Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82323
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorRu-Yin Jianen
dc.contributor.author簡茹因zh_TW
dc.date.accessioned2022-11-25T07:29:13Z-
dc.date.available2024-08-08
dc.date.copyright2021-11-19
dc.date.issued2021
dc.date.submitted2021-08-04
dc.identifier.citation1. Ribatti, D., R. Tamma, and T. Annese, Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl Oncol, 2020. 13(6): p. 100773. 2. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 3. Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37. 4. Bae, Y.K., et al., Epithelial-Mesenchymal Transition Phenotype Is Associated with Clinicopathological Factors That Indicate Aggressive Biological Behavior and Poor Clinical Outcomes in Invasive Breast Cancer. J Breast Cancer, 2015. 18(3): p. 256-63. 5. Lu, W. and Y. Kang, Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell, 2019. 49(3): p. 361-374. 6. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96. 7. Heldin, C.H., M. Vanlandewijck, and A. Moustakas, Regulation of EMT by TGFβ in cancer. FEBS Lett, 2012. 586(14): p. 1959-70. 8. Katoh, Y. and M. Katoh, FGFR2-related pathogenesis and FGFR2-targeted therapeutics (Review). Int J Mol Med, 2009. 23(3): p. 307-11. 9. Al Moustafa, A.E., A. Achkhar, and A. Yasmeen, EGF-receptor signaling and epithelial-mesenchymal transition in human carcinomas. Front Biosci (Schol Ed), 2012. 4: p. 671-84. 10. McCormack, N. and S. O'Dea, Regulation of epithelial to mesenchymal transition by bone morphogenetic proteins. Cell Signal, 2013. 25(12): p. 2856-62. 11. Taipale, J. and P.A. Beachy, The Hedgehog and Wnt signalling pathways in cancer. Nature, 2001. 411(6835): p. 349-54. 12. Espinoza, I. and L. Miele, Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells. Cancer Lett, 2013. 341(1): p. 41-5. 13. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008. 133(4): p. 704-15. 14. Morel, A.P., et al., Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 2008. 3(8): p. e2888. 15. Korpal, M., et al., Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med, 2011. 17(9): p. 1101-8. 16. van Cruijsen, H., G. Giaccone, and K. Hoekman, Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies. 2005. 117(6): p. 883-888. 17. Rojas-Puentes, L., et al., Epithelial-mesenchymal transition, proliferation, and angiogenesis in locally advanced cervical cancer treated with chemoradiotherapy. Cancer Med, 2016. 5(8): p. 1989-99. 18. Fantozzi, A., et al., VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res, 2014. 74(5): p. 1566-75. 19. Desai, S., S. Laskar, and B.N. Pandey, Autocrine IL-8 and VEGF mediate epithelial-mesenchymal transition and invasiveness via p38/JNK-ATF-2 signalling in A549 lung cancer cells. Cell Signal, 2013. 25(9): p. 1780-91. 20. Gonzalez-Moreno, O., et al., VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop. Exp Cell Res, 2010. 316(4): p. 554-67. 21. Li, C., et al., HIF-1α/VEGF signaling-mediated epithelial-mesenchymal transition and angiogenesis is critically involved in anti-metastasis effect of luteolin in melanoma cells. Phytother Res, 2019. 33(3): p. 798-807. 22. Loric, S., et al., Abnormal E-cadherin expression and prostate cell blood dissemination as markers of biological recurrence in cancer. Eur J Cancer, 2001. 37(12): p. 1475-81. 23. Croucher, P.I., M.M. McDonald, and T.J. Martin, Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer, 2016. 16(6): p. 373-86. 24. Fares, J., et al., Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther, 2020. 5(1): p. 28. 25. Yao, Y., et al., Positive Correlative over-Expression between eIF4E and Snail in Nasopharyngeal Carcinoma Promotes its Metastasis and Resistance to Cisplatin. Pathol Oncol Res, 2020. 26(3): p. 1639-1649. 26. Johnson-Arbor, K. and R. Dubey, Doxorubicin, in StatPearls. 2021, StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.: Treasure Island (FL). 27. Chu, S., et al., miR-93 and PTEN: Key regulators of doxorubicin-resistance and EMT in breast cancer. Oncol Rep, 2017. 38(4): p. 2401-2407. 28. Wu, Z.-H., et al., MiRNA-21 induces epithelial to mesenchymal transition and gemcitabine resistance via the PTEN/AKT pathway in breast cancer. Tumor Biology, 2016. 37(6): p. 7245-7254. 29. Gaponova, A.V., et al., Epithelial-Mesenchymal Transition: Role in Cancer Progression and the Perspectives of Antitumor Treatment. Acta Naturae, 2020. 12(3): p. 4-23. 30. Bai, J., et al., Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget, 2017. 8(66): p. 110693-110707. 31. Soundararajan, R., et al., Targeting the Interplay between Epithelial-to-Mesenchymal-Transition and the Immune System for Effective Immunotherapy. Cancers (Basel), 2019. 11(5). 32. Kudo-Saito, C., et al., Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell, 2009. 15(3): p. 195-206. 33. Akalay, I., et al., Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res, 2013. 73(8): p. 2418-27. 34. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012. 489(7414): p. 57-74. 35. Forrest, A.R., et al., A promoter-level mammalian expression atlas. Nature, 2014. 507(7493): p. 462-70. 36. Jarroux, J., A. Morillon, and M. Pinskaya, History, Discovery, and Classification of lncRNAs. Adv Exp Med Biol, 2017. 1008: p. 1-46. 37. Tripathi, V., et al., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010. 39(6): p. 925-38. 38. Barry, G., et al., The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry, 2014. 19(4): p. 486-94. 39. Yin, Q.F., et al., Long noncoding RNAs with snoRNA ends. Mol Cell, 2012. 48(2): p. 219-30. 40. Wang, K.C., et al., A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011. 472(7341): p. 120-4. 41. Cabianca, D.S., et al., A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell, 2012. 149(4): p. 819-31. 42. Poliseno, L., et al., A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010. 465(7301): p. 1033-8. 43. Cesana, M., et al., A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011. 147(2): p. 358-69. 44. Wang, Y., et al., Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell, 2013. 25(1): p. 69-80. 45. Hansen, T.B., et al., miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. Embo j, 2011. 30(21): p. 4414-22. 46. Memczak, S., et al., Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013. 495(7441): p. 333-8. 47. Lin, Y.H., Crosstalk of lncRNA and Cellular Metabolism and Their Regulatory Mechanism in Cancer. Int J Mol Sci, 2020. 21(8). 48. Shirahama, S., et al., Long Non-coding RNAs Involved in Pathogenic Infection. Front Genet, 2020. 11: p. 454. 49. Yari, H., et al., LncRNA REG1CP promotes tumorigenesis through an enhancer complex to recruit FANCJ helicase for REG3A transcription. Nature Communications, 2019. 10(1): p. 5334. 50. Salameh, A., et al., PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A, 2015. 112(27): p. 8403-8. 51. Hessels, D., et al., DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol, 2003. 44(1): p. 8-15; discussion 15-6. 52. Lemos, A.E., et al., PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells. Tumour Biol, 2016. 37(8): p. 11339-48. 53. Cantile, M., et al., Long Non-Coding RNA HOTAIR in Breast Cancer Therapy. Cancers (Basel), 2020. 12(5). 54. Abbastabar, M., et al., lncRNA involvement in hepatocellular carcinoma metastasis and prognosis. Excli j, 2018. 17: p. 900-913. 55. Xia, H., et al., The lncRNA MALAT1 is a novel biomarker for gastric cancer metastasis. Oncotarget, 2016. 7(35): p. 56209-56218. 56. Qian, Y., L. Shi, and Z. Luo, Long Non-coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front Med (Lausanne), 2020. 7: p. 612393. 57. Amit, D. and A. Hochberg, Development of targeted therapy for a broad spectrum of cancers (pancreatic cancer, ovarian cancer, glioblastoma and HCC) mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Int J Clin Exp Med, 2012. 5(4): p. 296-305. 58. Lei, K., et al., Lnc-ATB contributes to gastric cancer growth through a MiR-141-3p/TGFβ2 feedback loop. Biochem Biophys Res Commun, 2017. 484(3): p. 514-521. 59. Zhang, Y., et al., Down-regulation of lncRNA-ATB inhibits epithelial-mesenchymal transition of breast cancer cells by increasing miR-141-3p expression. Biochem Cell Biol, 2019. 97(2): p. 193-200. 60. Li, W. and Y. Kang, A new Lnc in metastasis: long noncoding RNA mediates the prometastatic functions of TGF-β. Cancer Cell, 2014. 25(5): p. 557-9. 61. Yuan, J.H., et al., A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell, 2014. 25(5): p. 666-81. 62. Song, Y., et al., Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. Int J Oncol, 2019. 54(1): p. 77-86. 63. Ge, X.S., et al., HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci, 2013. 104(12): p. 1675-82. 64. Wu, W., et al., Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma. Sci Rep, 2017. 7: p. 45029. 65. Rokavec, M., D. Horst, and H. Hermeking, Cellular Model of Colon Cancer Progression Reveals Signatures of mRNAs, miRNA, lncRNAs, and Epigenetic Modifications Associated with Metastasis. Cancer Res, 2017. 77(8): p. 1854-1867. 66. Ye, K., et al., Long Noncoding RNA GAS5 Suppresses Cell Growth and Epithelial-Mesenchymal Transition in Osteosarcoma by Regulating the miR-221/ARHI Pathway. J Cell Biochem, 2017. 118(12): p. 4772-4781. 67. Huang, J.F., et al., Hepatitis B virus X protein (HBx)-related long noncoding RNA (lncRNA) down-regulated expression by HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology, 2013. 57(5): p. 1882-92. 68. Wang, Y., et al., Long non-coding RNA TUSC7 acts a molecular sponge for miR-10a and suppresses EMT in hepatocellular carcinoma. Tumour Biol, 2016. 37(8): p. 11429-41. 69. Wang, Z., et al., Downregulation of the long non-coding RNA TUSC7 promotes NSCLC cell proliferation and correlates with poor prognosis. Am J Transl Res, 2016. 8(2): p. 680-7. 70. Yue, L. and J. Guo, LncRNA TUSC7 suppresses pancreatic carcinoma progression by modulating miR-371a-5p expression. J Cell Physiol, 2019. 71. Massagué, J., TGF-beta signal transduction. Annu Rev Biochem, 1998. 67: p. 753-91. 72. Dumont, N. and C.L. Arteaga, Targeting the TGF beta signaling network in human neoplasia. Cancer Cell, 2003. 3(6): p. 531-6. 73. Derynck, R., R.J. Akhurst, and A. Balmain, TGF-beta signaling in tumor suppression and cancer progression. Nat Genet, 2001. 29(2): p. 117-29. 74. Miyazono, K., P. ten Dijke, and C.H. Heldin, TGF-beta signaling by Smad proteins. Adv Immunol, 2000. 75: p. 115-57. 75. Heldin, C.-H. and A. Moustakas, Role of Smads in TGFβ signaling. Cell and Tissue Research, 2012. 347(1): p. 21-36. 76. Miyazono, K., TGF-β signaling by Smad proteins. Cytokine Growth Factor Reviews, 2000. 11(1): p. 15-22. 77. Hata, A. and Y.G. Chen, TGF-β Signaling from Receptors to Smads. Cold Spring Harb Perspect Biol, 2016. 8(9). 78. Mu, Y., S.K. Gudey, and M. Landström, Non-Smad signaling pathways. Cell and Tissue Research, 2012. 347(1): p. 11-20. 79. Zhang, Y.E., Non-Smad pathways in TGF-β signaling. Cell Research, 2009. 19(1): p. 128-139. 80. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003. 425(6958): p. 577-584. 81. Batlle, E. and J. Massagué, Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity, 2019. 50(4): p. 924-940. 82. Finnson, K.W., Y. Almadani, and A. Philip, Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: Mechanisms and targets. Seminars in Cell Developmental Biology, 2020. 101: p. 115-122. 83. Roberts, A.B., et al., Type beta transforming growth factor: a bifunctional regulator of cellular growth. 1985. 82(1): p. 119-123. 84. Neel, J.-C., L. Humbert, and J.-J. Lebrun, The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN Molecular Biology, 2012. 2012: p. 381428. 85. Isoe, S., et al., Resistance to growth inhibition by transforming growth factor-beta in malignant glioma cells with functional receptors. J Neurosurg, 1998. 88(3): p. 529-34. 86. Kang, Y., C.R. Chen, and J. Massagué, A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell, 2003. 11(4): p. 915-26. 87. Kimchi, A., et al., Absence of TGF-beta receptors and growth inhibitory responses in retinoblastoma cells. 1988. 240(4849): p. 196-199. 88. Korah, J., et al., A transcriptionally active pRb–E2F1–P/CAF signaling pathway is central to TGFβ-mediated apoptosis. Cell Death Disease, 2012. 3(10): p. e407-e407. 89. Jang, C.W., et al., TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol, 2002. 4(1): p. 51-8. 90. Perlman, R., et al., TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nature Cell Biology, 2001. 3(8): p. 708-714. 91. Markowitz, S., et al., Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science, 1995. 268(5215): p. 1336-8. 92. Ogino, S., et al., TGFBR2 mutation is correlated with CpG island methylator phenotype in microsatellite instability-high colorectal cancer. Hum Pathol, 2007. 38(4): p. 614-20. 93. Shima, K., et al., TGFBR2 and BAX mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS One, 2011. 6(9): p. e25062. 94. Lei, J., et al., Infrequent DPC4 gene mutation in esophageal cancer, gastric cancer and ulcerative colitis-associated neoplasms. Oncogene, 1996. 13(11): p. 2459-62. 95. Barrett, M.T., et al., Allelic loss and mutational analysis of the DPC4 gene in esophageal adenocarcinoma. Cancer Res, 1996. 56(19): p. 4351-3. 96. Massagué, J., TGFbeta in Cancer. Cell, 2008. 134(2): p. 215-30. 97. Seoane, J. and R.R. Gomis, TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb Perspect Biol, 2017. 9(12). 98. Seoane, J., et al., Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 2004. 117(2): p. 211-23. 99. Ramesh, S., G.M. Wildey, and P.H.J.C.C. Howe, Transforming growth factor β (TGFβ)-induced apoptosis: the rise and fall of Bim. 2009. 8(1): p. 11-17. 100. Gorelik, L. and R.A.J.N.m. Flavell, Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. 2001. 7(10): p. 1118-1122. 101. Rook, A., et al., Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. 1986. 136(10): p. 3916-3920. 102. Shimo, T., et al., Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. 2001. 61(4): p. 315-322. 103. De Jong, J.S., et al., Expression of growth factors, growth‐inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. 1998. 184(1): p. 53-57. 104. Larsson, J., et al., Abnormal angiogenesis but intact hematopoietic potential in TGF‐β type I receptor‐deficient mice. 2001. 20(7): p. 1663-1673. 105. Wicki, A., et al., Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. 2006. 9(4): p. 261-272. 106. Oft, M., et al., TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. 1996. 10(19): p. 2462-2477. 107. Bodmer, S., et al., Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. 1989. 143(10): p. 3222-3229. 108. Thuault, S., et al., Transforming growth factor-β employs HMGA2 to elicit epithelial–mesenchymal transition. 2006. 174(2): p. 175-183. 109. Mani, S.A., et al., Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. 2007. 104(24): p. 10069-10074. 110. Peinado, H., D. Olmeda, and A.J.N.r.c. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? 2007. 7(6): p. 415-428. 111. Thuault, S., et al., HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. 2008. 283(48): p. 33437-33446. 112. Smit, M.A., et al., A Twist-Snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis. 2009. 29(13): p. 3722-3737. 113. Papageorgis, P., et al., Smad signaling is required to maintain epigenetic silencing during breast cancer progression. 2010. 70(3): p. 968-978. 114. McDonald, O.G., et al., Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. 2011. 18(8): p. 867. 115. Park, S.-M., et al., The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. 2008. 22(7): p. 894-907. 116. Chaudhury, A., et al., TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. 2010. 12(3): p. 286-293. 117. You, H., W. Ding, and C.B. Rountree, Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology, 2010. 51(5): p. 1635-44. 118. Scheel, C., et al., Paracrine and Autocrine Signals Induce and Maintain Mesenchymal and Stem Cell States in the Breast. Cell, 2011. 145(6): p. 926-940. 119. Fan, Q.M., et al., Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett, 2014. 352(2): p. 160-8. 120. Padua, D., et al., TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. 2008. 133(1): p. 66-77. 121. Papoutsoglou, P. and A. Moustakas, Long non-coding RNAs and TGF-β signaling in cancer. Cancer Sci, 2020. 111(8): p. 2672-2681. 122. Richards, E.J., et al., Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) β: LncRNA-hit-mediated TGFβ-induced epithelial to mesenchymal transition in mammary epithelia. J Biol Chem, 2015. 290(11): p. 6857-67. 123. Rodríguez-Mateo, C., et al., Downregulation of Lnc-Spry1 mediates TGF-β-induced epithelial-mesenchymal transition by transcriptional and posttranscriptional regulatory mechanisms. Cell Death Differ, 2017. 24(5): p. 785-797. 124. Chen, C., et al., Lnc-LFAR1 affects intrahepatic cholangiocarcinoma proliferation, invasion, and EMT by regulating the TGFβ/Smad signaling pathway. Int J Clin Exp Pathol, 2019. 12(7): p. 2455-2461. 125. Tu, J., et al., NEAT1 upregulates TGF-β1 to induce hepatocellular carcinoma progression by sponging hsa-mir-139-5p. J Cell Physiol, 2018. 233(11): p. 8578-8587. 126. Tu, X., et al., TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice. Sci Rep, 2017. 7(1): p. 2957. 127. Xiang, Y., et al., MALAT1 Modulates TGF-β1-Induced Endothelial-to-Mesenchymal Transition through Downregulation of miR-145. Cell Physiol Biochem, 2017. 42(1): p. 357-372. 128. Zhu, H.Y., et al., Knockdown of lncRNA-ATB suppresses autocrine secretion of TGF-β2 by targeting ZNF217 via miR-200c in keloid fibroblasts. Sci Rep, 2016. 6: p. 24728. 129. Lang, C., et al., SMAD3/SP1 complex-mediated constitutive active loop between lncRNA PCAT7 and TGF-β signaling promotes prostate cancer bone metastasis. Mol Oncol, 2020. 14(4): p. 808-828. 130. Papoutsoglou, P., et al., The TGFB2-AS1 lncRNA Regulates TGF-β Signaling by Modulating Corepressor Activity. Cell Rep, 2019. 28(12): p. 3182-3198.e11. 131. Wang, P., et al., Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci Transl Med, 2018. 10(462). 132. Lee, C.M. and E.P. Reddy, The v-myc oncogene. Oncogene, 1999. 18(19): p. 2997-3003. 133. Madden, S.K., et al., Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Molecular Cancer, 2021. 20(1): p. 3. 134. Malynn, B.A., et al., N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes Dev, 2000. 14(11): p. 1390-9. 135. Svensson, V. and L. Pachter, RNA Velocity: Molecular Kinetics from Single-Cell RNA-Seq. Mol Cell, 2018. 72(1): p. 7-9. 136. Conacci-Sorrell, M., L. McFerrin, and R.N.J.C.S.H.p.i.m. Eisenman, An overview of MYC and its interactome. 2014. 4(1): p. a014357. 137. Carroll, P.A., et al., The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med, 2018. 12(4): p. 412-425. 138. Dang, C.V., A Time for MYC: Metabolism and Therapy. Cold Spring Harb Symp Quant Biol, 2016. 81: p. 79-83. 139. Chen, H., H. Liu, and G. Qing, Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther, 2018. 3: p. 5. 140. Zhou, Q., T. Li, and D.H. Price, RNA polymerase II elongation control. Annu Rev Biochem, 2012. 81: p. 119-43. 141. Walz, S., et al., Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature, 2014. 511(7510): p. 483-7. 142. Hypertension in the elderly. National High Blood Pressure Education Program Coordinating Committee. Conn Med, 1981. 45(4): p. 233-7. 143. McKeehan, W.L. and D. Fast, The major androgen-dependent protein in rat ventral prostate binds polycyclic aromatic hydrocarbons. Cell Biol Int Rep, 1981. 5(1): p. 2. 144. Blackwood, E.M., et al., The Myc:Max protein complex and cell growth regulation. Cold Spring Harb Symp Quant Biol, 1991. 56: p. 109-17. 145. Prendergast, G.C. and E.B. Ziff, Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science, 1991. 251(4990): p. 186-9. 146. Kato, G.J., et al., An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol, 1990. 10(11): p. 5914-20. 147. Helander, S., et al., Pre-Anchoring of Pin1 to Unphosphorylated c-Myc in a Fuzzy Complex Regulates c-Myc Activity. Structure, 2015. 23(12): p. 2267-2279. 148. Blackwood, E.M. and R.N. Eisenman, Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science, 1991. 251(4998): p. 1211-7. 149. Varmus, H., A Prize for Cancer Prevention. Cell, 2017. 171(1): p. 14-17. 150. Beaulieu, M.-E., F. Castillo, and L.J.C. Soucek, Structural and biophysical insights into the function of the intrinsically disordered Myc oncoprotein. 2020. 9(4): p. 1038. 151. Kurbegovic, A. and M. Trudel, The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal, 2020. 71: p. 109594. 152. Ciclitira, P.J., J.C. Macartney, and G. Evan, Expression of c-myc in non-malignant and pre-malignant gastrointestinal disorders. J Pathol, 1987. 151(4): p. 293-6. 153. Sorolla, A., et al., Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Oncogene, 2020. 39(6): p. 1167-1184. 154. Cascón, A. and M. Robledo, MAX and MYC: A Heritable Breakup. 2012. 72(13): p. 3119-3124. 155. Dong, Y., et al., Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 124. 156. Osthus, R.C., et al., Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem, 2000. 275(29): p. 21797-800. 157. Kim, J.W., et al., Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol, 2004. 24(13): p. 5923-36. 158. Yue, M., et al., Oncogenic MYC Activates a Feedforward Regulatory Loop Promoting Essential Amino Acid Metabolism and Tumorigenesis. Cell Rep, 2017. 21(13): p. 3819-3832. 159. Edmunds, L.R., et al., c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J Biol Chem, 2014. 289(36): p. 25382-92. 160. Dang, C.V., et al., The c-Myc target gene network. Semin Cancer Biol, 2006. 16(4): p. 253-64. 161. Song, L.B., et al., The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest, 2009. 119(12): p. 3626-36. 162. Ma, L., et al., miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol, 2010. 12(3): p. 247-56. 163. Felsher, D.W. and J.M. Bishop, Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci U S A, 1999. 96(7): p. 3940-4. 164. Karlsson, A., et al., Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9974-9. 165. Neiman, P.E., et al., Genomic instability during Myc-induced lymphomagenesis in the bursa of Fabricius. Oncogene, 2006. 25(47): p. 6325-35. 166. Prochownik, E.V., c-Myc: linking transformation and genomic instability. Curr Mol Med, 2008. 8(6): p. 446-58. 167. Ray, S., et al., MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res, 2006. 66(13): p. 6598-605. 168. Louis, S.F., et al., c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci U S A, 2005. 102(27): p. 9613-8. 169. Gao, S., et al., Crosstalk of mTOR/PKM2 and STAT3/c-Myc signaling pathways regulate the energy metabolism and acidic microenvironment of gastric cancer. J Cell Biochem, 2018. 170. Li, Y., et al., Molecular Crosstalk Between MYC and HIF in Cancer. Front Cell Dev Biol, 2020. 8: p. 590576. 171. Chen, C.R., Y. Kang, and J. Massagué, Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci U S A, 2001. 98(3): p. 992-9. 172. Frederick, J.P., et al., Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol, 2004. 24(6): p. 2546-59. 173. Seoane, J., et al., TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol, 2001. 3(4): p. 400-8. 174. Wu, S., et al., Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene, 2003. 22(3): p. 351-60. 175. Zhang, L., F. Zhou, and P. ten Dijke, Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer. Trends Biochem Sci, 2013. 38(12): p. 612-20. 176. Seoane, J., Escaping from the TGFbeta anti-proliferative control. Carcinogenesis, 2006. 27(11): p. 2148-56. 177. Hart, J.R., et al., MYC regulates the non-coding transcriptome. 2014. 5(24): p. 12543. 178. Raffeiner, P., et al., An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. 2020. 117(12): p. 6571-6579. 179. Tu, R., et al., Crosstalk between oncogenic MYC and noncoding RNAs in cancer. Seminars in Cancer Biology, 2020. 180. Tran, D., et al., Myc target gene, long intergenic noncoding RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and cell survival by titrating tumor suppressor microRNAs. 2018. 37(1): p. 75-85. 181. Cao, L., et al., LAST, a c-Myc-inducible long noncoding RNA, cooperates with CNBP to promote CCND1 mRNA stability in human cells. 2017. 6: p. e30433. 182. Xiang, S., et al., LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect. 2018. 115(7): p. E1465-E1474. 183. Xiang, J.-F., et al., Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. 2014. 24(5): p. 513-531. 184. Kajino, T., et al., Divergent lnc RNA MYMLR regulates MYC by eliciting DNA looping and promoter‐enhancer interaction. 2019. 38(17): p. e98441. 185. Gao, Q., et al., Long noncoding RNA CMPK2 promotes colorectal cancer progression by activating the FUBP3–c-Myc axis. 2020. 39(19): p. 3926-3938. 186. Maldotti, M., et al., The long intergenic non-coding RNA CCR492 functions as a let-7 competitive endogenous RNA to regulate c-Myc expression. 2016. 1859(10): p. 1322-1332. 187. Huang, W., et al., The long non-coding RNA SNHG3 functions as a competing endogenous RNA to promote malignant development of colorectal cancer. 2017. 38(3): p. 1402-1410. 188. Huang, J., et al., Linc-RoR promotes c-Myc expression through hnRNP I and AUF1. 2016. 44(7): p. 3059-3069. 189. Tseng, Y.-Y., et al., PVT1 dependence in cancer with MYC copy-number increase. 2014. 512(7512): p. 82-86. 190. Sang, B., et al., Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence. 2018. 115(50): p. E11661-E11670. 191. Ma, F., et al., Long non-coding RNA FGF13-AS1 inhibits glycolysis and stemness properties of breast cancer cells through FGF13-AS1/IGF2BPs/Myc feedback loop. 2019. 450: p. 63-75. 192. Das, M., et al., DDX5/p68 associated lncRNA LOC284454 is differentially expressed in human cancers and modulates gene expression. RNA Biol, 2018. 15(2): p. 214-230. 193. Fan, C., et al., Upregulation of long non-coding RNA LOC284454 may serve as a new serum diagnostic biomarker for head and neck cancers. BMC Cancer, 2020. 20(1): p. 917. 194. Fan, C., et al., Long non-coding RNA LOC284454 promotes migration and invasion of nasopharyngeal carcinoma via modulating the Rho/Rac signaling pathway. Carcinogenesis, 2019. 40(2): p. 380-391. 195. Liu, H., et al., Copy number variations primed lncRNAs deregulation contribute to poor prognosis in colorectal cancer. Aging (Albany NY), 2019. 11(16): p. 6089-6108. 196. Heerboth, S., et al., EMT and tumor metastasis. Clin Transl Med, 2015. 4: p. 6. 197. Lambeth, L.S. and C.A. Smith, Short hairpin RNA-mediated gene silencing. Methods Mol Biol, 2013. 942: p. 205-32. 198. Han, L., W. Zhou, and F. Wu, Long non‑coding RNA LOC284454 promotes hepatocellular carcinoma cell invasion and migration by inhibiting E‑cadherin expression. Oncol Rep, 2021. 45(4). 199. Fang, Y. and M.J. Fullwood, Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. Genomics Proteomics Bioinformatics, 2016. 14(1): p. 42-54. 200. Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011. 43(6): p. 904-14. 201. Noh, J.H., et al., Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip Rev RNA, 2018. 9(3): p. e1471. 202. Ikushima, H. and K. Miyazono, TGFbeta signalling: a complex………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82323-
dc.description.abstract近幾年內,諸多研究指出長鏈非編碼 RNA 在癌症進程中扮演著致癌的角色。然而,長鏈非編碼 RNA對於影響腫瘤生長及轉移的詳細機制仍待釐清。在本篇研究,我們發現了一個與癌症相關的長鏈非編碼 RNA並取名為Smyca (Smad/Myc coactivator),它的高度表現與多種癌症病人的不良預後呈正相關。從結構上觀察,Smyca的初級轉錄產物中,Smyca序列的5’ 端連接著一群微小RNA (miRNA),而經過Drosha蛋白酶的切割後,則能使Smyca與這群微小RNA 分開。為了研究Smyca在癌症進程中具有哪些功能,我們首先利用能與Smyca序列互補的短髮夾RNA (shRNA)以有效降低Smyca的表現量,且不影響其上游端的微小RNA群表現。我們發現降低乳癌細胞中Smyca的表現量,會誘導其細胞型態會從間質型態轉換為上皮型態。隨後,我們實驗室使用RNA定序及生物資訊的分析,發現Smyca可能參與TGF-ꞵ訊號通路。而實驗也發現,過度表現Smyca的正常乳腺細胞會促進TGF-ꞵ訊號通路的中下游目標基因的表現量及啟動子的活性。然而,Smyca並不會影響TGF-ꞵ訊號通路過程中Smad蛋白的表現量及其磷酸化程度。在實驗室先前的研究成果中,發現Smyca本身的表現能被TGF-ꞵ所誘導。而後續的實驗證實,在過度表現Smyca的組別中會增長TGF-ꞵ訊號通路的強度與時間長度,因此表明Smyca會利用與TGF-ꞵ訊號通路形成的正回饋機制,加以調控TGF-ꞵ訊號通路。此外,我們實驗室也發現Smyca會連結到MYC蛋白並促進MYC下游基因表現。通常MYC需要與MAX結合形成一個穩定的異二聚體以誘導下游基因表現。因此,我們決定研究Smyca是否會透過促進MYC-MAX聚合物的形成,以影響MYC下游基因的表現。儘管如此,我們發現過度表現或降低表現Smyca都不會影響MYC與MAX的結合力,這暗示著Smyca可能透過其他機制以促進MYC下游基因的表現。總結,我們的實驗結果揭示了一個嶄新的長鏈非編碼 RNA調節TGF-ꞵ訊號通路的回饋機制,也發現此種長鏈非編碼 RNA還能參與提升MYC訊號通路。此外,我們的研究也闡釋了Smyca在癌症進程中的功能,及其詳細的分子調控機制。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:29:13Z (GMT). No. of bitstreams: 1
U0001-0208202115035400.pdf: 1775083 bytes, checksum: 194d12cc1f91812152ea54150b46fbb5 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"目 錄 口試委員會審定書………………………….……………………………………….i 謝辭………………………………………….………………………………..…….….ii 中文摘要………………………………………………………………………..….…iii 英文摘要………………………………………………………………………..….…iv I. Introduction……………………………………………………………………….1 1. EMT and its function in cancer progression……………………………………1 1.1 Overview of EMT…………………………………………..……………………..1 1.2 EMT in cancer progression………………………………….…………………....2 1.3 EMT and resistance to cancer therapies………………..……………………….4 2. Long noncoding RNA (LncRNA)…………………………………………………5 2.1 Overview of long noncoding RNA………………..…………………………5 2.2 Clinical significance of long noncoding RNA in cancer biology……………..6 2.3 Long noncoding RNA and EMT in cancer……………………………………7 3. TGF-ꞵ signaling pathway…………………………………………………………9 3.1 Overview of TGF-ꞵ signaling pathway……………………………………….9 3.2 The functions of TGF-ꞵ pathway in cancer…………………..…………...10 3.3 TGF-ꞵ signaling in EMT and EMT-related functions…………..…………...12 3.4 TGF‐β signaling and long non‐coding RNAs in cancer………..……………13 4. MYC……………………………………………………………………………15 4.1 Overview of MYC……………………………………………..………….15 4.2 MYC in tumor progression………………………………………………....17 4.3 Signaling interplay between MYC and TGF‐β…………………..………..18 4.4 Crosstalk between MYC and lncRNA in cancer………………..…………19 5. Smyca…………………………………………………………………………....21 5.1 The discovery of Smyca……………………………………………..……..21 5.2 Smyca in cancer……………………………………………………..……...21 II. Materials and methods…………………………………………………………..23 Cell culture………………………………………………………………………...23 Plasmids…………………………………………………………………………...23 Lentivirus transduction……………………………………………………………23 Quantification of miRNA-23a, miR-24-2 and miR-27a…………………………..24 RNA extraction and RT-qPCR…………………………………………………….25 Luciferase reporter assay and transfection………………………………………...26 Western blot and Smad2/3 phosphorylation assay………………………………...26 Co-immunoprecipitation (Co-IP) assay…………………………………………...28 Statistical analysis…………………………………………………………………28 III. Result…………………………………………………………………………...29 1. Smyca shRNAs downregulate Smyca expression without affecting the expression of miRNAs in the miR-23a~27a~24-2 cluster…………………………………29 2. Smyca induces MET in breast cancer cells………………………………......29 3. The modulation of Smyca influences TGF-ꞵ downstream genes………………30 4. Smyca promotes Smad-induced transactivaton without affecting Smad expression and phosphorylation………………………………………………………………………30 5. The positive feedback loop between Smyca and TGF-ꞵ signaling………………….31 6. Smyca does not affect Myc-Max binding…………………………………………….32 IV. Discussion……………………………………………………………………….33 V. Figures…………………………………………………………………………..38 Figure 1. Knockdown of Smyca doesn’t affect the expression levels of miR-23a~27a~24-2 cluster………………………………......................................……........38 Figure 2. Knockdown of Smyca induces MET…………………………………...…....39 Figure 3. Overexpression of Smyca promotes the expression of Smad target genes…..40 Figure 4. Knockdown of Smyca reduces the expression of Smad target gene c-Jun…..41 Figure 5. Overexpression of Smyca promotes the activity of Smad-responsive reporters………………………………………………………………………………..42 Figure 6. Knockdown of Smyca doesn’t affect Smad2/3 phosphorylation…….....…...43 Figure 7. Smyca enhances the amplitude and duration of TGF-ꞵ induced signaling.....44 Figure 8. Smyca doesn’t affect Myc-Max binding……………………………….……45 Figure 9. The feedback mechanism for Smyca in TGF-ꞵ pathway…………………....46 VI. Appendix……………………………………………………………….…..47 VII. References………………………………………………………………………48 "
dc.language.isoen
dc.subjectMYCzh_TW
dc.subject長鏈非編碼 RNAzh_TW
dc.subjectSmycazh_TW
dc.subject癌症進程zh_TW
dc.subject間質上皮細胞轉化zh_TW
dc.subjectTGF-ꞵzh_TW
dc.subjectMETen
dc.subjectMYCen
dc.subjectSmycaen
dc.subjectTGF-ꞵ pathwayen
dc.subjectlncRNAen
dc.subjectcancer progressionen
dc.title長鏈非編碼 RNA Smyca藉由控制 TGF-ꞵ 訊號通路的回饋機制以促進腫瘤進程zh_TW
dc.titleLong non-coding RNA Smyca promotes tumor progression by controlling a feedback mechanism of TGF-ꞵ signalingen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李育儒(Hsin-Tsai Liu),袁維謙(Chih-Yang Tseng)
dc.subject.keyword長鏈非編碼 RNA,Smyca,癌症進程,間質上皮細胞轉化,TGF-ꞵ,MYC,zh_TW
dc.subject.keywordlncRNA,cancer progression,MET,Smyca,TGF-ꞵ pathway,MYC,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202101996
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-05
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2024-08-12-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0208202115035400.pdf1.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved