請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82349
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉光勝(Kuang-Sheng Yeh) | |
dc.contributor.author | Fang-Ling Liu | en |
dc.contributor.author | 劉芳伶 | zh_TW |
dc.date.accessioned | 2022-11-25T07:29:34Z | - |
dc.date.available | 2023-09-01 | |
dc.date.copyright | 2021-11-09 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-07-22 | |
dc.identifier.citation | 1. 吳欣霞: 動物和人分離之共生性大腸桿菌多重抗藥性的比較研究。中國醫藥大學生物醫學研究所碩士班碩士論文,台中市。 取自https://hdl.handle.net/11296/wzc7ys. 2017. 2. 吳孟庭: 分析克雷白氏肺炎桿菌中質體媒介之AmpC乙內醯胺酶。高雄醫學大學醫學研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/g75v5k. 2008. 3. 台灣衛生福利部疾病管制署: 台灣醫院感染管制與抗藥性監測管理系統(THAS系統)2020年 第三季 監視報告. In.; 2020. 4. 許文謙: 臺灣北部某醫學中心菌血症克雷白氏肺炎桿菌 (Klebsiella pneumoniae)菌株之AmpC β-lactamase其流行病學以及抗藥特性之研究。臺北醫學大學醫學檢驗暨生物技術學系所碩士論文,台北市。 取自https://hdl.handle.net/11296/7s9q43. 2014. 5. 莊易潔: 中台灣地區雞隻腸道桿菌多黏菌素抗藥性基因 mcr-1 與廣效性乙醯胺酶基因抗藥性之盛行率調查。國立中興大學獸醫學系暨研究所碩士論文,台中市。 取自https://hdl.handle.net/11296/dpr973. 2020. 6. Hutchings MI, Truman AW, Wilkinson B: Antibiotics: past, present and future. Curr Opin Microbiol 2019, 51:72-80. 7. Christaki E, Marcou M, Tofarides A: Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol 2020, 88(1):26-40. 8. Tunstall T, Portelli S, Phelan J, Clark TG, Ascher DB, Furnham N: Combining structure and genomics to understand antimicrobial resistance. Comput Struct Biotechnol J 2020, 18:3377-3394. 9. Inoue H: Strategic approach for combating antimicrobial resistance (AMR). Glob Health Med 2019, 1(2):61-64. 10. Asokan GV, Ramadhan T, Ahmed E, Sanad H: WHO global priority pathogens list: A bibliometric analysis of medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med J 2019, 34(3):184-193. 11. Aly M, Balkhy HH: The prevalence of antimicrobial resistance in clinical isolates from Gulf Corporation Council countries. Antimicrob Resist Infect Control 2012, 1(1):26. 12. Bader MS, Loeb M, Brooks AA: An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad Med 2017, 129(2):242-258. 13. Mazzariol A, Bazaj A, Cornaglia G: Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: A review. J Chemother 2017, 29(sup1):2-9. 14. Venter H, Henningsen ML, Begg SL: Antimicrobial resistance in healthcare, agriculture and the environment: the biochemistry behind the headlines. Essays Biochem 2017, 61(1):1-10. 15. Reygaert WC: An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018, 4(3):482-501. 16. Kumar A, Schweizer HP: Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 2005, 57(10):1486-1513. 17. Spratt BG, Cromie KD: Penicillin-binding proteins of gram-negative bacteria. Rev Infect Dis 1988, 10(4):699-711. 18. Stefani S, Campanile F, Santagati M, Mezzatesta ML, Cafiso V, Pacini G: Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: A review of the available evidence. Int J Antimicrob Agents 2015, 46(3):278-289. 19. Hawkey PM: Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 2003, 51 Suppl 1:29-35. 20. Vedantam G, Guay GG, Austria NE, Doktor SZ, Nichols BP: Characterization of mutations contributing to sulfathiazole resistance in Escherichia coli. Antimicrob Agents Chemother 1998, 42(1):88-93. 21. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ: Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015, 13(1):42-51. 22. Blair JM, Richmond GE, Piddock LJ: Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 2014, 9(10):1165-1177. 23. Mell JC, Redfield RJ: Natural competence and the evolution of DNA uptake specificity. J Bacteriol 2014, 196(8):1471-1483. 24. Lang AS, Beatty JT: Importance of widespread gene transfer agent genes in alpha-proteobacteria. Trends Microbiol 2007, 15(2):54-62. 25. Wiedenbeck J, Cohan FM: Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 2011, 35(5):957-976. 26. Daubin V, Szöllősi GJ: Horizontal gene transfer and the history of life. Cold Spring Harb Perspect Biol 2016, 8(4):a018036. 27. Bush K: Past and present perspectives on β-Lactamases. Antimicrob Agents Chemother 2018, 62(10). 28. Wilson H, Török ME: Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb Genom 2018, 4(7). 29. Sawa T, Kooguchi K, Moriyama K: Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care 2020, 8:13. 30. Paterson DL, Bonomo RA: Extended-spectrum beta-lactamases: A clinical update. Clin Microbiol Rev 2005, 18(4):657-686. 