Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82500
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇剛毅(Kang-Yi Su)
dc.contributor.authorCheng-Fang Wuen
dc.contributor.author吳承芳zh_TW
dc.date.accessioned2022-11-25T07:45:50Z-
dc.date.available2023-08-31
dc.date.copyright2021-09-16
dc.date.issued2021
dc.date.submitted2021-08-18
dc.identifier.citation1. Rakoff-Nahoum, S., Why cancer and inflammation? Yale J Biol Med, 2006. 79(3-4): p. 123-30. 2. Yokota, J., Tumor progression and metastasis. Carcinogenesis, 2000. 21(3): p. 497-503. 3. Bernards, R. and R.A. Weinberg, Metastasis genes: A progression puzzle. Nature, 2002. 418(6900): p. 823-823. 4. Balani, S., L.V. Nguyen, and C.J. Eaves, Modeling the process of human tumorigenesis. Nat Commun, 2017. 8: p. 15422. 5. Marusyk, A. and K. Polyak, Tumor heterogeneity: causes and consequences. Biochim Biophys Acta, 2010. 1805(1): p. 105-17. 6. Kleppe, M. and R.L. Levine, Tumor heterogeneity confounds and illuminates: assessing the implications. Nature medicine, 2014. 20(4): p. 342-344. 7. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 8. Stratton, M.R., Exploring the genomes of cancer cells: progress and promise. Science, 2011. 331(6024): p. 1553-8. 9. Stratton, M.R., P.J. Campbell, and P.A. Futreal, The cancer genome. Nature, 2009. 458(7239): p. 719-24. 10. Greenman, C., et al., Patterns of somatic mutation in human cancer genomes. Nature, 2007. 446(7132): p. 153-158. 11. Meyer, N. and L.Z. Penn, Reflecting on 25 years with MYC. Nature Reviews Cancer, 2008. 8(12): p. 976-990. 12. Eng, C. and L.M. Mulligan, Mutations of the RET proto‐oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and Hirschsprung disease. Human mutation, 1997. 9(2): p. 97-109. 13. Zhuang, Z., et al., Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nature genetics, 1998. 20(1): p. 66-69. 14. Gilliland, D.G. and J.D. Griffin, The roles of FLT3 in hematopoiesis and leukemia. Blood, The Journal of the American Society of Hematology, 2002. 100(5): p. 1532-1542. 15. Wong, A.J., et al., Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proceedings of the National Academy of Sciences, 1992. 89(7): p. 2965-2969. 16. Nigro, J.M., et al., Mutations in the p53 gene occur in diverse human tumour types. Nature, 1989. 342(6250): p. 705-708. 17. Dunn, J.M., et al., Identification of germline and somatic mutations affecting the retinoblastoma gene. Science, 1988. 241(4874): p. 1797-1800. 18. Miki, Y., et al., A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 1994. 266(5182): p. 66-71. 19. Tavtigian, S., et al., The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nature genetics, 1996. 12(3): p. 333-337. 20. Laken, S.J., et al., Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nature genetics, 1997. 17(1): p. 79-83. 21. Siegel, R.L., et al., Cancer Statistics, 2021. CA Cancer J Clin, 2021. 71(1): p. 7-33. 22. Howlader, N., et al., The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N Engl J Med, 2020. 383(7): p. 640-649. 23. Herbst, R.S., D. Morgensztern, and C. Boshoff, The biology and management of non-small cell lung cancer. Nature, 2018. 553(7689): p. 446-454. 24. Meza, R., et al., Lung cancer incidence trends by gender, race and histology in the United States, 1973–2010. PloS one, 2015. 10(3): p. e0121323. 25. Kris, M.G., et al., Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. Jama, 2014. 311(19): p. 1998-2006. 26. Zhou, C., et al., Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. The lancet oncology, 2011. 12(8): p. 735-742. 27. Solomon, B.J., et al., First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl j Med, 2014. 371: p. 2167-2177. 28. Shaw, A.T., et al., Crizotinib in ROS1-rearranged non–small-cell lung cancer. New England Journal of Medicine, 2014. 371(21): p. 1963-1971. 29. Planchard, D., et al., Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. The Lancet Oncology, 2016. 17(7): p. 984-993. 30. Rotow, J. and T.G. Bivona, Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer, 2017. 17(11): p. 637-658. 31. Lemmon, M.A., J. Schlessinger, and K.M. Ferguson, The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harbor perspectives in biology, 2014. 