請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82431完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭修伯(Hsiu-Po Kuo) | |
| dc.contributor.author | Ling-Hsiu Yang | en |
| dc.contributor.author | 楊令琇 | zh_TW |
| dc.date.accessioned | 2022-11-25T07:30:55Z | - |
| dc.date.available | 2023-09-01 | |
| dc.date.copyright | 2021-11-12 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-13 | |
| dc.identifier.citation | Barth, W. (1956). Berechnung und Auslegung von Zyklonabscheidern auf Grund neuer Untersuchungen. Brennst.-Warme-Kraft, 8, 1-9. Bohnet, M. (1995). Influence of the gas temperature on the separation efficiency of aerocyclones. Chemical Engineering and Processing: Process Intensification, 34(3), 151-156. Boysan, F., WH, A. (1982). A fundamental mathematical modelling approach to cyclone design. Casal, J., JM, M. B. (1983). A better way to calculate cyclone pressure drop. Coker, A. (1993). Understand cyclone design. Chemical Engineering Progress;(United States), 89(12). Cortes, C., Gil, A. (2007). Modeling the gas and particle flow inside cyclone separators. Progress in energy and combustion Science, 33(5), 409-452. Derksen, J. J., Sundaresan, S., van den Akker, H. E. A. (2006). Simulation of mass-loading effects in gas–solid cyclone separators. Powder Technology, 163(1-2), 59-68. Dietz, P. (1981). Collection efficiency of cyclone separators. AIChE Journal, 27(6), 888-892. Gimbun, J., Chuah, T., Fakhru’l-Razi, A., Choong, T. S. (2005). The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study. Chemical Engineering and Processing: Process Intensification, 44(1), 7-12. Hoekstra, A., Derksen, J., Van Den Akker, H. (1999). An experimental and numerical study of turbulent swirling flow in gas cyclones. Chemical engineering science, 54(13-14), 2055-2065. Hoffmann, A., Stein, L., Bradshaw, P. (2003). Gas cyclones and swirl tubes: principles, design and operation. Applied Mechanics Reviews, 56(2), B28-B29. Huang, A.-N., Ito, K., Fukasawa, T., Fukui, K., Kuo, H.-P. (2018). Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator. Journal of the Taiwan Institute of Chemical Engineers, 90, 61-67. Huang, A.-N., Maeda, N., Sunada, S., Fukasawa, T., Yoshida, H., Kuo, H.-P., Fukui, K. (2017). Effect of cold air stream injection on cyclone performance at high temperature. Separation and Purification Technology, 183, 293-303. Ji, Z., Xiong, Z., Wu, X., Chen, H., Wu, H. (2009). Experimental investigations on a cyclone separator performance at an extremely low particle concentration. Powder Technology, 191(3), 254-259. Kim, C., Lee, J. W. (2001). A new collection efficiency model for small cyclones considering the boundary-layer effect. Journal of aerosol science, 32(2), 251-269. Leith, D. (1972). The collection efficiency of cyclone type particle collectors. A new theoretical approach. Leith, D., Mehta, D. (1973). Cyclone performance and design. Atmospheric Environment (1967), 7(5), 527-549. Li, A., Ahmadi, G. (1992). Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Science and Technology, 16(4), 209-226. Morsi, S., Alexander, A. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid mechanics, 55(2), 193-208. Ounis, H., Ahmadi, G., McLaughlin, J. B. (1991). Brownian diffusion of submicrometer particles in the viscous sublayer. Journal of Colloid and Interface Science, 143(1), 266-277. Ramachandran, G., Leith, D., Dirgo, J., Feldman, H. (1991). Cyclone optimization based on a new empirical model for pressure drop. Aerosol Science and Technology, 15(2), 135-148. Shephered, C., Lapple, C. (1939). Flow pattern and pressure drop in cyclone dust collectors. Industrial Engineering Chemistry, 31(8), 972-984. Solero, G., Coghe, A. (2002). Experimental fluid dynamic characterization of a cyclone chamber. Experimental thermal and fluid science, 27(1), 87-96. Sommerfeld, M. (2000). Theoretical and Experimental Modelling of Particulate Flows. Lecture Series 2000-06, von Karman Institute for Fluid Dynamics. In: April. Song, C., Pei, B., Jiang, M., Wang, B., Xu, D., Chen, Y. (2016). Numerical analysis of forces exerted on particles in cyclone separators. Powder Technology, 294, 437-448. Su, Y., Mao, Y. (2006). Experimental study on the gas–solid suspension flow in a square cyclone separator. Chemical Engineering Journal, 121(1), 51-58. Ter Linden, A. (1949). Investigations into cyclone dust collectors. Proceedings of the Institution of Mechanical Engineers, 160(1), 233-251. Velilla, J. (2005). Study of the flow at a PFBC cyclone dipleg. University of Zaragoza. Wang, B., Xu, D. L., Chu, K. W., Yu, A. B. (2006). Numerical study of gas–solid flow in a cyclone separator. Applied Mathematical Modelling, 30(11), 1326-1342. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82431 | - |
| dc.description.abstract | "本論文以計算流體力學(Computational Fluid Dynamics, CFD)雷諾應力模型(Reynold Stress Model, RSM)模擬流體在旋風分離器中的連續相紊流流態,並以使用者自定義函數(User-defined Function, UDF)計算離散相(Discrete Phase Model, DPM)的固體顆粒在旋風分離器中的分離效率、軌跡及受力行為,分析在流體速度分別為6.51 m/s、13/02 m/s、19.53m/s及25℃、100℃、200℃及300℃四種不同溫度下旋風分離器中流態的變化,並針對不同顆粒粒徑條件,分別以Moris - Alexander與Stoke - Cunningham兩種氣固拖曳模型計算顆粒分離效率,比較兩種模型間顆粒所受到的加速度。結果顯示高溫的操作條件下,流體徑向上的紊流強度差會降低,使顆粒被帶往旋風分離器壁面的機率下降,使得分離效率降低。在Moris - Alexander計算模型中,粒徑較小的顆粒因受到較強的徑向拖曳力,容易隨著流體離開旋風分離器,Stoke - Cunningham模型中考慮到小顆粒在流體間滑動的程度提高,造成顆粒所受到的拖曳力大幅下降,結果顯示以Stoke - Cunningham拖曳模型計算會有較高的分離效率。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:30:55Z (GMT). No. of bitstreams: 1 U0001-1309202120042200.pdf: 20633840 bytes, checksum: 1fd08f42bcb824914db53dbe53e3dca6 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 i 圖目錄 iii 表目錄 xix 第一章 緒論 1 第二章 文獻回顧 2 2.1 旋風分離器之發展概況 2 2.2 旋風分離器之理論 3 2.3 旋風分離器之流場 4 2.4 旋風分離器效能之指標 6 2.4.1 壓降 6 2.4.2 分級效率 8 2.5 影響分離效率的因素 8 2.5.1 固體顆粒進料量 8 2.5.2 溫度 10 2.6 固體顆粒受力分析 12 2.7 旋風分離器模擬 14 第三章 數值模擬方法 17 3.1 計算流體力學軟體 17 3.2 數值計算模型 18 3.2.1 雷諾應力模型 18 3.2.2 離散相模型 18 3.2.2.1 Moris Alexander拖曳模型 19 3.2.2.2 Stoke-Cunningham拖曳模型 20 3.3 數值模擬計算步驟 21 3.4 邊界條件及參數設定 23 第四章 結果與討論 25 4.1 氣體流場分佈 25 4.1.1 壓力分佈 25 4.1.2 切線速度分佈 28 4.2 固體顆粒 33 4.2.1 分離效率 33 4.2.2 顆粒軌跡與流態分佈間的關係 36 4.2.3 固體顆粒軌跡與作用力 41 第五章 結論 128 參考文獻 129 | |
| dc.language.iso | zh-TW | |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 旋風分離器 | zh_TW |
| dc.subject | 使用者自定義函數 | zh_TW |
| dc.subject | User-Defined Function (UDF) | en |
| dc.subject | Computational Fluid Dynamics (CFD) | en |
| dc.subject | Cyclone separator | en |
| dc.title | 利用數值方法分析溫度對旋風分離器分離效率的影響 | zh_TW |
| dc.title | Numerical Analysis the Effect of Temperature on the Cyclone Performance | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 童國倫(Hsin-Tsai Liu),黃安婗(Chih-Yang Tseng) | |
| dc.subject.keyword | 計算流體力學,旋風分離器,使用者自定義函數, | zh_TW |
| dc.subject.keyword | Computational Fluid Dynamics (CFD),Cyclone separator,User-Defined Function (UDF), | en |
| dc.relation.page | 130 | |
| dc.identifier.doi | 10.6342/NTU202103154 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-09-01 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1309202120042200.pdf | 20.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
