predict System 33 3.1 Overview of System Block Diagram 33 3.2 Fatigue Performance Detection Based on sEMG 35 3.2.1 sEMG Signal Acquisition and Preprocessing 35 3.2.2 sEMG Signal Active Detection 38 3.2.3 Time-Frequency Distributions (TFDs) of sEMG 41 3.2.4 Classification by Machine Learning Method 49 3.3 Sustained Attention Monitoring Based on EEG 54 3.3.1 EEG Signal Acquisition and Preprocessing 54 3.3.2 Feature Selection of EEG and Classification by Support Vector Machine 56 3.4 Hybrid System Integration Algorithm 60 Chapter 4 Experimental and Results 63 4.1 Offline Performance 63 4.1.1 Experiments of Using sEMG Detect Fatigue Performance 63 4.1.2 Experiments of Using EEG Detect Sustained Attention Decrease 67 4.2 Evaluate Experiment and Real-time Performance 68 4.2.1 Evaluate the Accuracy of the System in Detecting Sustained Attention Decrease 68 4.2.2 Evaluate the Accuracy of the System in Detecting Muscle Fatigue and the System Eliminates the interference of Sustained Attention Decrease 70 4.2.3 Evaluate the Accuracy of the System in Detecting Muscle Fatigue and Sustained Attention Decrease 73 Chapter 5 Conclusion 75 REFERENCE 77
dc.language.isozh-TW
dc.subject腦電信號zh_TW
dc.subject肌肉疲勞分析zh_TW
dc.subject表面肌電信號zh_TW
dc.subject時頻分析zh_TW
dc.subject機器學習zh_TW
dc.subjecttime-frequency analysisen
dc.subjectmuscle fatigue analysisen
dc.subjectsurface electromyography (sEMG)en
dc.subjectelectroencephalogram (EEG)en
dc.subjectmachine learningen
dc.title以腦波輔助表面肌電圖偵測肌肉疲勞系統zh_TW
dc.titleMuscle Fatigue Detection System Based on sEMG Assisted with EEGen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧璐(Hsin-Tsai Liu),陳文翔(Chih-Yang Tseng),劉浩澧,賴金鑫
dc.subject.keyword肌肉疲勞分析,表面肌電信號,腦電信號,時頻分析,機器學習,zh_TW
dc.subject.keywordmuscle fatigue analysis,surface electromyography (sEMG),electroencephalogram (EEG),time-frequency analysis,machine learning,en
dc.relation.page82
dc.identifier.doi10.6342/NTU202102443
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
dc.date.embargo-lift2024-08-17-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-1708202119063800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved