請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82468
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林雅芬(Ya-Fen Lin) | |
dc.contributor.author | Pei-Chu Liao | en |
dc.contributor.author | 廖珮筑 | zh_TW |
dc.date.accessioned | 2022-11-25T07:45:23Z | - |
dc.date.available | 2023-09-01 | |
dc.date.copyright | 2021-11-02 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-09-22 | |
dc.identifier.citation | 陳治官, 賴明信, 李長沛, 曾清山, 顏信沐. (2004). 國內水稻育種事業與重要栽培品種之特性簡介. 農業試驗所特刊第 111 號. Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. Journal of hazardous materials, 323, 274-298. Akcin, T. A., Akcin, A., Yildirim, C. (2018). Effects of chromium on anatomical characteristics of bread wheat (Triticum aestivum L. cv.“Ekiz”). Journal of International Environmental Application and Science, 13(1), 27-32. Andersen, J. C. Ø., Cropp, A., Paradise, D. C. (2017). Solubility of indium-tin oxide in simulated lung and gastric fluids: pathways for human intake. Science of the total environment, 579, 628-636. Andrunik, M., Wołowiec, M., Wojnarski, D., Zelek-Pogudz, S., Bajda, T. (2020). Transformation of Pb, Cd, and Zn minerals using phosphates. Minerals, 10(4), 342. Anwar, A., Kim, J.-K. (2020). Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International journal of molecular sciences, 21(8), 2695. Apel, K., Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399. Banuelos, M. A., Garciadeblas, B., Cubero, B., Rodrıguez-Navarro, A. (2002). Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiology, 130(2), 784-795. Bhaduri, A. M., Fulekar, M. (2012). Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Biotechnology, 11(1), 55-69. Bolan, N. S., Adriano, D. C., Naidu, R. (2003). Role of Phosphorus in (Im)mobilization and Bioavailability of Heavy Metals in the Soil-Plant System. Reviews of Environmental Contamination and Toxicology, 177, 1-44. Bolger, A. M., Lohse, M., Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. Boughriet, A., Proix, N., Billon, G., Recourt, P., Ouddane, B. (2007). Environmental impacts of heavy metal discharges from a smelter in Deûle-canal sediments (Northern France): concentration levels and chemical fractionation. Water, Air, and Soil Pollution, 180(1), 83-95. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. Chang, H. F., Wang, S. L., Lee, D. C., Hsiao, S. S. Y., Hashimoto, Y., Yeh, K. C. (2020a). Assessment of indium toxicity to the model plant Arabidopsis. Journal of hazardous materials, 387, 121983. Chang, H. F., Yang, P. T., Lin, H. W., Yeh, K. C., Chen, M. N., Wang, S. L. (2020b). Indium Uptake and Accumulation by Rice and Wheat and Health Risk Associated with Their Consumption. Environmental Science Technology, 54(23), 14946-14954. Chang, T. C., Yen, F. C., Xu, W. H. (2015). Substance flow analysis of indium in Taiwan. Materials Transactions, 56(9), 1573-1578. Chen, H. W. (2006). Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bulletin of environmental contamination and toxicology, 77(2), 289-296. Chen, H. W. (2007a). Characteristics and risk assessment of trace metals in airborne particulates from a semiconductor industrial area of northern Taiwan. Fresenius Environmental Bulletin, 16(10), 1288-1294. Chen, H. W. (2007b). Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bulletin of environmental contamination and toxicology, 78(1), 5-9. Chen, J., Luong, H., Liu, J. C. (2015). Fractionation and release behaviors of metals (In, Mo, Sr) from industrial sludge. Water research, 82, 86-93. Choudhury, B., Chowdhury, S., Biswas, A. K. (2011). Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. Journal of Plant Interactions, 6(1), 15-24. Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., Rauch, S., Salaun, P., Schäfer, J., Zimmermann, S. (2015). COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environmental Science and Pollution Research, 22(19), 15188-15194. Dametto, A., Buffon, G., dos Reis Blasi, É. A., Sperotto, R. A. (2015). Ubiquitination pathway as a target to develop abiotic stress tolerance in rice. Plant signaling behavior, 10(9), e1057369. Das, K., Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in environmental science, 2, 53. Daudi, A., O’Brien, J. A. (2012). Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-protocol, 2(18), e263. de Abreu‐Neto, J. B., Turchetto‐Zolet, A. C., de Oliveira, L. F. V., Bodanese Zanettini, M. H., Margis‐Pinheiro, M. (2013). Heavy metal‐associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. The FEBS journal, 280(7), 1604-1616. Dubey, S., Shri, M., Misra, P., Lakhwani, D., Bag, S. K., Asif, M. H., Trivedi, P. K., Tripathi, R. D., Chakrabarty, D. (2014). Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root. Functional integrative genomics, 14(2), 401-417. Eriksson, J. (2001). Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops (Vol. 5159). Swedish Environmental Protection Agency: Stockholm, Sweden. Ewels, P., Magnusson, M., Lundin, S., Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047-3048. Federation, W. E., Association, A. (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA. Feng, H., Tang, Q., Cai, J., Xu, B., Xu, G., Yu, L. (2019). Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta, 250(2), 549-561. Flick, K., Kaiser, P. (2012). Protein degradation and the stress response. Seminars in cell developmental biology, 23(5), 515–522. Foster, J. G., Hess, J. L. (1980). Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology, 66(3), 482-487. Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., Graves S. (2012). Package ‘car’. Vienna: R Foundation for Statistical Computing, 16. Grellet Bournonville, C. F., Díaz‐Ricci, J. C. (2011). Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochemical Analysis, 22(3), 268-271. Gunn, G. (2014). Critical metals handbook. John Wiley Sons. Guo, M., Ruan, W., Li, C., Huang, F., Zeng, M., Liu, Y., Yu, Y., Ding, X., Wu, Y., Wu, Z., Mao, C., Yi, K., Wu, P., Mo, X. (2015). Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiology, 168(4), 1762-1776. Guo, T. R., Yao, P. C., Zhang, Z. D., Wang, J. J., Mei, W. (2012). Involvement of antioxidative defense system in rice seedlings exposed to aluminum toxicity and phosphorus deficiency. Rice Science, 19(3), 207-212. Ha, N. N., Agusa, T., Ramu, K., Tu, N. P. C., Murata, S., Bulbule, K. A., Parthasaraty, P., Takahashi, S., Subramanian, A., Tanabe S. (2009). Contamination by trace elements at e-waste recycling sites in Bangalore, India. Chemosphere, 76(1), 9-15. Ha, N. T. H., Sakakibara, M., Sano, S., Nhuan, M. T. (2011). Uptake of metals and metalloids by plants growing in a lead–zinc mine area, Northern Vietnam. Journal of hazardous materials, 186(2-3), 1384-1391. Hasan, M., Cheng, Y., Kanwar, M. K., Chu, X. Y., Ahammed, G. J., Qi, Z. Y. (2017). Responses of plant proteins to heavy metal stress—a review. Frontiers in plant science, 8, 1492. Hassan, M. J., Zhang, G., Wu, F., Wei, K., Chen, Z. (2005). Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. Journal of Plant Nutrition and Soil Science, 168(2), 255-261. Heath, R. L., Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189-198. Hope, R. M., Hope, M. R. M., Collate'CI, R. (2013). Package ‘Rmisc’. group, 101, 2. Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Scheibe, S., Hothorn, M. T. (2016). Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria. Hwang, S. G., Chapagain, S., Han, A. R., Park, Y. C., Park, H. M., Kim, Y. H., Jang, C. S. (2017). Molecular characterization of rice arsenic‐induced RING finger E3 ligase 2 (OsAIR2) and its heterogeneous overexpression in Arabidopsis thaliana. Physiologia Plantarum, 161(3), 372-384. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2006). Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC monographs on the evaluation of carcinogenic risks to humans, 86, 1. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2018). Welding, molybdenum trioxide, and indium tin oxide. Jensen, H., Gaw, S., Lehto, N. J., Hassall, L., Robinson, B. H. (2018). The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere, 209, 675-684. Jorgenson, J. D., George, M. W. (2004). Mineral commodity profile: indium. US Geological Survey Open-File Report, 1300(2004), 2004-1300. Kabata-Pendias, A. (2010). Trace elements in soils and plants: CRC press. Kabata-Pendias, A., Mukherjee, A. B. (2007). Trace elements from soil to human: Springer Science Business Media. Kamiya, T., Islam, R., Duan, G., Uraguchi, S., Fujiwara, T. (2013). Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil science and plant nutrition, 59(4), 580-590. Kato, M., Shimizu, S. (1987). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany, 65(4), 729-735. Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J., Zhou, S., Childs, K. L., Davidson, R. M., Lin, H., Quesada-Ocampo, L., Vaillancourt, B., Sakai, H., Lee, S. S., Kim, J., Numa, H., Itoh, T., Buell, C. R., Matsumoto, T. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 6(1), 1-10. Khurana, P., Gaikwad, K. (2005). The map-based sequence of the rice genome. Nature, 436, 793-800. Kim, D., Langmead, B., Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature methods, 12(4), 357-360. Kohli, S. K., Handa, N., Gautam, V., Bali, S., Sharma, A., Khanna, K., Arora, S., Thukral, A. K., Bhardwaj, R. (2017). ROS signaling in plants under heavy metal stress. In Reactive oxygen species and antioxidant systems in plants: Role and regulation under abiotic stress, 185. Kopittke, P., McKenna, B., Blamey, F., Wehr, J., Menzies, N. (2009). Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant and Soil, 322(1), 303-315. Kuwae, M., Tsugeki, N. K., Agusa, T., Toyoda, K., Tani, Y., Ueda, S., Tanabe, S., Urabe, J. (2013). Sedimentary records of metal deposition in Japanese alpine lakes for the last 250 years: Recent enrichment of airborne Sb and In in East Asia. Science of the total environment, 442, 189-197. Ladenberger, A., Demetriades, A., Reimann, C., Birke, M., Sadeghi, M., Uhlbäck, J., Andersson, M., Jonsson, E. (2015). GEMAS: Indium in agricultural and grazing land soil of Europe—Its source and geochemical distribution patterns. Journal of geochemical exploration, 154, 61-80. Lee, S., Kim, S. A., Lee, J., Guerinot, M. L., An, G. (2010). Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Molecules and cells, 29(6), 551-558. Lenth, R., Lenth, M. R. (2018). Package ‘lsmeans’. The American Statistician, 34(4), 216-221. Lešková, A., Giehl, R. F., Hartmann, A., Fargašová, A., von Wirén, N. (2017). Heavy metals induce iron deficiency responses at different hierarchic and regulatory levels. Plant Physiology, 174(3), 1648-1668. Li, B., Chang, Q. W., Liu, H., Li, H. X., Yang, J., Song, W. P., Chen, L., Zeng, M. (2014). Effects of Cd2+ ions on root anatomical structure of four rice genotypes. Journal of environmental biology, 35(4). Li, W., Zhong, S., Li, G., Li, Q., Mao, B., Deng, Y., Zhang, H., Zeng, L., Song, F., He, Z. (2011). Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence. Cell research, 21(5), 835-848. Li, Z., Ma, T., Yuan, C., Hou, J., Wang, Q., Wu, L., Christie, P., Luo, Y. (2016). Metal contamination status of the soil-plant system and effects on the soil microbial community near a rare metal recycling smelter. Environmental Science and Pollution Research, 23(17), 17625-17634. Liao, Y. H., Yu, H. S., Ho, C. K., Wu, M. T., Yang, C. Y., Chen, J. R., Chang, C. C. (2004). Biological monitoring of exposures to aluminium, gallium, indium, arsenic, and antimony in optoelectronic industry workers. Journal of occupational and environmental medicine, 46(9), 931-936. Liao, Y., Smyth, G. K., Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923-930. Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology, 148, 350-382. Lihong, W., Guilan, D. (2009). Effect of external and internal phosphate status on arsenic toxicity and accumulation in rice seedlings. Journal of Environmental Sciences, 21(3), 346-351. Lim, S. D., Hwang, J. G., Han, A. R., Park, Y. C., Lee, C., Ok, Y. S., Jang, C. S. (2014). Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes. Plant molecular biology, 85(4), 365-379. Lin, Y. F., Liang, H. M., Yang, S. Y., Boch, A., Clemens, S., Chen, C. C., Wu, J. F., Huang, J. L., Yeh, K. C. (2009). Arabidopsis IRT3 is a zinc‐regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 182(2), 392-404. Liu, H. H., Chen, C. Y., Chen, G. I., Lee, L. H., Chen, H. L. (2012). Relationship between indium exposure and oxidative damage in workers in indium tin oxide production plants. International archives of occupational and environmental health, 85(4), 447-453. Liu, W. J., Zhu, Y. G., Smith, F., Smith, S. (2004). Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytologist, 162(2), 481-488. Liu, Y. H., Shaheen, S. M., Rinklebe, J., Hseu, Z. Y. (2021). Pedogeochemical distribution of gallium, indium and thallium, their potential availability and associated risk in highly-weathered soil profiles of Taiwan. Environmental Research, 110994. Livak, K. J., Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408. Love, M. I., Huber, W., Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15(12), 1-21. MacAdam, J. W., Nelson, C. J., Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), 872-878. Maejima, E., Watanabe, T., Osaki, M., Wagatsuma, T. (2014). Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls. Journal of plant physiology, 171(2), 9-15. McCormick, L. H., Borden, F. Y. (1972). Phosphate fixation by aluminum in plant roots. Soil Science Society of America Journal, 36(5), 799-802. Mitra, P. P., Loqué, D. (2014). Histochemical staining of Arabidopsis thaliana secondary cell wall elements. Journal of visualized experiments: JoVE(87). Nakagawa, T., Mori, S., Yoshimura, E. (2003). Amelioration of aluminum toxicity by pretreatment with phosphate in aluminum‐tolerant rice cultivar. Journal of Plant Nutrition, 26(3), 619-628. Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880. Omae, K., Nakano, M., Tanaka, A., Hirata, M., Hamaguchi, T., Chonan, T. (2011). Indium lung—case reports and epidemiology. International archives of occupational and environmental health, 84(5), 471-477. Peng, C., Duan, D., Xu, C., Chen, Y., Sun, L., Zhang, H., Yuan, X., Zheng, L., Yang, Y., Yang, J., Zhen, X., Chen, Y., Shi, J. (2015). Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environmental Pollution, 197, 99-107. Petrov, V., Hille, J., Mueller-Roeber, B., Gechev, T. S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in plant science, 6, 69. Piacentini, D., Ronzan, M., Fattorini, L., Della Rovere, F., Massimi, L., Altamura, M. M., Falasca, G. (2020). Nitric oxide alleviates cadmium-but not arsenic-induced damages in rice roots. Plant Physiology and Biochemistry, 151, 729-742. Qin, Q., Wang, Y., Huang, L., Du, F., Zhao, X., Li, Z., Wang, W., Fu, B. (2020). A U-box E3 ubiquitin ligase OsPUB67 is positively involved in drought tolerance in rice. Plant molecular biology, 102(1), 89-107. Reimers, M., Carey, V. J. (2006). [8] bioconductor: an open source framework for bioinformatics and computational biology. Methods in enzymology, 411, 119-134. Sato, Y., Namiki, N., Takehisa, H., Kamatsuki, K., Minami, H., Ikawa, H., Ohyanagi, H., Sugimoto, K., Itoh, J., Antonio, B. A., Nagamura, Y. (2013). RiceFREND: a platform for retrieving coexpressed gene networks in rice. Nucleic acids research, 41(Database issue), D1214-D1221. Sauvé, S., Desrosiers, M. (2014). A review of what is an emerging contaminant. Chemistry Central Journal, 8(1), 1-7. Schwarz-Schampera, U. (2014). Indium. Critical metals handbook, 204-229. Secco, D., Jabnoune, M., Walker, H., Shou, H., Wu, P., Poirier, Y., Whelan, J. (2013). Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. The Plant Cell, 25(11), 4285-4304. Seregin, I., Kozhevnikova, A. (2004). Strontium transport, distribution, and toxic effects on maize seedling growth. Russian Journal of Plant Physiology, 51(2), 215-221. Sharma, P., Dubey, R. (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant cell reports, 26(11), 2027-2038. Shri, M., Kumar, S., Chakrabarty, D., Trivedi, P. K., Mallick, S., Misra, P., Shukla, D., Mishra, S., Srivastava, S., Tripathi, R. D., Tuli, R. (2009). Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicology and environmental safety, 72(4), 1102-1110. Shukla, T., Kumar, S., Khare, R., Tripathi, R. D., Trivedi, P. K. (2015). Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana. Frontiers in plant science, 6, 898. Sivaguru, M., Paliwal, K. (1993). Differential aluminum tolerance in some tropical rice cultivars. II. Mechanism of aluminum tolerance. Journal of Plant Nutrition, 16(9), 1717-1732. Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of ultrastructure research, 26(1-2), 31-43. Srivastava, R. K., Pandey, P., Rajpoot, R., Rani, A., Dubey, R. (2014). Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma, 251(5), 1047-1065. Sun, S., Gu, M., Cao, Y., Huang, X., Zhang, X., Ai, P., Zhao, J., Fan, X., Xu, G. (2012). A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiology, 159(4), 1571-1581. Sychta, K., Słomka, A., Kuta, E. (2021). Insights into Plant Programmed Cell Death Induced by Heavy Metals—Discovering a Terra Incognita. Cells, 10(1), 65. Systat Software, I. (2006). SigmaPlot 10 user's manual. In: Systat Software, Inc. Point Richmond, CA. Syu, C. H., Chen, P. W., Huang, C. C., Lee, D. Y. (2020). Accumulation of gallium (Ga) and indium (In) in rice grains in Ga-and In-contaminated paddy soils. Environmental Pollution, 261, 114189. Syu, C. H., Chien, P. H., Huang, C. C., Jiang, P. Y., Juang, K. W., Lee, D. Y. (2017). The growth and uptake of Ga and In of rice (Oryza sative L.) seedlings as affected by Ga and In concentrations in hydroponic cultures. Ecotoxicology and environmental safety, 135, 32-39. Tanaka, A. (2004). Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicology and applied pharmacology, 198(3), 405-411. Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Selbig, J., Müller, L. A., Rhee, S. Y., Stitt, M. (2004). MAPMAN: a user‐driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37(6), 914-939. Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., Su, Z. (2017). agriGO v2. 0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic acids research, 45(W1), W122-W129. Tokumaru, T., Ozaki, H., Onwona-Agyeman, S., Ofosu-Anim, J., Watanabe, I. (2017). Determination of the extent of trace metals pollution in soils, sediments and human hair at e-waste recycling site in Ghana. Archives of environmental contamination and toxicology, 73(3), 377-390. USGS. (2021). Mineral commodity summaries 2021. Retrieved from Reston, VA: http://pubs.er.usgs.gov/publication/mcs2021 Valente, V., Teixeira, S. A., Neder, L., Okamoto, O. K., Oba-Shinjo, S. M., Marie, S. K., Scrideli, C. A., Paçó-Larson, M. L., Carlotti, C. G., Jr (2009). Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC molecular biology, 10(1), 1-11. Wójcik, M., Vangronsveld, J., D’Haen, J., Tukiendorf, A. (2005). Cadmium tolerance in Thlaspi caerulescens: II. Localization of cadmium in Thlaspi caerulescens. Environmental and Experimental Botany, 53(2), 163-171. Wang, S., Li, L., Ying, Y., Wang, J., Shao, J. F., Yamaji, N., Whelan, J., Ma, J. F., Shou, H. (2020). A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localising IRO2 to the nucleus in rice. New Phytologist, 225(3), 1247-1260. Wang, Z., Gerstein, M., Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 10(1), 57-63. Warnes, M. G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W. (2016). Package ‘gplots’. Various R programming tools for plotting data. Waterlot, C., Bidar, G., Pelfrêne, A., Roussel, H., Fourrier, H., Douay, F. (2013). Contamination, fractionation and availability of metals in urban soils in the vicinity of former lead and zinc smelters, France. Pedosphere, 23(2), 143-159. White, S. J. O., Hemond, H. F. (2012). The anthrobiogeochemical cycle of indium: a review of the natural and anthropogenic cycling of indium in the environment. Critical reviews in environmental science and technology, 42(2), 155-186. White, S. J. O., Hemond, H. F. (2019). Emerging investigator series: atmospheric cycling of indium in the northeastern United States. Environmental Science: Processes Impacts, 21(4), 623-634. White, S. J. O., Shine, J. P. (2016). Exposure potential and health impacts of indium and gallium, metals critical to emerging electronics and energy technologies. Current environmental health reports, 3(4), 459-467. Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180-185. Wood, S. A., Samson, I. M. (2006). The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28(1), 57-102. Yang, S. Y., Grønlund, M., Jakobsen, I., Grotemeyer, M. S., Rentsch, D., Miyao, A., Hirochika, H., Kumar, C. S., Sundaresan, V., Salamin, N., Catausan, S., Mattes, N., Heuer, S., Paszkowski, U. (2012). Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. The Plant Cell, 24(10), 4236-4251. Yang, Y., Chen, R., Fu, G., Xiong, J., Tao, L. (2016). Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa). Acta Physiologiae Plantarum, 38(1), 28. Ye, Y., Li, P., Xu, T., Zeng, L., Cheng, D., Yang, M., Luo, J., Lian, X. (2017). OsPT4 contributes to arsenate uptake and transport in rice. Frontiers in plant science, 8, 2197. Ye, Y., Yuan, J., Chang, X., Yang, M., Zhang, L., Lu, K., Lian, X. (2015). The phosphate transporter gene OsPht1;4 is involved in phosphate homeostasis in rice. PLoS One, 10(5), e0126186. Yeh, C. M., Hsiao, L. J., Huang, H. J. (2004). Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant and cell physiology, 45(9), 1306-1312. Yeh, C. M., Hung, W. C., Huang, H. J. (2003). Copper treatment activates mitogen‐activated protein kinase signalling in rice. Physiologia Plantarum, 119(3), 392-399. Yoshida, S. (1976). Routine procedure for growing rice plants in culture solution. Laboratory manual for physiological studies of rice, 61-66. Yu, X. Z., Feng, X. H., Feng, Y. X. (2015). Phytotoxicity and transport of gallium (Ga) in rice seedlings for 2-day of exposure. Bulletin of environmental contamination and toxicology, 95(1), 122-125. Yu, X., Ponce, R. A., Faustman, E. M. (2011). Metals induced disruption of ubiquitin proteasome system, activation of stress signaling and apoptosis. Cellular Effects of Heavy Metals, 291. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82468 | - |
dc.description.abstract | "新興汙染元素鎵 (Gallium, Ga) 和銦 (Indium,In) 是製造高科技產品的重要原料,近年來大量使用,造成其對環境汙染及糧食安全之疑慮;然而鎵或銦如何影響作物生長之機制,目前尚未明瞭。本實驗以水稻 (Oryza sativa L. cv. Taikeng 9) 為材料,研究水稻在鎵 (GaCl3) 或銦處理 (InCl3) 下的生長,並進一步分析水稻在銦處理下生理和分子層次之變化。結果顯示,鎵處理不影響水稻生長,而銦處理明顯抑制水稻生長,使根長縮短、植株矮化、生物量減少、葉片出現壞死斑點,並改變根部細胞構造,如:表皮細胞變大及厚壁層細胞壁變薄。銦主要累積在根部,僅少部分轉運至地上部;銦處理亦會影響必需營養元素累積,導致根部磷、鎂、鐵元素濃度的降低。全轉錄組定序 (RNA sequencing) 分析結果證實,銦處理會誘導蛋白質磷酸化、防禦反應及元素轉運相關基因的表現,以應對銦逆境對水稻的傷害;同時也會觸發水稻缺磷反應、蛋白質降解和細胞凋亡相關基因表現,造成銦毒害水稻之性狀。雖然銦處理促使水稻發生缺磷之反應,但透過比較水稻在銦和缺磷處理下的形態變化,我們發現銦 (而非缺磷) 才是讓水稻呈現毒害性狀的主要因素。有趣的是,施加磷酸可以緩解水稻的銦毒害,暗示其在農業上的可能應用。磷肥用於減緩新興污染元素銦毒害之相關研究,值得進一步探討。" | zh_TW |
dc.description.provenance | Made available in DSpace on 2022-11-25T07:45:23Z (GMT). No. of bitstreams: 1 U0001-2209202116174000.pdf: 12564060 bytes, checksum: 83c22d2e9d301e02c532ed7bdc86ed58 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | "口試委員會審定書 I 誌謝 II 中文摘要 III 英文摘要 IV 目錄 V 表目錄 X 圖目錄 XI 附錄表目錄 XV 縮寫表 1 前言 2 1. 新興汙染元素 2 2. 銦 2 2.1 銦的特性和用途 2 2.2 銦的生產和汙染 3 2.3 銦的化合物 4 3. 銦的毒害 4 3.1 銦對動物和人類的影響 4 3.2 銦對植物的影響 5 4. 銦於台灣之現況 5 5. 轉錄體分析 6 6. 研究動機和目的 6 材料與方法 8 1. 植物材料 8 1.1 材料 8 1.2 種植環境 8 1.3 水耕栽培 8 1.4 種子消毒和催芽 8 1.5 水稻育苗 9 2. 試驗處理 9 2.1 不同濃度鎵處理 9 2.2 不同濃度銦處理 9 2.3 不同天數銦處理 10 2.4 不同程度缺磷和銦處理 10 3. 組織顯微構造觀察 11 3.1 樣品製備 11 3.2 雷射掃瞄共軛焦顯微鏡觀察 11 4. 細胞顯微構造觀察 12 4.1 樣品切片製備 12 4.1.1 包埋 12 4.1.2 切片 12 4.2 顯微鏡觀察 13 5. 活性含氧物染色分析 13 5.1 DAB (3,3‘-diaminobenzidine) 染色法 13 5.2 NBT (Nitro blue tetrazolium) 染色法 14 6. 樣品均質化 14 7. 葉綠素含量測定 15 7.1 葉片褪色 15 7.2 相對葉綠素含量 15 7.3 葉綠素含量 15 8. 丙二醛含量測定 16 9. 抗氧化酵素活性測定 16 9.1 Soluble / Total peroxidase (POD) 16 9.1.1 Soluble POD 16 9.1.2 Total POD 17 9.2 Ascorbate peroxidase (APX)、Catalase (CAT)、Glutathione reductase (GR) 17 9.2.1 樣品酵素液萃取 17 9.2.2 蛋白質定量 18 9.2.3 APX活性測定 18 9.2.4 CAT活性測定 19 9.2.5 GR活性測定 19 10. 植體元素濃度測定 19 10.1 樣品準備 19 10.2 微波消化 20 10.3 感應耦合電漿質譜儀 (Inductively coupled plasma mass spectrometry, ICP-MS) 21 10.4 感應耦合電漿光學發射光譜儀 (Inductively coupled plasma optics emission spectrometer, ICP-OES) 21 11. 水耕液正磷酸鹽濃度測定 22 12. RNA定序 (RNA sequencing, RNA-seq) 23 12.1 RNA萃取 23 12.2 RNA定序 24 12.3 生物資訊分析 25 13. Real-time PCR (RT-qPCR) 26 13.1 RNA萃取 26 13.2 cDNA合成 26 13.3 Primer設計 27 13.4 RT-qPCR 27 14. 統計分析 28 結果 29 1. 新興污染元素對水稻生長之影響 29 1.1 鎵 29 1.1.1 生理性狀 29 1.1.2 氧化逆境反應 29 1.2 銦 31 1.2.1 生理性狀 31 1.2.2 氧化逆境反應 32 1.2.3 組織顯微結構變化 33 2. 銦抑制水稻生長 34 2.1 生理性狀 34 2.2 氧化逆境反應 35 2.3 植體元素濃度 35 3. 銦處理水稻轉錄體分析 37 3.1 定序品質和主成分分析 37 3.2 差異性表現基因分析 38 3.3 GO分析 38 3.4 受體激酶 39 3.5 轉錄因子 40 3.6 轉運蛋白和金屬伴護蛋白 41 3.7 泛素-蛋白酶體 43 4. 水稻銦毒害和缺磷之生理反應 43 4.1 生理性狀 44 4.2 組織顯微結構變化 45 4.3 植體元素濃度 45 5. 添加磷緩解銦元素對水稻之毒害 47 5.1 生理性狀 47 5.2 組織顯微結構變化 48 5.3 植體元素濃度 48 5.4 水耕液磷酸鹽濃度 50 討論 51 1. 鎵對水稻生長的影響 51 2. 銦對水稻的毒害 52 3. 水稻對銦的防禦反應 54 4. 銦處理誘導水稻缺磷反應 56 5. 銦與磷之交互作用 58 6. 磷元素緩解水稻的銦毒害 59 結論 61 表 62 圖 67 附錄表 151 參考文獻 190 " | |
dc.language.iso | zh-TW | |
dc.title | 新興污染元素銦抑制水稻生長之機制 | zh_TW |
dc.title | The mechanism of rice growth inhibition by indium – an emerging contamination element | en |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉國禎(Hsin-Tsai Liu),洪傳揚(Chih-Yang Tseng),楊淑怡,羅靜琪 | |
dc.subject.keyword | 新興汙染元素,銦,水稻,RNA定序,缺磷, | zh_TW |
dc.subject.keyword | Emerging contaminants,Indium,Oryza sativa L.,RNA sequencing,Phosphorous deficiency, | en |
dc.relation.page | 200 | |
dc.identifier.doi | 10.6342/NTU202103288 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2021-09-24 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
dc.date.embargo-lift | 2023-09-01 | - |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2209202116174000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.27 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。