31. Drawz SM, Bonomo RA: Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 2010, 23(1):160-201. 32. Datta N, Kontomichalou P: Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 1965, 208(5007):239-241. 33. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S: Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983, 11(6):315-317. 34. Lerminiaux NA, Cameron ADS: Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 2019, 65(1):34-44. 35. Bauernfeind A, Holley M, Jungwirth R, Mangold P, Röhnisch T, Schweighart S, Wilhelm R, Casellas J, Goldberg M: A new plasmidic cefotaximase from patients infected with Salmonella typhimurium. Infection 1992, 20(3):158-163. 36. Kojima A, Ishii Y, Ishihara K, Esaki H, Asai T, Oda C, Tamura Y, Takahashi T, Yamaguchi K: Extended-spectrum-beta-lactamase-producing Escherichia coli strains isolated from farm animals from 1999 to 2002: Report from the Japanese veterinary antimicrobial resistance monitoring program. Antimicrob Agents Chemother 2005, 49(8):3533-3537. 37. Peirano G, Pitout JD: Extended-spectrum β-lactamase-producing Enterobacteriaceae: Update on molecular epidemiology and treatment options. Drugs 2019, 79(14):1529-1541. 38. Lahlaoui H, Ben Haj Khalifa A, Ben Moussa M: Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum β-lactamase (ESBL). Médecine et Maladies Infectieuses 2014, 44(9):400-404. 39. Falagas ME, Karageorgopoulos DE: Extended-spectrum β-lactamase-producing organisms. Journal of Hospital Infection 2009, 73(4):345-354. 40. Stapleton PJ, Murphy M, McCallion N, Brennan M, Cunney R, Drew RJ: Outbreaks of extended spectrum beta-lactamase-producing Enterobacteriaceae in neonatal intensive care units: A systematic review. Arch Dis Child Fetal Neonatal Ed 2016, 101(1):F72-78. 41. Alevizakos M, Karanika S, Detsis M, Mylonakis E: Colonisation with extended-spectrum β-lactamase-producing Enterobacteriaceae and risk for infection among patients with solid or haematological malignancy: A systematic review and meta-analysis. Int J Antimicrob Agents 2016, 48(6):647-654. 42. Wragg R, Harris A, Patel M, Robb A, Chandran H, McCarthy L: Extended spectrum beta lactamase (ESBL) producing bacteria urinary tract infections and complex pediatric urology. J Pediatr Surg 2017, 52(2):286-288. 43. Mathers AJ, Peirano G, Pitout JD: The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 2015, 28(3):565-591. 44. Bezabih YM, Sabiiti W, Alamneh E, Bezabih A, Peterson GM, Bezabhe WM, Roujeinikova A: The global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli in the community. Journal of Antimicrobial Chemotherapy 2020, 76(1):22-29. 45. Kittinger C, Lipp M, Folli B, Kirschner A, Baumert R, Galler H, Grisold AJ, Luxner J, Weissenbacher M, Farnleitner AH et al: Enterobacteriaceae isolated from the river danube: Antibiotic resistances, with a focus on the presence of ESBL and carbapenemases. PLoS One 2016, 11(11):e0165820. 46. Hernández J, González-Acuña D: Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol 2016, 6:32112. 47. Kawamura K, Nagano N, Suzuki M, Wachino JI, Kimura K, Arakawa Y: ESBL-producing Escherichia coli and its rapid rise among healthy people. Food Saf (Tokyo) 2017, 5(4):122-150. 48. Liu X, Thungrat K, Boothe DM: Occurrence of OXA-48 carbapenemase and other β-Lactamase genes in ESBL-producing multidrug resistant Escherichia coli from dogs and cats in the United States, 2009-2013. Front Microbiol 2016, 7:1057. 49. Salgado-Caxito M, Benavides JA, Adell AD, Paes AC, Moreno-Switt AI: Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats - a scoping review and meta-analysis. One Health 2021, 12:100236. 50. Zhang PLC, Shen X, Chalmers G, Reid-Smith RJ, Slavic D, Dick H, Boerlin P: Prevalence and mechanisms of extended-spectrum cephalosporin resistance in clinical and fecal Enterobacteriaceae isolates from dogs in Ontario, Canada. Vet Microbiol 2018, 213:82-88. 51. Baede VO, Wagenaar JA, Broens EM, Duim B, Dohmen W, Nijsse R, Timmerman AJ, Hordijk J: Longitudinal study of extended-spectrum-β-lactamase- and AmpC-producing Enterobacteriaceae in household dogs. Antimicrob Agents Chemother 2015, 59(6):3117-3124. 52. Yu WL, Chuang YC, Walther-Rasmussen J: Extended-spectrum beta-lactamases in Taiwan: Epidemiology, detection, treatment and infection control. J Microbiol Immunol Infect 2006, 39(4):264-277. 53. Liu HY, Lin HC, Lin YC, Yu SH, Wu WH, Lee YJ: Antimicrobial susceptibilities of urinary extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae to fosfomycin and nitrofurantoin in a teaching hospital in Taiwan. J Microbiol Immunol Infect 2011, 44(5):364-368. 54. Hung WT, Cheng MF, Tseng FC, Chen YS, Shin-Jung Lee S, Chang TH, Lin HH, Hung CH, Wang JL: Bloodstream infection with extended-spectrum beta-lactamase-producing Escherichia coli: The role of virulence genes. J Microbiol Immunol Infect 2019, 52(6):947-955. 55. Lin TC, Hung YP, Lee CC, Lin WT, Huang LC, Dai W, Kuo CS, Ko WC, Huang YL: Clinical impact and risk factors of nonsusceptibility to third-generation cephalosporins among hospitalized adults with monomicrobial Enterobacteriaceae bacteremia in Southern Taiwan: A multicenter study. Infect Drug Resist 2021, 14:689-697. 56. Kuan N-L, Chang C-W, Lee C-A, Yeh K-S: Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from the urine of dogs and cats suspected of urinary tract infection in a Veterinary Teaching Hospital. Taiwan Vet J 2016, 42(03):143-148. 57. Huang YH, Kuan NL, Yeh KS: Characteristics of extended-spectrum beta-lactamase-producing Escherichia coli from dogs and cats admitted to a Veterinary Teaching Hospital in Taipei, Taiwan from 2014 to 2017. Front Vet Sci 2020, 7:395. 58. Chen JW, Huang HH, Chang SM, Scaria J, Chiu YL, Chen CM, Ko WC, Wang JL: Antibiotic-resistant Escherichia coli and sequence type 131 in fecal colonization in dogs in Taiwan. Microorganisms 2020, 8(9). 59. Chen Y, Minasov G, Roth TA, Prati F, Shoichet BK: The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution. J Am Chem Soc 2006, 128(9):2970-2976. 60. Oteo J, Cercenado E, Cuevas O, Bautista V, Delgado-Iribarren A, Orden B, Pérez-Vázquez M, García-Cobos S, Campos J: AmpC beta-lactamases in Escherichia coli: emergence of CMY-2-producing virulent phylogroup D isolates belonging mainly to STs 57, 115, 354, 393, and 420, and phylogroup B2 isolates belonging to the international clone O25b-ST131. Diagn Microbiol Infect Dis 2010, 67(3):270-276. 61. Abraham EP, Chain E: An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 1988, 10(4):677-678. 62. Jacoby GA: AmpC beta-lactamases. Clin Microbiol Rev 2009, 22(1):161-182, Table of Contents. 63. Juan C, Torrens G, González-Nicolau M, Oliver A: Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2017, 41(6):781-815. 64. Mizrahi A, Delerue T, Morel H, Le Monnier A, Carbonnelle E, Pilmis B, Zahar JR: Infections caused by naturally AmpC-producing Enterobacteriaceae: Can we use third-generation cephalosporins? A narrative review. Int J Antimicrob Agents 2020, 55(2):105834. 65. Honoré N, Nicolas MH, Cole ST: Inducible cephalosporinase production in clinical isolates of Enterobacter cloacae is controlled by a regulatory gene that has been deleted from Escherichia coli. Embo j 1986, 5(13):3709-3714. 66. Philippon A, Arlet G, Jacoby GA: Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 2002, 46(1):1-11. 67. Bauernfeind A, Chong Y, Schweighart S: Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 1989, 17(5):316-321. 68. Papanicolaou GA, Medeiros AA, Jacoby GA: Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 1990, 34(11):2200-2209. 69. Perez-Perez FJ, Hanson ND: Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002, 40(6):2153-2162. 70. Meini S, Tascini C, Cei M, Sozio E, Rossolini GM: AmpC β-lactamase-producing Enterobacterales: what a clinician should know. Infection 2019, 47(3):363-375. 71. Bauernfeind A, Chong Y, Lee K: Plasmid-encoded AmpC beta-lactamases: How far have we gone 10 years after the discovery? Yonsei Med J 1998, 39(6):520-525. 72. Pascual V, Alonso N, Simó M, Ortiz G, Garcia MC, Xercavins M, Rivera A, Morera MA, Miró E, Espejo E et al: Bloodstream infections caused by Escherichia coli producing AmpC β-lactamases: epidemiology and clinical features. Eur J Clin Microbiol Infect Dis 2016, 35(12):1997-2003. 73. den Drijver E, Verweij JJ, Verhulst C, Oome S, Soer J, Willemsen I, Schrauwen EJA, Kluytmans-van den Bergh MFQ, Kluytmans J: Decline in AmpC β-lactamase-producing Escherichia coli in a Dutch teaching hospital (2013-2016). PLoS One 2018, 13(10):e0204864. 74. Harris PNA, Ben Zakour NL, Roberts LW, Wailan AM, Zowawi HM, Tambyah PA, Lye DC, Jureen R, Lee TH, Yin M et al: Whole genome analysis of cephalosporin-resistant Escherichia coli from bloodstream infections in Australia, New Zealand and Singapore: High prevalence of CMY-2 producers and ST131 carrying blaCTX-M-15 and blaCTX-M-27. Journal of Antimicrobial Chemotherapy 2017, 73(3):634-642. 75. Ulstad CR, Solheim M, Berg S, Lindbæk M, Dahle UR, Wester AL: Carriage of ESBL/AmpC-producing or ciprofloxacin non-susceptible Escherichia coli and Klebsiella spp. in healthy people in Norway. Antimicrob Resist Infect Control 2016, 5:57. 76. Gandolfi-Decristophoris P, Petrini O, Ruggeri-Bernardi N, Schelling E: Extended-spectrum β-lactamase-producing Enterobacteriaceae in healthy companion animals living in nursing homes and in the community. Am J Infect Control 2013, 41(9):831-835. 77. Sanchez S, McCrackin Stevenson MA, Hudson CR, Maier M, Buffington T, Dam Q, Maurer JJ: Characterization of multidrug-resistant Escherichia coli isolates associated with nosocomial infections in dogs. Journal of Clinical Microbiology 2002, 40(10):3586-3595. 78. Rubin JE, Pitout JDD: Extended-spectrum β-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals. Veterinary Microbiology 2014, 170(1):10-18. 79. Bortolami A, Zendri F, Maciuca EI, Wattret A, Ellis C, Schmidt V, Pinchbeck G, Timofte D: Diversity, virulence, and clinical significance of extended-spectrum β-Lactamase- and pAmpC-producing Escherichia coli from companion animals. Front Microbiol 2019, 10:1260. 80. Shaheen BW, Nayak R, Foley SL, Kweon O, Deck J, Park M, Rafii F, Boothe DM: Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob Agents Chemother 2011, 55(12):5666-5675. 81. Bogaerts P, Huang TD, Bouchahrouf W, Bauraing C, Berhin C, El Garch F, Glupczynski Y: Characterization of ESBL- and AmpC-producing Enterobacteriaceae from diseased companion animals in Europe. Microb Drug Resist 2015, 21(6):643-650. 82. Yan JJ, Ko WC, Wu HM, Tsai SH, Chuang CL, Wu JJ: Complexity of Klebsiella pneumoniae isolates resistant to both cephamycins and extended-spectrum cephalosporins at a teaching hospital in Taiwan. J Clin Microbiol 2004, 42(11):5337-5340. 83. Chang FY, Siu LK, Fung CP, Huang MH, Ho M: Diversity of SHV and TEM beta-lactamases in Klebsiella pneumoniae: Gene evolution in Northern Taiwan and two novel beta-lactamases, SHV-25 and SHV-26. Antimicrob Agents Chemother 2001, 45(9):2407-2413. 84. Yan JJ, Wu SM, Tsai SH, Wu JJ, Su IJ: Prevalence of SHV-12 among clinical isolates of Klebsiella pneumoniae producing extended-spectrum beta-lactamases and identification of a novel AmpC enzyme (CMY-8) in Southern Taiwan. Antimicrob Agents Chemother 2000, 44(6):1438-1442. 85. Yan JJ, Ko WC, Tsai SH, Wu HM, Jin YT, Wu JJ: Dissemination of CTX-M-3 and CMY-2 beta-lactamases among clinical isolates of Escherichia coli in Southern Taiwan. J Clin Microbiol 2000, 38(12):4320-4325. 86. Yan JJ, Ko WC, Jung YC, Chuang CL, Wu JJ: Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1 beta-lactamase in a university hospital in Taiwan. J Clin Microbiol 2002, 40(9):3121-3126. 87. Yan JJ, Hsueh PR, Lu JJ, Chang FY, Shyr JM, Wan JH, Liu YC, Chuang YC, Yang YC, Tsao SM et al: Extended-spectrum beta-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother 2006, 50(5):1861-1864. 88. Ma L, Siu LK, Lin JC, Wu TL, Fung CP, Wang JT, Lu PL, Chuang YC: Updated molecular epidemiology of carbapenem-non-susceptible Escherichia coli in Taiwan: First identification of KPC-2 or NDM-1-producing E. coli in Taiwan. BMC Infect Dis 2013, 13:599. 89. El-Sayed Ahmed MAE, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB: Colistin and its role in the Era of antibiotic resistance: An extended review (2000-2019). Emerg Microbes Infect 2020, 9(1):868-885. 90. Kempf I, Jouy E, Chauvin C: Colistin use and colistin resistance in bacteria from animals. Int J Antimicrob Agents 2016, 48(6):598-606. 91. Rhouma M, Beaudry F, Thériault W, Letellier A: Colistin in pig production: Chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Front Microbiol 2016, 7:1789. 92. Gao R, Hu Y, Li Z, Sun J, Wang Q, Lin J, Ye H, Liu F, Srinivas S, Li D et al: Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog 2016, 12(11):e1005957. 93. Hussein NH, Al-Kadmy IMS, Taha BM, Hussein JD: Mobilized colistin resistance (mcr) genes from 1 to 10: A comprehensive review. Molecular Biology Reports 2021, 48(3):2897-2907. 94. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X et al: Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases 2016, 16(2):161-168. 95. Meinersmann RJ, Ladely SR, Plumblee JR, Hall MC, Simpson SA, Ballard LL, Scheffler BE, Genzlinger LL, Cook KL: Colistin resistance mcr-1-gene-bearing Escherichia coli strain from the United States. Genome Announc 2016, 4(5). 96. Walkty A, Karlowsky JA, Adam HJ, Lagacé-Wiens P, Baxter M, Mulvey MR, McCracken M, Poutanen SM, Roscoe D, Zhanel GG: Frequency of MCR-1-mediated colistin resistance among Escherichia coli clinical isolates obtained from patients in Canadian hospitals (CANWARD 2008-2015). CMAJ Open 2016, 4(4):E641-e645. 97. Delgado-Blas JF, Ovejero CM, Abadia-Patiño L, Gonzalez-Zorn B: Coexistence of mcr-1 and blaNDM-1 in Escherichia coli from Venezuela. Antimicrob Agents Chemother 2016, 60(10):6356-6358. 98. Ortega-Paredes D, Barba P, Zurita J: Colistin-resistant Escherichia coli clinical isolate harbouring the mcr-1 gene in Ecuador. Epidemiol Infect 2016, 144(14):2967-2970. 99. Zhang H, Seward CH, Wu Z, Ye H, Feng Y: Genomic insights into the ESBL and MCR-1-producing ST648 Escherichiacoli with multi-drug resistance. Sci Bull (Beijing) 2016, 61:875-878. 100. Pham Thanh D, Thanh Tuyen H, Nguyen Thi Nguyen T, Chung The H, Wick RR, Thwaites GE, Baker S, Holt KE: Inducible colistin resistance via a disrupted plasmid-borne mcr-1 gene in a 2008 Vietnamese Shigella sonnei isolate. J Antimicrob Chemother 2016, 71(8):2314-2317. 101. Doumith M, Godbole G, Ashton P, Larkin L, Dallman T, Day M, Day M, Muller-Pebody B, Ellington MJ, de Pinna E et al: Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J Antimicrob Chemother 2016, 71(8):2300-2305. 102. Perrin-Guyomard A, Bruneau M, Houée P, Deleurme K, Legrandois P, Poirier C, Soumet C, Sanders P: Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014. Euro Surveill 2016, 21(6). 103. Irrgang A, Roschanski N, Tenhagen BA, Grobbel M, Skladnikiewicz-Ziemer T, Thomas K, Roesler U, Käsbohrer A: Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010-2015. PLoS One 2016, 11(7):e0159863. 104. Di Pilato V, Arena F, Tascini C, Cannatelli A, Henrici De Angelis L, Fortunato S, Giani T, Menichetti F, Rossolini GM: mcr-1.2, a new mcr variant carried on a transferable plasmid from a colistin-resistant KPC carbapenemase-producing Klebsiella pneumoniae strain of sequence type 512. Antimicrob Agents Chemother 2016, 60(9):5612-5615. 105. Nordmann P, Assouvie L, Prod'Hom G, Poirel L, Greub G: Screening of plasmid-mediated MCR-1 colistin-resistance from bacteremia. Eur J Clin Microbiol Infect Dis 2016, 35(11):1891-1892. 106. Skov RL, Monnet DL: Plasmid-mediated colistin resistance (mcr-1 gene): Three months later, the story unfolds. Euro Surveill 2016, 21(9):30155. 107. Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Butaye P, Goossens H: Colistin resistance gene mcr-1 harboured on a multidrug resistant plasmid. Lancet Infect Dis 2016, 16(3):283-284. 108. Anyanwu MU, Okpala COR, Chah KF, Shoyinka VS: Prevalence and traits of mobile colistin resistance gene harbouring isolates from different ecosystems in Africa. Biomed Res Int 2021, 2021:6630379. 109. Poirel L, Kieffer N, Liassine N, Thanh D, Nordmann P: Plasmid-mediated carbapenem and colistin resistance in a clinical isolate of Escherichia coli. Lancet Infect Dis 2016, 16(3):281. 110. Falgenhauer L, Waezsada SE, Yao Y, Imirzalioglu C, Käsbohrer A, Roesler U, Michael GB, Schwarz S, Werner G, Kreienbrock L et al: Colistin resistance gene mcr-1 in extended-spectrum β-lactamase-producing and carbapenemase-producing Gram-negative bacteria in Germany. Lancet Infect Dis 2016, 16(3):282-283. 111. Zhang P, Wang J, Wang X, Bai X, Ma J, Dang R, Xiong Y, Fanning S, Bai L, Yang Z: Characterization of five Escherichia coli isolates co-expressing ESBL and MCR-1 resistance mechanisms from different origins in China. Front Microbiol 2019, 10:1994. 112. Rumi MV, Mas J, Elena A, Cerdeira L, Muñoz ME, Lincopan N, Gentilini É R, Di Conza J, Gutkind G: Co-occurrence of clinically relevant β-lactamases and MCR-1 encoding genes in Escherichia coli from companion animals in Argentina. Vet Microbiol 2019, 230:228-234. 113. Forde BM, Zowawi HM, Harris PNA, Roberts L, Ibrahim E, Shaikh N, Deshmukh A, Sid Ahmed MA, Al Maslamani M, Cottrell K et al: Discovery of mcr-1-mediated colistin resistance in a highly virulent Escherichia coli lineage. mSphere 2018, 3(5). 114. Xiaomin S, Yiming L, Yuying Y, Zhangqi S, Yongning W, Shaolin W: Global impact of mcr-1-positive Enterobacteriaceae bacteria on 'one health'. Crit Rev Microbiol 2020, 46(5):565-577. 115. Bachiri T, Lalaoui R, Bakour S, Allouache M, Belkebla N, Rolain JM, Touati A: First report of the plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli ST405 isolated from wildlife in Bejaia, Algeria. Microb Drug Resist 2018, 24(7):890-895. 116. Zhang XF, Doi Y, Huang X, Li HY, Zhong LL, Zeng KJ, Zhang YF, Patil S, Tian GB: Possible transmission of mcr-1-harboring Escherichia coli between companion animals and human. Emerg Infect Dis 2016, 22(9):1679-1681. 117. Lei L, Wang Y, Schwarz S, Walsh TR, Ou Y, Wu Y, Li M, Shen Z: mcr-1 in Enterobacteriaceae from companion animals, Beijing, China, 2012-2016. Emerg Infect Dis 2017, 23(4):710-711. 118. Chen Y, Liu Z, Zhang Y, Zhang Z, Lei L, Xia Z: Increasing prevalence of ESBL-producing multidrug resistance Escherichia coli from diseased pets in Beijing, China from 2012 to 2017. Front Microbiol 2019, 10:2852. 119. Lei L, Wang Y, He J, Cai C, Liu Q, Yang D, Zou Z, Shi L, Jia J, Wang Y et al: Prevalence and risk analysis of mobile colistin resistance and extended-spectrum β-lactamase genes carriage in pet dogs and their owners: A population based cross-sectional study. Emerg Microbes Infect 2021, 10(1):242-251. 120. Loayza-Villa F, Salinas L, Tijet N, Villavicencio F, Tamayo R, Salas S, Rivera R, Villacis J, Satan C, Ushiña L et al: Diverse Escherichia coli lineages from domestic animals carrying colistin resistance gene mcr-1 in an Ecuadorian household. J Glob Antimicrob Resist 2020, 22:63-67. 121. Moon DC, Mechesso AF, Kang HY, Kim SJ, Choi JH, Kim MH, Song HJ, Yoon SS, Lim SK: First report of an Escherichia coli strain carrying the colistin resistance determinant mcr-1 from a dog in South Korea. Antibiotics (Basel) 2020, 9(11). 122. Bich VTN, Thanh LV, Thai PD, Van Phuong TT, Oomen M, Driessen C, Beuken E, Hoang TH, van Doorn HR, Penders J et al: An exploration of the gut and environmental resistome in a community in northern Vietnam in relation to antibiotic use. Antimicrob Resist Infect Control 2019, 8:194. 123. Kuo SC, Huang WC, Wang HY, Shiau YR, Cheng MF, Lauderdale TL: Colistin resistance gene mcr-1 in Escherichia coli isolates from humans and retail meats, Taiwan. J Antimicrob Chemother 2016, 71(8):2327-2329. 124. Liu JY, Liao TL, Huang WC, Liu YM, Wu KM, Lauderdale TL, Tsai SF, Kuo SC, Kuo HC: Increased mcr-1 in pathogenic Escherichia coli from diseased swine, Taiwan. J Microbiol Immunol Infect 2020, 53(5):751-756. 125. Hsueh SC, Lai CC, Huang YT, Liao CH, Chiou MT, Lin CN, Hsueh PR: Molecular evidence for intra- and inter-farm spread of porcine mcr-1-carrying Escherichia coli in Taiwan. Front Microbiol 2020, 11:1967. 126. Lai CC, Lin YT, Lin YT, Lu MC, Shi ZY, Chen YS, Wang LS, Tseng SH, Lin CN, Chen YH et al: Clinical characteristics of patients with bacteraemia due to the emergence of mcr-1-harbouring Enterobacteriaceae in humans and pigs in Taiwan. Int J Antimicrob Agents 2018, 52(5):651-657. 127. Chen CW, Tang HJ, Chen CC, Lu YC, Chen HJ, Su BA, Weng TC, Chuang YC, Lai CC: The microbiological characteristics of carbapenem-resistant enterobacteriaceae carrying the mcr-1 gene. J Clin Med 2019, 8(2). 128. Wang CH, Lin JC, Yu CM, Wu RX: Emergence of multiple drug-resistant Escherichia coli harboring mcr-1 in immunocompetent patients from the community. J Microbiol Immunol Infect 2020, 53(4):663-664. 129. Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM: Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin Microbiol Rev 2019, 32(2). 130. Astley DJ, Masters N, Kuballa A, Katouli M: Commonality of adherent-invasive Escherichia coli isolated from patients with extraintestinal infections, healthy individuals and the environment. European Journal of Clinical Microbiology Infectious Diseases 2020. 131. Gomes TA, Elias WP, Scaletsky IC, Guth BE, Rodrigues JF, Piazza RM, Ferreira LC, Martinez MB: Diarrheagenic Escherichia coli. Braz J Microbiol 2016, 47 Suppl 1:3-30. 132. Robins-Browne RM, Holt KE, Ingle DJ, Hocking DM, Yang J, Tauschek M: Are Escherichia coli pathotypes still relevant in the Era of whole-genome sequencing? Front Cell Infect Microbiol 2016, 6:141. 133. Johnson JR, Gajewski A, Lesse AJ, Russo TA: Extraintestinal pathogenic Escherichia coli as a cause of invasive nonurinary infections. J Clin Microbiol 2003, 41(12):5798-5802. 134. Johnson JR, Russo TA: Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 2005, 295(6-7):383-404. 135. Nicolas-Chanoine MH, Bertrand X, Madec JY: Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014, 27(3):543-574. 136. Clermont O, Bonacorsi S, Bingen E: Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000, 66(10):4555-4558. 137. Clermont O, Christenson JK, Denamur E, Gordon DM: The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 2013, 5(1):58-65. 138. Chaudhuri RR, Henderson IR: The evolution of the Escherichia coli phylogeny. Infection, Genetics and Evolution 2012, 12(2):214-226. 139. Tenaillon O, Skurnik D, Picard B, Denamur E: The population genetics of commensal Escherichia coli. Nat Rev Microbiol 2010, 8(3):207-217. 140. Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B, Butler-Wu SM, Lee C, Cookson BT, Shendure J: Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 2015, 25(1):119-128. 141. Pitout JD, DeVinney R: Escherichia coli ST131: A multidrug-resistant clone primed for global domination. F1000Res 2017, 6. 142. Vangchhia B, Abraham S, Bell JM, Collignon P, Gibson JS, Ingram PR, Johnson JR, Kennedy K, Trott DJ, Turnidge JD et al: Phylogenetic diversity, antimicrobial susceptibility and virulence characteristics of phylogroup F Escherichia coli in Australia. Microbiology (Reading) 2016, 162(11):1904-1912. 143. Zude I, Leimbach A, Dobrindt U: Prevalence of autotransporters in Escherichia coli: What is the impact of phylogeny and pathotype? Int J Med Microbiol 2014, 304(3-4):243-256. 144. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA et al: Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 1998, 95(6):3140-3145. 145. Urwin R, Maiden MC: Multi-locus sequence typing: A tool for global epidemiology. Trends Microbiol 2003, 11(10):479-487. 146. Muller A, Gbaguidi-Haore H, Cholley P, Hocquet D, Sauget M, Bertrand X: Hospital-diagnosed infections with Escherichia coli clonal group ST131 are mostly acquired in the community. Sci Rep 2021, 11(1):5702. 147. Rogers BA, Sidjabat HE, Paterson DL: Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011, 66(1):1-14. 148. Peirano G, Pitout JD: Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: The worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents 2010, 35(4):316-321. 149. Matsumura Y, Yamamoto M, Nagao M, Hotta G, Matsushima A, Ito Y, Takakura S, Ichiyama S: Emergence and spread of B2-ST131-O25b, B2-ST131-O16 and D-ST405 clonal groups among extended-spectrum-β-lactamase-producing Escherichia coli in Japan. J Antimicrob Chemother 2012, 67(11):2612-2620. 150. Matsumura Y, Yamamoto M, Nagao M, Ito Y, Takakura S, Ichiyama S: Association of fluoroquinolone resistance, virulence genes, and IncF plasmids with extended-spectrum-β-lactamase-producing Escherichia coli sequence type 131 (ST131) and ST405 clonal groups. Antimicrob Agents Chemother 2013, 57(10):4736-4742. 151. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Caniça MM, Park YJ, Lavigne JP, Pitout J, Johnson JR: Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008, 61(2):273-281. 152. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J, Peixe L, Baquero F, Cantón R, Nordmann P: Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX-M-15. Emerg Infect Dis 2008, 14(2):195-200. 153. Hussain A, Ewers C, Nandanwar N, Guenther S, Jadhav S, Wieler LH, Ahmed N: Multiresistant uropathogenic Escherichia coli from a region in India where urinary tract infections are endemic: Genotypic and phenotypic……… | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82349 | - |
dc.description.abstract | "近年來,細菌抗藥性,是全球所關注的議題,其中大腸桿菌更是被列為抗第三代頭孢菌素的重要監測對象之一。第三代頭孢菌素是獸醫及人醫臨床治療上常使用的抗菌劑之一。而超廣譜乙內醯胺酶 (extended-spectrum-β-lactamase, ESBL) 和透過質體轉錄的AmpC乙內醯胺酶,卻都具有水解第三代頭孢菌素的能力。另一個值得注意的是MCR-1磷酸乙醇胺轉移酶,此酵素對於治療革蘭氏陰性菌的後線藥物多黏菌素E,或稱黏桿菌素,具有抗藥性。編碼此酵素的基因mcr-1,可攜帶於質體上。超廣譜乙內醯胺酶、質體轉錄的AmpC乙內醯胺酶,或磷酸乙醇胺轉移酶的基因編碼,皆能透過質體攜帶,而這類質體經常也包含了其他抗藥性基因,並可水平傳播至同種,甚至跨菌種的細菌,衍生更多的抗藥性細菌。雖然在國際上針對從動物分離,具有這些多重抗藥性特性的細菌,已經有許多報告,但在台灣的伴侶動物中,相關的資料仍然有限。 因此,本研究目的為分析2020年6月29日至2020年12月31日期間,於臺大動物醫院就診之犬貓,所分離的大腸桿菌,分析上述的抗藥特徵與基因,並進行這些菌株的親緣關係調查。一共分析了50株大腸桿菌分離株,透過PCR方法確認,這些分離株主要隸屬於致病性大腸桿菌的phylogroup B2,犬為66%(27 / 41),貓為89%(8 / 9)。對第三代頭孢菌素具有抗藥性的大腸桿菌共有16株(16/50, 32%),8株具有ESBLs,6株有pAmpC,2株同時攜帶有ESBLs 與 pAmpC。ESBLs基因型為TEM group、CTX-M-1 group、CTX-M-9 group。pAmpC基因型為CMY-2 like。帶有ESBLs的大腸桿菌皆屬致病性phylogroup B2,序列分型類別為ST131與ST1193,皆為高毒力流行株。其中ST131-O25b 共有3株,而 ST1193為一非乳糖發酵的新興流行株,首次發現於台灣。攜帶pAmpC 的大腸桿菌分散於各個phylogroup,但以共生性的phylogroup B1為多數,序列分型類別為ST155、ST315、ST617、ST457、ST767、ST372和ST93,這些菌株皆曾發現於人類與動物之中。在藥物敏感試驗中,帶有ESBLs 或 pAmpC的大腸桿菌,多重抗藥性的表現,顯著高於不具有ESBLs或pAmpC的菌株。經由接合試驗,將抗藥基因轉移至大腸桿菌J53菌株,我們發現ESBLs基因僅須接合1小時即可完成轉移,pAmpC基因則須1天才能完成轉移,唯一轉移失敗的分離株為ST767。透過PCR方法偵測,並無發現mcr-1,而利用最小抑菌濃度測試,也並無發現具黏桿菌素抗藥性的大腸桿菌分離株。 伴侶動物特別是犬貓,與人類接觸密切,包含親吻動作、肢體接觸、清理排泄物,都可能促使抗藥性病原交流傳播,間接導致感染與治療門檻提升。因此在獸醫學的角度,持續監測寵物來源細菌的抗藥型態、基因型,與盛行率,並深入了解細菌株的親緣背景來源,是非常重要且必須的。" | zh_TW |
dc.description.provenance | Made available in DSpace on 2022-11-25T07:29:34Z (GMT). No. of bitstreams: 1 U0001-2007202107030600.pdf: 2390530 bytes, checksum: 28faf7b8982e1cb940c6ee9ce68b7049 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | "口試委員會審定書 # 誌謝 ii 中文摘要 iii Abstract v 目錄 viii 表目錄 xi 圖目錄 xii 附錄 xiii 第一章 文獻檢閱 1 1.1 抗菌劑耐受性危機 1 1.2 抗菌劑作用機制 3 1.3 抗藥性發生與轉移 3 1.3.1 抗藥性作用機制 3 1.3.2 抗藥性基因轉移 6 1.4 乙內醯胺酶(β-lactamase) 7 1.5 超廣譜乙內醯胺酶 ( Extended-spectrum β-lactamases, ESBLs ) 10 1.6 AmpC乙內醯胺酶(AmpC β-lactamase, AmpC) 15 1.7 MCR-1 磷酸乙醇胺轉移酶 20 1.8 大腸桿菌介紹與分類 23 1.8.1 血清型與毒素分類 24 1.8.2 親緣系統分群(Phylogenetic grouping) 25 1.8.3 多基因座序列分型(Multi-locus sequence typing, MLST) 27 1.9 E. coli ST131-O25b(O25b:H4) 28 第二章 材料與方法 31 2.1 標準菌株來源 31 2.2 樣本收集與保存 31 2.3 分離株核酸萃取 31 2.4 親緣關係分析 32 2.4.1 親緣系統分群(Phylogenetic grouping) 32 2.4.2 多基因座序列分型(Multi-locus sequence typing, MLST) 33 2.5 ST131-O25b血清型鑑定 35 2.6 ESBLs表現型鑑定 36 2.6.1 CHOMagar™ ESBL篩選 36 2.6.2 表現型確認紙錠擴散試驗(Phenotypic confirmatory disc diffusion test, PCDDT) 36 2.7 ESBL / pAmpC / MCR-1抗藥基因型鑑定 37 2.7.1 Extended-spectrum β-lactamase(ESBLs) 37 2.7.2 Plasmid-mediated AmpC(pAmpC) 38 2.7.3 MCR-1 encoding gene 39 2.8 藥物敏感性試驗 40 2.8.1 紙錠擴散試驗(Disc diffusion test, DDT) 40 2.8.2 最小抑菌濃度測試(Minimum inhibitory concentration test, MIC) 41 2.9 基因片段定序 42 2.10 接合試驗(Conjugation experiment) 42 第三章 實驗結果 43 3.1 大腸桿菌盛行率與分離株來源 43 3.2 β-lactamase基因型與盛行率 43 3.2.1 Extended-spectrum β-lactamase(ESBLs) 43 3.2.2 Plasmid-mediated AmpC(pAmpC) 44 3.3 ESBL/pAmpC producing E. coli之親源關係 45 3.3.1 親緣系統分群(Phylogenetic grouping) 45 3.3.2 多基因座序列分型(Multi-locus sequence typing, MLST) 45 3.4 ESBL/pAmpC producing E. coli之藥物敏感性試驗 46 3.5 ESBL/pAmpC producing E. coli之親緣關係樹狀圖(Minimal spanning tree) 47 3.6 ESBL-producing E. coli之ST131 O25b檢測結果 48 3.7 MCR-1盛行率 48 3.8 接合試驗結果 48 第四章 討論 50 第五章 參考文獻 71" | |
dc.language.iso | zh-TW | |
dc.title | 分析由寵物所分離出來帶有extended-spectrum-β-lactamase、pAmpC或MCR-1基因的大腸桿菌 | zh_TW |
dc.title | "Characteristics of the Escherichia coli That Possess Extended-Spectrum-β-Lactamase, pAmpC, or MCR-1 Encoding Genes from Companion Animals " | en |
dc.date.schoolyear | 109-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張惠雯(Hsin-Tsai Liu),陳正文(Chih-Yang Tseng) | |
dc.subject.keyword | 細菌抗藥性,大腸桿菌,超廣譜乙內醯胺酶,質體AmpC乙內醯胺酶,磷酸乙醇胺轉移酶,ST131-O25b,伴侶動物, | zh_TW |
dc.subject.keyword | antimicrobial resistance,Escherichia coli,extended-spectrum β-lactamase,pAmpC β-lactamase,phosphoethanolamine transferase,ST131-O25b,companion animals, | en |
dc.relation.page | 85 | |
dc.identifier.doi | 10.6342/NTU202101586 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2021-07-23 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
dc.date.embargo-lift | 2023-09-01 | - |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2007202107030600.pdf | 2.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。