6(4): p. a020768. 32. Dearden, S., et al., Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Annals of oncology, 2013. 24(9): p. 2371-2376. 33. Sharma, S.V., et al., Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer, 2007. 7(3): p. 169-181. 34. Yarden, Y. and M.X. Sliwkowski, Untangling the ErbB signalling network. Nature reviews Molecular cell biology, 2001. 2(2): p. 127-137. 35. Sequist, L.V., et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. Journal of clinical oncology, 2013. 31(27): p. 3327-3334. 36. Mok, T.S., et al., Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. New England Journal of Medicine, 2017. 376(7): p. 629-640. 37. Kobayashi, S., et al., EGFR mutation and resistance of non–small-cell lung cancer to gefitinib. New England Journal of Medicine, 2005. 352(8): p. 786-792. 38. Sequist, L.V., et al., Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Science translational medicine, 2011. 3(75): p. 75ra26-75ra26. 39. Jänne, P.A., et al., AZD9291 in EGFR inhibitor–resistant non–small-cell lung cancer. New England Journal of Medicine, 2015. 372(18): p. 1689-1699. 40. Thress, K.S., et al., Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M. Nature medicine, 2015. 21(6): p. 560-562. 41. Kasahara, A. and L. Scorrano, Mitochondria: from cell death executioners to regulators of cell differentiation. Trends in cell biology, 2014. 24(12): p. 761-770. 42. van der Bliek, A.M., Q. Shen, and S. Kawajiri, Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol, 2013. 5(6). 43. Bleazard, W., et al., The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nature cell biology, 1999. 1(5): p. 298-304. 44. Cereghetti, G., et al., Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proceedings of the National Academy of Sciences, 2008. 105(41): p. 15803-15808. 45. Chen, H., et al., Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology, 2003. 160(2): p. 189-200. 46. Kashatus, J.A., et al., Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Molecular cell, 2015. 57(3): p. 537-551. 47. Serasinghe, M.N., et al., Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Molecular cell, 2015. 57(3): p. 521-536. 48. Ward, P.S. and C.B. Thompson, Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer cell, 2012. 21(3): p. 297-308. 49. Jones, R.G. and C.B. Thompson, Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes development, 2009. 23(5): p. 537-548. 50. Lunt, S.Y. and M.G. Vander Heiden, Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology, 2011. 27: p. 441-464. 51. Schieber, M. and N.S. Chandel, ROS function in redox signaling and oxidative stress. Current biology, 2014. 24(10): p. R453-R462. 52. Lewis, C.A., et al., Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Molecular cell, 2014. 55(2): p. 253-263. 53. Fan, J., et al., Quantitative flux analysis reveals folate-dependent NADPH production. Nature, 2014. 510(7504): p. 298-302. 54. Vyas, S., E. Zaganjor, and M.C. Haigis, Mitochondria and Cancer. Cell, 2016. 166(3): p. 555-566. 55. DeNicola, G.M., et al., Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011. 475(7354): p. 106-109. 56. Le Gal, K., et al., Antioxidants can increase melanoma metastasis in mice. Science Translational Medicine, 2015. 7(308): p. 308re8-308re8. 57. Schell, J.C., et al., A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Molecular cell, 2014. 56(3): p. 400-413. 58. Vacanti, N.M., et al., Regulation of substrate utilization by the mitochondrial pyruvate carrier. Molecular cell, 2014. 56(3): p. 425-435. 59. Yang, C., et al., Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Molecular cell, 2014. 56(3): p. 414-424. 60. Pavlova, N.N. and C.B. Thompson, The Emerging Hallmarks of Cancer Metabolism. Cell Metab, 2016. 23(1): p. 27-47. 61. Nicklin, P., et al., Bidirectional transport of amino acids regulates mTOR and autophagy. Cell, 2009. 136(3): p. 521-534. 62. Gao, P., et al., c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009. 458(7239): p. 762-765. 63. Stine, Z.E., et al., MYC, metabolism, and cancer. Cancer discovery, 2015. 5(10): p. 1024-1039. 64. Son, J., et al., Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013. 496(7443): p. 101-5. 65. Currie, E., et al., Cellular fatty acid metabolism and cancer. Cell metabolism, 2013. 18(2): p. 153-161. 66. Ma, Y., et al., Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer letters, 2018. 435: p. 92-100. 67. Camarda, R., et al., Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nature medicine, 2016. 22(4): p. 427-432. 68. Lin, H., et al., Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro-oncology, 2017. 19(1): p. 43-54. 69. Padanad, M.S., et al., Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell reports, 2016. 16(6): p. 1614-1628. 70. Politi, K., et al., Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes development, 2006. 20(11): p. 1496-1510. 71. Krontiris, T.G. and G.M. Cooper, Transforming activity of human tumor DNAs. Proceedings of the National Academy of Sciences, 1981. 78(2): p. 1181-1184. 72. Shih, C., et al., Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature, 1981. 290(5803): p. 261-264. 73. Mechta, F., et al., Transformation by ras modifies AP1 composition and activity. Oncogene, 1997. 14(7): p. 837-847. 74. Mueckler, M. and B. Thorens, The SLC2 (GLUT) family of membrane transporters. Molecular aspects of medicine, 2013. 34(2-3): p. 121-138. 75. Zhang, J., et al., UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. The EMBO Journal, 2011. 30(24): p. 4860-4873. 76. Katreddy, R.R., et al., Targeted reduction of the EGFR protein, but not inhibition of its kinase activity, induces mitophagy and death of cancer cells through activation of mTORC2 and Akt. Oncogenesis, 2018. 7(1): p. 5. 77. Thomas, R. and Z. Weihua, Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Frontiers in Oncology, 2019. 9(800). 78. Tan, X., et al., Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends Cell Biol, 2016. 26(5): p. 352-366. 79. Bollu, L.R., et al., Involvement of de novo synthesized palmitate and mitochondrial EGFR in EGF induced mitochondrial fusion of cancer cells. Cell cycle, 2014. 13(15): p. 2415-2430. 80. Weihua, Z., et al., Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer cell, 2008. 13(5): p. 385-393. 81. Zhang, W., et al., Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell, 2019. 178(1): p. 176-189.e15. 82. Parks, S.K., W. Mueller-Klieser, and J. Pouysségur, Lactate and Acidity in the Cancer Microenvironment. Annual Review of Cancer Biology, 2020. 4(1): p. 141-158. 83. Ivashkiv, L.B., The hypoxia–lactate axis tempers inflammation. Nature Reviews Immunology, 2020. 20(2): p. 85-86. 84. Che, T.-F., et al., Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget, 2015. 6(35): p. 37349. 85. Cao, X., et al., EGFR and EGFRvIII undergo stress-and EGFR kinase inhibitor-induced mitochondrial translocalization: a potential mechanism of EGFR-driven antagonism of apoptosis. Molecular cancer, 2011. 10(1): p. 1-13. 86. Demory, M.L., et al., Epidermal growth factor receptor translocation to the mitochondria. Journal of Biological Chemistry, 2009. 284(52): p. 36592-36604. 87. Boerner, J.L., et al., Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Molecular and cellular biology, 2004. 24(16): p. 7059-7071. 88. Malik, A., et al., Networking of predicted post-translational modification (PTM) sites in human EGFR. Bioinformation, 2019. 15(7): p. 448-456.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82500-
dc.description.abstract"腫瘤生成(tumor initiation)為基因變異所致,癌細胞中的基因突變可大致分成驅動突變(driver mutations)及乘客突變(passenger mutations),其中驅動突變具有生長優勢,可不受正常細胞增殖、分化等限制,持續擴增成癌細胞,帶有此特性的基因稱作癌症驅動基因(cancer driver genes)。在非小細胞肺癌中,約有2/3病人帶有驅動基因變異,在表皮生長因子受體(epidermal growth factor receptor, EGFR)變異中,又以exon 19 deletion或是exon 21 L858R mutation所占比例最高。粒線體與癌症有密切關聯,已有研究指出細胞在腫瘤生成時會發生代謝途徑重組(metabolic reprogramming)而與正常細胞有所差異,可做為治療標的。因此,我們想了解在突變型EGFR驅動的腫瘤生成,有哪些粒線體蛋白參與在細胞代謝的改變。 首先,在NIH3T3細胞株過表現EGFR L858R篩選出穩定表現的細胞,並確認這些細胞有較好的細胞增生及群落形成能力,已有研究指出EGFR突變之癌細胞會使其下游蛋白表現上調,但在我們的細胞模型及動物模型這些下游蛋白並沒有顯著改變,因此,我們推測腫瘤生成時細胞會先改變細胞代謝讓自己增生不經由典型的癌細胞EGFR訊息傳遞。為了進一步了解哪些蛋白與細胞代謝改變有關,我們萃取NIH3T3過表現EGFR L858R及對照組的粒線體蛋白進行蛋白質體(proteome)分析,根據結果挑選差異倍數(fold change)大於1.5及小於0.67之蛋白,分析其路徑多與細胞週期及代謝相關,我們也在氧化磷酸化(oxidative phosphorylation)及糖解(glycolysis)功能性實驗中,發現EGFR L858R組別在這兩種代謝途徑的使用與對照組相比皆有顯著差異。 同時,在過表現EGFR L858R之細胞及帶有轉殖基因(transgene)的動物模型中,皆有看到一部分EGFR L858R轉位(translocation)到粒線體的情形且正常細胞與癌細胞的蛋白分子量有所差異,因此,我們推測轉位到粒線體的EGFR L858R可能與其他蛋白作用,參與細胞代謝改變,未來將更進一步探討此交互關係與機制。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:45:50Z (GMT). No. of bitstreams: 1
U0001-1808202113262500.pdf: 5146210 bytes, checksum: beb0f7394a4bb0c3189ebe969c2a88bc (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 中文摘要 iii Abstract iv Chapter 1 Introduction 1 1.1 Introduction of tumorigenesis 2 1.2 Cancer driver genes (CDGs) 2 1.3 Mutant epidermal growth factor receptor (EGFR) is one of the most frequently driver in non-small-cell lung cancer (NSCLC) 3 1.3.1 Introduction of lung cancer 3 1.3.2 EGFR mutations and EGFR tyrosine kinase inhibitor (EGFR-TKI) 3 1.4 Mitochondria plays the crucial role during tumorigenesis 4 1.4.1 Fission and fusion dynamics 4 1.4.2 Bioenergetics 5 1.4.3 Oxidative stress 5 1.4.4 Metabolism 6 Chapter 2 Specific aim 8 Chapter 3 Material and Method 10 3.1 Cell culture 11 3.2 Plasmid construction 11 3.3 Transfection and stable cell line establishment 12 3.4 Transgenic mouse models 13 3.5 Genotyping 13 3.6 Tumor induction 14 3.7 Pathology interpretation 14 3.8 Protein extraction and Western blotting analysis 14 3.9 RNA extraction and real-time quantitative PCR (qPCR) 15 3.10 MTT assay 16 3.11 Colony formation assay 17 3.12 Bioenergetic Analysis of Oxygen Consumption Rate (OCR) 17 3.13 Lactate assay 18 3.14 Mitochondrial fractionation 18 3.15 Immunofluorescence microscopy 18 3.16 Proteomic 19 3.17 Statistical analysis 20 Chapter 4 Result 21 4.1 Establishment of NIH3T3 stable cell lines with EGFR L858R expression 22 4.2 Overexpression of EGFR L858R promotes cell transformation of NIH3T3 cells 23 4.3 Overexpression of EGFR L858R in normal cell may through non-canonical EGFR signaling pathway of cancer cells 23 4.4 Metabolism-related pathways enriched in EGFR L858R-driven tumor initiation by mitochondrial proteomics 25 4.5 Enhanced oxidative phosphorylation and glycolysis of NIH3T3-EGFR L858R 26 4.6 EGFR L858R translocated to mitochondria in EGFR L858R-driven tumor initiation 27 Chapter 5 Conclusion 28 Chapter 6 Discussion 30 6.1 Kinase-independent (KID) functions of EGFR 31 6.2 EGFR-induced metabolic reprogramming during tumorigenesis 31 6.3 EGFR L858R translocated to mitochondria 32 Chapter 7 Figure 34 Figure 1. Validation of pCMV-Tag2A-EGFR L858R plasmid 35 Figure 2. EGFR L858R overexpression induces cell transformation of NIH3T3 cells 38 Figure 3. Western blotting of NIH3T3-EGFR L858R and CL1-0-EGFR L858R stable clones 39 Figure 4. Western blotting of transient expression EGFR L858R in CL1-0 and NIH3T3 cell lines 40 Figure 5. Phenotype of transgenic mice 42 Figure 6. Western blotting of mouse lung tissue lysate 43 Figure 7. Gene ontology analysis of NIH3T3 mitochondria proteomics 46 Figure 8. Gene ontology analysis of FC ≥ 1.5 non-mitochondrial protein and FC ≤ 0.67 mitochondrial protein from NIH3T3 mitochondria proteomics 49 Figure 9. Oxidative phosphorylation and glycolytic metabolism in NIH3T3-vector and NIH3T3-L858R cells 53 Figure 10. EGFR L858R translocated to mitochondria in both in vitro and in vivo models 55 Chapter 8 Table 56 Table 1. List of antibodies 57 Table 2. List of primers 59 Chapter 9 Reference 60 Chapter 10 Appendix 67 Appendix 1. Transgenic mice model with inducible lung-specific EGFR L858R 68
dc.language.isoen
dc.title探討突變型EGFR透過粒線體代謝轉變促進腫瘤生成zh_TW
dc.titleStudy of Activating Mutant EGFR Driven Tumor Initiation through Mitochondria-Mediated Metabolism Shiften
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林亮音(Hsin-Tsai Liu),楊雅倩(Chih-Yang Tseng),郭靜穎
dc.subject.keyword腫瘤生成,EGFR L858R,粒線體,代謝,蛋白質體,轉位,zh_TW
dc.subject.keywordtumor initiation,EGFR L858R,mitochondria,metabolism,proteome,translocation,en
dc.relation.page68
dc.identifier.doi10.6342/NTU202102465
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
dc.date.embargo-lift2023-08-31-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-1808202113262500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved