Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82478
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁祥光(Hsiang-Kuang Liang)
dc.contributor.authorTing-Chen Lien
dc.contributor.author李亭臻zh_TW
dc.date.accessioned2022-11-25T07:45:30Z-
dc.date.available2023-09-13
dc.date.copyright2021-11-12
dc.date.issued2021
dc.date.submitted2021-09-14
dc.identifier.citation[1] A. Quiñones-Hinojosa, K. Chaichana, The human subventricular zone: a source of new cells and a potential source of brain tumors, Experimental neurology 205(2) (2007) 313-324. [2] A. Quiñones‐Hinojosa, N. Sanai, M. Soriano‐Navarro, O. Gonzalez‐Perez, Z. Mirzadeh, S. Gil‐Perotin, R. Romero‐Rodriguez, M.S. Berger, J.M. Garcia‐Verdugo, A. Alvarez‐Buylla, Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells, Journal of Comparative Neurology 494(3) (2006) 415-434. [3] T.H.-K. Liang, S.-H. Kuo, C.-W. Wang, W.-Y. Chen, C.-Y. Hsu, S.-F. Lai, H.-M. Tseng, S.-L. You, C.-M. Chen, W.-Y.I. Tseng, Adverse prognosis and distinct progression patterns after concurrent chemoradiotherapy for glioblastoma with synchronous subventricular zone and corpus callosum invasion, Radiotherapy and Oncology 118(1) (2016) 16-23. [4] H. Ohgaki, P. Kleihues, Epidemiology and etiology of gliomas, Acta Neuropathologica 109(1) (2005) 93-108. [5] H. Gray, Anatomy of the human body, Lea Febiger1878. [6] K. Steltzer, K.I. Sauvé, A.M. Spence, T.W. Griffin, M.S. Berger, Corpus callosum involvement as a prognostic factor for patients with high-grade astrocytoma, International journal of radiation oncology, biology, physics 38(1) (1997) 27-30. [7] S. Adeberg, L. König, T. Bostel, S. Harrabi, T. Welzel, J. Debus, S.E. Combs, Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone, International Journal of Radiation Oncology* Biology* Physics 90(4) (2014) 886- 893. [8] N.F. Jafri, J.L. Clarke, V. Weinberg, I.J. Barani, S. Cha, Relationship of glioblastoma multiforme to the subventricular zone is associated with survival, Neuro-oncology 15(1) (2013) 91-96. [9] I.J. Barani, S.H. Benedict, P.-S. Lin, Neural stem cells: implications for the conventional radiotherapy of central nervous system malignancies, International Journal of Radiation Oncology* Biology* Physics 68(2) (2007) 324-333. [10] Z.-Q. Zhao, P. Zheng, S.-t. Xu, X. Wu, Object detection with deep learning: A review, IEEE transactions on neural networks and learning systems 30(11) (2019) 3212- 3232. [11] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, Mastering the game of Go with deep neural networks and tree search, nature 529(7587) (2016) 484-489. [12] D. Crevier, AI: the tumultuous history of the search for artificial intelligence, Basic Books, Inc.1993. [13] S. Russell, P. Norvig, Artificial intelligence: a modern approach, (2002). [14] R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, Proceedings of the 23rd international conference on Machine learning, 2006, pp. 161-168. [15] B. Fritzke, Growing cell structures—a self-organizing network for unsupervised and supervised learning, Neural networks 7(9) (1994) 1441-1460. [16] X. Zhu, A.B. Goldberg, Introduction to semi-supervised learning, Synthesis lectures on artificial intelligence and machine learning 3(1) (2009) 1-130. [17] S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on knowledge and data engineering 22(10) (2009) 1345-1359. [18] F.B. Fitch, Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of mathematical biophysics, vol. 5 (1943), pp. 115–133, The Journal of Symbolic Logic 9(2) (1944) 49-50. [19] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back- propagating errors, nature 323(6088) (1986) 533-536. [20] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press2016. [21] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11) (1998) 2278-2324. [22] J. Deng, O. Russakovsky, J. Krause, M.S. Bernstein, A. Berg, L. Fei-Fei, Scalable multi-label annotation, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2014, pp. 3099-3102. [23] O. Russakovsky, J. Deng, Z. Huang, A.C. Berg, L. Fei-Fei, Detecting avocados to zucchinis: what have we done, and where are we going?, Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2064-2071. [24] H. Su, J. Deng, L. Fei-Fei, Crowdsourcing annotations for visual object detection, Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012. [25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, 2009 IEEE conference on computer vision and pattern recognition, Ieee, 2009, pp. 248-255. [26] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems 25 (2012) 1097-1105. [27] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014). [28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9. [29] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778. [30] A. Kirillov, K. He, R. Girshick, C. Rother, P. Dollár, Panoptic segmentation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9404-9413. [31] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, arXiv pre-print server (2015). [32] B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerstner, M.-A. Weber, T. Arbel, B.B. Avants, N. Ayache, P. Buendia, D.L. Collins, N. Cordier, J.J. Corso, A. Criminisi, T. Das, H. Delingette, C. Demiralp, C.R. Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes, E. Geremia, B. Glocker, P. Golland, X. Guo, A. Hamamci, K.M. Iftekharuddin, R. Jena, N.M. John, E. Konukoglu, D. Lashkari, J.A. Mariz, R. Meier, S. Pereira, D. Precup, S.J. Price, T.R. Raviv, S.M.S. Reza, M. Ryan, D. Sarikaya, L. Schwartz, H.-C. Shin, J. Shotton, C.A. Silva, N. Sousa, N.K. Subbanna, G. Szekely, T.J. Taylor, O.M. Thomas, N.J. Tustison, G. Unal, F. Vasseur, M. Wintermark, D.H. Ye, L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes, K. Van Leemput, The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Transactions on Medical Imaging 34(10) (2015) 1993-2024. [33] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, J.B. Freymann, K. Farahani, C. Davatzikos, Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features, Scientific Data 4(1) (2017) 170117. [34] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, Russell, C. Berger, Sung, M. Rozycki, M. Prastawa, E. Alberts, J. Lipkova, J. Freymann, J. Kirby, M. Bilello, H. Fathallah-Shaykh, R. Wiest, J. Kirschke, B. Wiestler, R. Colen, A. Kotrotsou, P. Lamontagne, D. Marcus, M. Milchenko, A. Nazeri, M.-A. Weber, A. Mahajan, U. Baid, E. Gerstner, D. Kwon, G. Acharya, M. Agarwal, M. Alam, A. Albiol, A. Albiol, Francisco, V. Alex, N. Allinson, Pedro, A. Amrutkar, G. Anand, S. Andermatt, T. Arbel, P. Arbelaez, A. Avery, M. Azma, Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge, arXiv pre-print server (2019). [35] H.A. S. Bakas, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al., Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-GBM collection, The Cancer Imaging Archive (2017). [36] J. Juntu, J. Sijbers, D. Dyck, J. Gielen, Bias Field Correction for MRI Images, Springer Berlin Heidelberg, pp. 543-551. [37] N.J. Tustison, B.B. Avants, P.A. Cook, Z. Yuanjie, A. Egan, P.A. Yushkevich, J.C. Gee, N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging 29(6) (2010) 1310-1320. [38] H. Kervadec, J. Bouchtiba, C. Desrosiers, E. Granger, J. Dolz, I.B. Ayed, Boundary loss for highly unbalanced segmentation, International conference on medical imaging with deep learning, PMLR, 2019, pp. 285-296. [39] C.H. Sudre, W. Li, T. Vercauteren, S. Ourselin, M. Jorge Cardoso, Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations, Springer International Publishing2017, pp. 240-248. [40] L.R. Dice, Measures of the amount of ecologic association between species, Ecology 26(3) (1945) 297-302. [41] Y. Boykov, G. Funka-Lea, Graph cuts and efficient ND image segmentation, International journal of computer vision 70(2) (2006) 109-131. [42] A.M. Dale, B. Fischl, M.I. Sereno, Cortical surface-based analysis: I. Segmentation and surface reconstruction, Neuroimage 9(2) (1999) 179-194. [43] B. Fischl, D.H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. Van Der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain, Neuron 33(3) (2002) 341-355. [44] A. de Brebisson, G. Montana, Deep neural networks for anatomical brain segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2015, pp. 20-28. [45] J.L. Quon, M. Han, L.H. Kim, M.E. Koran, L.C. Chen, E.H. Lee, J. Wright, V. Ramaswamy, R.M. Lober, M.D. Taylor, G.A. Grant, S.H. Cheshier, J.R.W. Kestle, M.S.B. Edwards, K.W. Yeom, Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus, Journal of Neurosurgery: Pediatrics 27(2) (2021) 131-138. [46] P. Coupé, J.V. Manjón, V. Fonov, J. Pruessner, M. Robles, D.L. Collins, Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation, NeuroImage 54(2) (2011) 940-954.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82478-
dc.description.abstract膠質瘤一般分成四個等級,Grade I 及 Grade II 為低惡性度,而 Grade III 及 Grade IV 為高惡性度。根據研究顯示,高惡性度的膠質瘤若是侵犯側腦室,預後結果通常較差。在已公開的方法中,目前只有測量膠質瘤有無侵犯側腦室,尚未能夠評估膠質瘤侵犯側腦室之程度。近期深度學習快速發展,在許多不同的領域都有著重大的影響。 本論文透過深度學習的方法來自動分割出側腦室區域,以及高惡性膠質瘤,得到分割完的影像後,再用影像處理方法計算出膠質瘤侵犯側腦室的距離。在深度學習方面使用的網路架構為基於 Fully Convolutional Networks (FCN) 的概念所做的改進架構 U-Net,而 U-Net 的架構有助於將向量再轉換回影像的過程中不失真。在影像處理的方法則是將深度學習完預測得到之影像,找出側腦室與腫瘤之間的最短距離,計算的過程中使用了二分搜尋法來加快運算效能。本論文使用 Dice分數做為評估分割結果的呈現,經過訓練集 258 筆資料後的模型,在測試集共 115 位病患中,分別對側腦室和腫瘤做 Dice 分數的計算,側腦室 Dice 平均為 0.91、腫瘤 Dice 平均為 0.83,而侵入程度則是從 1 毫米至 40 毫米不等。 本論文透過結合深度學習及影像處理中的距離計算之方法,來達成評估惡性膠質瘤侵犯側腦室之程度,透過此資訊可在臨床上的治療或是研究上有不同的突破。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:45:30Z (GMT). No. of bitstreams: 1
U0001-1209202123085100.pdf: 6082809 bytes, checksum: b1eb55b24290732e6c88c695f7e8bef9 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 i 中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 vii 表目錄 ix 第 一 章 緒論 1 1.1. 研究背景及動機 1 1.2. 研究目的 2 第 二 章 文獻探討 3 2.1. 醫學背景介紹 3 2.1.1. 膠質瘤 3 2.1.2. 腦部結構 4 2.2. 技術介紹 7 2.2.1. 人工智慧 7 2.2.2. 卷積神經網路 8 2.2.3. U-Net網路 12 第 三 章 材料方法 15 3.1. 材料 15 3.1.1. 來源 15 3.1.2. 收錄條件 16 3.2. 研究參數 16 3.3. 方法 17 3.3.1. 資料標註處理 18 3.3.2. 資料前處理 18 3.3.3. 側腦室與腫瘤自動分割之深度學習 19 3.3.4. 計算腫瘤與側腦室最短距離 22 第 四 章 實驗結果 26 4.1. 收錄結果 26 4.2. 資料前處理結果 26 4.3. 側腦室與腫瘤自動分割之深度學習結果 27 4.4. 計算腫瘤與側腦室最短距離結果 29 第 五 章 討論與未來研究探討 35 5.1. 討論 35 5.1.1. 資料集 35 5.1.2. 側腦室與腫瘤分割 36 5.1.3. 側腦室與腫瘤最短距離 37 5.2. 研究限制與範圍 40 5.3. 未來研究探討 41 第 六 章 結論 43 參考文獻 44
dc.language.isozh-TW
dc.subject影像處理zh_TW
dc.subject深度學習zh_TW
dc.subject膠質瘤zh_TW
dc.subjectDeep Learningen
dc.subjectImage Processingen
dc.subjectGliomasen
dc.title結合深度學習與影像處理評估惡性膠質瘤侵犯側腦室程度zh_TW
dc.titleIntegrate Deep Learning and Image Processing to Evaluate the Extent of Ventricular Zone Invasion in High-Grade Gliomasen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor陳中明(Chung-Ming Li)
dc.contributor.oralexamcommittee施博仁(Hsin-Tsai Liu),(Chih-Yang Tseng)
dc.subject.keyword深度學習,膠質瘤,影像處理,zh_TW
dc.subject.keywordGliomas,Deep Learning,Image Processing,en
dc.relation.page49
dc.identifier.doi10.6342/NTU202103137
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2023-09-13-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1209202123085100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved