請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8246
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張以杰(Yi-Jay Chang) | |
dc.contributor.author | Po-Kai Lai | en |
dc.contributor.author | 賴柏凱 | zh_TW |
dc.date.accessioned | 2021-05-20T00:50:40Z | - |
dc.date.available | 2021-07-31 | |
dc.date.available | 2021-05-20T00:50:40Z | - |
dc.date.copyright | 2020-09-02 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-19 | |
dc.identifier.citation | Alabia, I. D., Saitoh, S. I., Igarashi, H., Ishikawa, Y., Usui, N., Kamachi, M., Awaji, T., and Seito, M. (2016). Future projected impacts of ocean warming to potential squid habitat in western and central North Pacific. ICES Journal of Marine Science, 75, 1343–1356. Arrizabalaga, H., Costas, E., Juste, J., González-Garcés, A., Nieto, B., and López-Rodas, V. (2004). Population structure of albacore Thunnus alalunga inferred from blood groups and tag-recapture analyses. Marine Ecology Progress Series 282, 245–252. Arrizabalaga, H., Dufour, F., Kell, L., Merino, G., Ibaibarriaga, L., Chust, G., Irigoien, X., Santiago, J., Murua, H., Fraile, I., Chifflet, M., Goikoetxea, N., Sagarminaga, Y., Aumont, O., Bopp, L., Herrera, M., Fromentin, M., and Bonhomeau, A. (2015). Global habitat preferences of commercially valuable tuna. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 102–112. Araújo, M. B., and New, M. (2007). Ensemble forecasting of species distributions. Trends in ecology evolution, 22(1), 42-47. Barton, K. (2016). Package “MuMIn”: Multi-Model Inference. R package, Version 1.15. 6. URL: https://cran. r-project.org/web/packages/MuMIn/index.html [accessed 2016-10-22]. Brewer, M. J., Butler, A., and Cooksley, S. L. (2016). The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods in Ecology and Evolution, 7(6), 679-692. Brill, R. W. (1994). A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fisheries Oceanography, 3(3), 204-216. Briand, K., Molony, B., and Lehodey, P. (2011). A study on the variability of albacore (Thunnus alalunga) longline catch rates in the southwest Pacific Ocean. Fisheries Oceanography, 20(6), 517-529. Brouwer, S., Pilling, G., and Williams, P. (2018). Trends in the South Pacific Albacore Longline and Troll Fisheries. WCPFC-SC14-2018/ SA-IP-08 Rev. 2. Brouwer, S., Pilling, G., and Williams, P. (2019). Trends in the South Pacific Albacore Longline and Troll Fisheries. WCPFC-SC15-2019/ SA-WP-08. Bruge, A., Alvarez, P., Fontán, A., Cotano, U., and Chust, G. (2016). Thermal niche tracking and future distribution of Atlantic mackerel spawning in response to ocean warming. Frontiers in Marine Science, 3, 86. Chang, S. K., Hoyle, S., and Liu, H. I. (2011). Catch rate standardization for yellowfin tuna (Thunnus albacares) in Taiwan's distant-water longline fishery in the Western and Central Pacific Ocean, with consideration of target change. Fisheries Research, 107(1-3), 210-220. Childers, J., Snyder, S., and Kohin, S. (2011). Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fisheries Oceanography, 20(3), 157-173. Collette, B. B., and Nauen, C. E. (1983). Scombrids of the world: an annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to date. v. 2. Crimmins, S. M., Dobrowski, S. Z. and Mynsberge, A. R. (2013). Evaluating ensemble forecasts of plant species distributions under climate change. Ecological Modelling, 266, 126–130. Diniz-Filho, J. A. F., Mauricio Bini, L., Fernando Rangel, T., Loyola, R. D., Hof, C., Nogués‐Bravo, D., and Araújo, M. B. (2009). Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography, 32(6), 897-906. Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., and Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46 Erauskin-Extramiana, M., Arrizabalaga, H., Hobday, A. J., Cabré, A., Ibaibarriaga, L., Arregui, I., Murua, H., and Chust, G. (2019). Large-scale distribution of tuna species in a warming ocean. Global Change Biology. 25, 2043–2060. Farley, J. H., Hoyle, S. D., Eveson, J. P., Williams, A. J., Davies, C. R., and Nicol, S. J. (2014). Maturity ogives for South Pacific albacore tuna (Thunnus alalunga) that account for spatial and seasonal variation in the distributions of mature and immature fish. PloS one, 9(1), e83017. FAO (2018). The state of World fisheries and aquaculture 2018. Food And Agriculture Organization of the United Nations. Fisheries and Aquaculture Department, Rome, Italy. Georgian, S. E., Anderson, O. F., and Rowden, A. A. (2019). Ensemble habitat suitability modeling of vulnerable marine ecosystem indicator taxa to inform deep-sea fisheries management in the South Pacific Ocean. Fisheries Research, 211, 256-274. Glaser, S. M., Waechter, K. E., and Bransome, N. C. (2015). Through the stomach of a predator: regional patterns of forage in the diet of albacore tuna in the California Current System and metrics needed for ecosystem-based management. Journal of Marine Systems, 146, 38-49. Gloria, M. B. A., Daeschel, M. A., Craven, C., and Hilderbrand Jr, K. S. (1999). Histamine and other biogenic amines in albacore tuna. Journal of Aquatic Food Product Technology, 8(4), 55-69. Ganachaud, A.S., Sen Gupta, A., Orr, J.C., Wijffels, S.E., Ridgway, K.R., Hemer, M.A., Maes, C., Steinberg, C.R., Tribollet,,A.D., Qiu, B., and Kruger, J.C. (2011). Observed and expected changes to the tropical Pacific Ocean. In: Bell J, Johnson JE, Hobday AJ (eds) Vulnerability of tropical pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea, pp 115–202. Hastie, T. J., and Tibshirani, R. J. (1990). Generalized additive models (Vol. 43). CRC press. Howell, E. A., and Kobayashi, D. R. (2006). El Nino effects in the Palmyra Atoll region: oceanographic changes and bigeye tuna (Thunnus obesus) catch rate variability. Fisheries Oceanography, 15(6), 477-489. Hoyle, S., Hampton, J., and Davies, N. (2012). Stock assessment of albacore tuna in the South Pacific Ocean. In 7th Meeting of the Scientific Committee of the Western and Central Pacific Fisheries Commission. Pohnpei, Federated States of Micronesia (pp. 1-90). Kwon, Y., Larsen, C. P., and Lee, M. (2018). Tree species richness predicted using a spatial environmental model including forest area and frost frequency, eastern USA. PloS one, 13(9), e0203881. Langley, A., and Hampton, J. (2005). Stock assessment of albacore tuna in the south Pacific Ocean. Working Paper SA-WP-3, 1st Scientific Committee meeting of the Western and Central Pacific Fisheries Commission, Noumea, New Caledonia. (pp. 1-64) Lan, K. W., Kawamura, H., Lee, M. A., Lu, H. J., Shimada, T., Hosoda, K., and Sakaida, F. (2012). Relationship between albacore (Thunnus alalunga) fishing grounds in the Indian Ocean and the thermal environment revealed by cloud-free microwave sea surface temperature. Fisheries research, 113(1), 1-7. Lehodey, P. (2004). Climate and fisheries: an insight from the central Pacific Ocean. Marine Ecosystems and Climate Variation: The North Atlantic. A Comparative Perspective, 137. Lehodey, P., Senina, I., Nicol, S., and Hampton, J. (2015). Modelling the impact of climate change on South Pacific albacore tuna. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 246-259. Leroy, B., and Lehodey, P. (2004). Note on the growth of the South Pacific albacore. In Presented at the 17th Meeting of the Standing Committee on Tuna and Billfish, 8–18 August, 2004. Lo, N. C. H., Jacobson, L. D., and Squire, J. L. (1992). Indices of relative abundance from fish spotter data based on delta-lognornial models. Canadian Journal of Fisheries and Aquatic Sciences, 49(12), 2515-2526. Lu, H. J., Lee, K. T., and Liao, C. H. (1998). On the relationship between El Nino/Southern oscillation and South Pacific albacore. Fisheries Research, 39(1), 1-7. Mugo, R., Saitoh, S. I., Nihira, A., and Kuroyama, T. (2010). Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective. Fisheries Oceanography, 19(5), 382-396. Novianto, D., and Susilo, E. (2016). Role of sub surface temperature, salinity and chlorophyll to albacore tuna abundance in Indian Ocean. Indonesian Fisheries Research Journal, 22(1), 17-26. Pennington, M. (1983). Efficient estimators of abundance, for fish and plankton surveys. Biometrics, 281-286. Pennington, B. F., and Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of child psychology and psychiatry, 37(1), 51-87. Porfirio, L. L., Harris, R. M., Lefroy, E. C., Hugh, S., Gould, S. F., Lee, G., Bindoff, N. L., and Mackey, B. (2014). Improving the use of species distribution models in conservation planning and management under climate change. PLoS One, 9(11), e113749. Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A., and Haddon, M. (2016). Management strategy evaluation: best practices. Fish and Fisheries, 17(2), 303-334. Ramón, D., and Bailey, K. (1996). Spawning seasonality of albacore, Thunnus alalunga, in the South Pacific Ocean. Fishery Bulletin, 94(4), 724-733. Reglero, P., Santos, M., Balbı´n, R., Laı´z-Carrio´ n, R., AlvarezBerastegui, D., Ciannelli, L., Jime´nez, E., Alemany, F. (2017). Environmental and biological characteristics of Atlantic bluefin tuna and albacore spawning habitats based on their egg distributions. Deep Sea Research Part II: Topical Studies in Oceanography, 140: 105–116. Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N. and Rafaj, P. (2011). RCP 8.5 - A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1-2), 33. Robert, K., Jones, D. O., Roberts, J. M., and Huvenne, V. A. (2016). Improving predictive mapping of deep-water habitats: Considering multiple model outputs and ensemble techniques. Deep Sea Research Part I: Oceanographic Research Papers, 113, 80-89. Scott, R., and McKechie, S. (2015). Analysis of Longline Length Frequency Compositions for South Pacific Albacore. WCPFC-SC11-2015/SA-IP-06. Senina, I., Lehodey, P., Calmettes, B., Dessert, M., Hampton, J., Smith, N., Gorgues, T., Aumont, O., Lengaigne, M., Nicol, S., and Gehlen M. (2018). Impact of climate change on tropical Pacific tuna and their fisheries in Pacific Islands waters and high seas areas. 14th Regular Session of the Scientific Committee of the WCPFC. Busan, Republic of Korea. Senina, I. N., Lehodey, P., Hampton, J., and Sibert, J. (2019). Quantitative modelling of the spatial dynamics of South Pacific and Atlantic albacore tuna populations. Deep Sea Research Part II: Topical Studies in Oceanography, 104667. Silva, C., Andrade, I., Yáñez, E., Hormazabal, S., Barbieri, M. Á., Aranis, A., and Böhm, G. (2016). Predicting habitat suitability and geographic distribution of anchovy (Engraulis ringens) due to climate change in the coastal areas off Chile. Progress in Oceanography, 146, 159-174. Su, N. J., Sun, C. L., Punt, A. E., Yeh, S. Z., DiNardo, G., and Chang, Y. J. (2013). An ensemble analysis to predict future habitats of striped marlin (Kajikia audax) in the North Pacific Ocean. ICES Journal of Marine Science, 70(5), 1013-1022. Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bind-Lamberty, B., Wise, M.A., Clarke, L.E Edmonds, J. A. (2011). RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Climatic change, 109(1-2), 77. Tremblay-Boyer, L., Hampton, J., McKechnie, S., and Pilling, G. (2018). Stock assessment of South Pacific albacore tuna. 14th Regular Session of the Scientific Committee of the WCPFC. Busan, Republic of Korea. van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., and Rose, S. (2011). The representative concentration pathways: an overview. Climatic change, 109(1-2), 5. Villarino, E., Chust, G., Licandro, P., Butenschön, M., Ibaibarriaga, L., Larrañaga, A., and Irigoien, X. (2015). Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change. Marine Ecology Progress Series, 531, 121-142. WCPFC CMM-2015-02. Conservation and Management Measures for south Pacific albacore. 5-9. Dec. 2015, Kuta, Bali, Indonesia. Williams, A.J., Allain, V., Nicol, S.J., Evans, K.J., Hoyle, S.D., Dupoux, C., Vourey, E., and Dubosc, J. (2015).Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 154-169. Winker, H., Kerwath, S. E., and Attwood, C. G. (2013). Comparison of two approaches to standardize catch-per-unit-effort for targeting behaviour in a multispecies hand-line fishery. Fisheries Research, 139, 118-131. Wood, S. (2012). mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation. R package version 1.7-17 Wood, S. (2017). Generalized Additive Models: an introduction with R (2nd edition), CRC press. Xu, Y., Teo, S. L., and Holmes, J. (2013). Environmental Influences on Albacore Tuna (Thunnus alalunga) Distribution in the Coastal and Open Oceans of the Northeast Pacific: Preliminary Results from Boosted Regression Trees Models. International Scientific Committee Albacore Working Group. ISC/13/ALBWG-01/01. Zainuddin, M., Saitoh, S. I., and Saitoh, K. (2004). Detection of potential fishing ground for albacore tuna using synoptic measurements of ocean color and thermal remote sensing in the northwestern North Pacific. Geophysical Research Letters, 31(20). Zainuddin, M., Kiyofuji, H., Saitoh, K., and Saitoh, S. I. (2006). Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 53(3-4), 419-431. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8246 | - |
dc.description.abstract | 南太平洋長鰭鮪為高度洄游性魚種,廣泛分佈於南太平洋南緯0° - 50°之間。氣候變遷所導致的海洋環境變異會顯著影響南太平洋長鰭鮪分布、密度及延繩釣漁業之利用度。本研究蒐集中西太平洋漁業委員會(Western and Central Pacific Fisheries Commission,WCPFC)及美洲熱帶鮪魚委員會(Inter-American Tropical Tuna Commission,IATTC)延繩釣漁業資料以泛加成模型探討南太平洋長鰭鮪之空間分佈和棲地偏好。此外,本研究考慮各種大氣-氣候系統模式及碳排放情境(RCP4.5和RCP8.5)之氣候變遷下環境條件以系集預測降低長鰭鮪未來分布預測(2020,2050及2080年)之不確定性。結果顯示海下100公尺溶氧量及海表面溫度對長鰭鮪潛在分佈之影響最為重要,長鰭鮪偏好海下100公尺溶氧量介於0.2 - 0.25 mmol L-1及海表面溫度介於13 - 22 °C之棲地。本研究顯示在兩種RCP情境下,未來南太平洋長鰭鮪偏好棲地範圍之北界可能會南移約5°緯度,而在南緯30°以南海域之長鰭鮪密度則會增加,且該變動在RCP8.5情境下更為明顯。此外,本研究預測2080年長鰭鮪密度於南太平洋大部分國家之經濟水域可能有減少現象,其中以新喀里多尼亞減少的程度最高;然而在紐西蘭及諾福克島經濟水域之長鰭鮪密度則會增加。這些發現可作為氣候變遷下鮪類漁業利用度及其養護管理措施評估之漁業管理意涵。 | zh_TW |
dc.description.abstract | South Pacific albacore (Thunnus alalunga) is a highly migratory tuna species widely distributed throughout 0° to 50°S in the South Pacific Ocean. Climate-driven changes in the oceanographic condition largely influence the albacore distribution, density, and the consequent availability by the longline fisheries. In this study, I examined the habitat preference and spatial distribution of south Pacific albacore using a generalized additive model fitted to the longline fisheries data from the Western and Central Pacific Fisheries Commission (WCPFC) and Inter-American Tropical Tuna Commission (IATTC). Future projections of albacore distributions (2020, 2050, and 2080) were predicted by using an ensemble modelling approach produced from various atmosphere-ocean general circulation models and anthropogenic emission scenarios (i.e., RCP4.5 and RCP8.5) to reduce the uncertainty in the projected changes. The dissolved oxygen concentration at 100 meters (DO100) and sea surface temperature (SST) were found to have the most substantial effects on the potential albacore distribution that the albacore preferred in the habitat with DO100 of 0.2 - 0.25 mmol L-1 and SST of 13 - 22 °C. This study suggested that the northern boundary of albacore preferred habitat is expected to shift southward by about 5° latitudes, and the density is expected to gradually increase in the area south of 30°S from 2020 to 2080 for both RCP scenarios, especially with a higher degree of change for the RCP8.5. Moreover, the albacore density is projected to decrease in the most exclusive economic zones (EEZs) of countries and territories in the South Pacific Ocean by 2080 with the greatest depletion for New Caledonia, but is projected to increase in the EEZs of New Zealand and Norfolk Island. These findings could lend important implications on the availability of tuna resources to the fisheries and subsequent evaluation of tuna conservation and management measures under climate change. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:50:40Z (GMT). No. of bitstreams: 1 U0001-1208202010155000.pdf: 5332118 bytes, checksum: 6c2407cc3345a8a3407c455bc24a3a54 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 摘要 i Abstract ii Chapter 1 Introduction 1 1.1 Albacore tuna biology 1 1.2 Albacore tuna fisheries 2 1.3 The impact of environmental variability and climate change 3 1.4 Objectives 4 Chapter 2 Materials and Methods 6 2.1 Fishery data 6 2.2 Historical and future environmental data 7 2.3 Species distribution model 8 2.4 Historical and future albacore distribution projection 9 2.5 Ensemble forecasting 10 2.6 Expected changes in EEZs 11 Chapter 3 Results 12 3.1 Albacore distribution model 12 3.2 Albacore distribution in the historical fishing period 13 3.3 Future projections 14 Chapter 4 Discussion 18 References 23 Tables 30 Figures 35 Appendix Figures 48 | |
dc.language.iso | en | |
dc.title | 以系集預測探討氣候變遷對南太平洋長鰭鮪分布之影響 | zh_TW |
dc.title | Evaluation of the impacts of climate change on albacore distribution in the South Pacific Ocean by using ensemble forecast | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張水鍇(Shui-Kai Chang),陳志遠(Chiee-Young Chen),藍國瑋(Kuo-Wei Lan) | |
dc.subject.keyword | 南太平洋長鰭鮪,系集預測,氣候變遷,物種分布模式, | zh_TW |
dc.subject.keyword | South Pacific albacore,ensemble forecasting,climate change,species distribution model, | en |
dc.relation.page | 61 | |
dc.identifier.doi | 10.6342/NTU202003050 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1208202010155000.pdf | 5.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。