Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82313
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲(Cheng-Che Hsu)
dc.contributor.authorWei-Cheng Yenen
dc.contributor.author顏偉丞zh_TW
dc.date.accessioned2022-11-25T07:29:06Z-
dc.date.available2023-08-09
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-08-09
dc.identifier.citation1. V. Karanassios, 'Microplasmas for chemical analysis: analytical tools or research toys?,' Spectrochimica Acta Part B: Atomic Spectroscopy, 59 (7), 909-928 (2004). 2. S. Brandt, A. Schutz, F. D. Klute, J. Kratzer, and J. Franzke, 'Dielectric barrier discharges applied for optical spectrometry,' Spectroc. Acta Pt. B-Atom. Spectr., 123, 6-32 (2016). 3. Y. L. Yu, Y. T. Zhuang, and J. H. Wang, 'Advances in dielectric barrier discharge-optical emission spectrometry for the analysis of trace species,' Anal. Methods, 7 (5), 1660-1666 (2015). 4. I. Adamovich, S. D. Baalrud, A. Bogaerts, P. J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J. G. Eden, P. Favia, D. B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I. D. Kaganovich, U. Kortshagen, M. J. Kushner, N. J. Mason, S. Mazouffre, S. M. Thagard, H. R. Metelmann, A. Mizuno, E. Moreau, A. B. Murphy, B. A. Niemira, G. S. Oehrlein, Z. L. Petrovic, L. C. Pitchford, Y. K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M. M. Turner, M. C. M. van de Sanden, and A. Vardelle, 'The 2017 Plasma Roadmap: Low temperature plasma science and technology,' J. Phys. D-Appl. Phys., 50 (32), 46 (2017). 5. N. S. J. Braithwaite, 'Introduction to gas discharges,' Plasma Sources Sci. Technol., 9 (4), 517-527 (2000). 6. P. J. Bruggeman, F. Iza, and R. Brandenburg, 'Foundations of atmospheric pressure non-equilibrium plasmas,' Plasma Sources Sci. Technol., 26 (12), 17 (2017). 7. D. Pappas, 'Status and potential of atmospheric plasma processing of materials,' J. Vac. Sci. Technol. A, 29 (2), 17 (2011). 8. M. Laroussi, 'Low temperature plasma-based sterilization: Overview and state-of-the-art,' Plasma Process. Polym., 2 (5), 391-400 (2005). 9. S. Yonson, S. Coulombe, V. Leveille, and R. L. Leask, 'Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch,' J. Phys. D-Appl. Phys., 39 (16), 3508-3513 (2006). 10. Z. Bo, Y. Yang, J. H. Chen, K. H. Yu, J. H. Yan, and K. F. Cen, 'Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,' Nanoscale, 5 (12), 5180-5204 (2013). 11. J. W. Coburn and H. F. Winters, 'ION-ASSISTED AND ELECTRON-ASSISTED GAS-SURFACE CHEMISTRY - IMPORTANT EFFECT IN PLASMA-ETCHING,' J. Appl. Phys., 50 (5), 3189-3196 (1979). 12. B. O. Aronsson, J. Lausmaa, and B. Kasemo, 'Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials,' J. Biomed. Mater. Res., 35 (1), 49-73 (1997). 13. K. Tachibana, 'Current status of microplasma research,' IEEJ Trans. Electr. Electron. Eng., 1 (2), 145-155 (2006). 14. K. H. Becker, K. H. Schoenbach, and J. G. Eden, 'Microplasmas and applications,' J. Phys. D-Appl. Phys., 39 (3), R55-R70 (2006). 15. D. Mariotti and R. M. Sankaran, 'Microplasmas for nanomaterials synthesis,' J. Phys. D-Appl. Phys., 43 (32), 21 (2010). 16. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, 'Characterization of a dc atmospheric pressure normal glow discharge,' Plasma Sources Sci. Technol., 14 (4), 700-711 (2005). 17. C. Y. Wang and C. C. Hsu, 'Characterization of plasma in aqueous solution using bipolar pulsed power: Tailoring plasma and optical emission with implication for detecting lead,' Plasma Process. Polym., 17 (2), 10 (2020). 18. P. Bruggeman and C. Leys, 'Non-thermal plasmas in and in contact with liquids,' J. Phys. D-Appl. Phys., 42 (5), 28 (2009). 19. O. B. Minayeva and J. A. Hopwood, 'Emission spectroscopy using a microfabricated inductively coupled plasma-on-a-chip - Invited Lecture,' J. Anal. At. Spectrom., 17 (9), 1103-1107 (2002). 20. H. Yoshiki and Y. Horiike, 'Capacitively coupled microplasma source on a chip at atmospheric pressure,' Jpn. J. Appl. Phys. Part 2 - Lett., 40 (4A), L360-L362 (2001). 21. J. T. Hu, J. G. Wang, X. Y. Liu, D. W. Liu, X. P. Lu, J. J. Shi, and K. Ostrikov, 'Effect of a floating electrode on a plasma jet,' Phys. Plasmas, 20 (8), 5 (2013). 22. D. S. Lee, K. Tachibana, H. J. Yoon, and H. J. Lee, 'Enhancement of Optical Emission by Floating Electrodes in a Planar Microdischarge Cell,' Jpn. J. Appl. Phys., 48 (5), 8 (2009). 23. Q. Y. Nie, C. S. Ren, D. Z. Wang, and J. L. Zhang, 'Simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure,' Appl. Phys. Lett., 93 (1), 3 (2008). 24. G. Xu, J. Liu, C. Yao, S. Chen, F. Lin, P. Li, X. Shi, and G. J. Zhang, 'Effects of atmospheric pressure plasma jet with floating electrode on murine melanoma and fibroblast cells,' Phys. Plasmas, 24 (8), 10 (2017). 25. C. Meyer, D. Demecz, E. L. Gurevich, U. Marggraf, G. Jestel, and J. Franzke, 'Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy,' J. Anal. At. Spectrom., 27 (4), 677-681 (2012). 26. X. Lu, M. Laroussi, and V. Puech, 'On atmospheric-pressure non-equilibrium plasma jets and plasma bullets,' Plasma Sources Sci. Technol., 21 (3), 17 (2012). 27. N. Jiang, A. L. Ji, and Z. X. Cao, 'Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism,' J. Appl. Phys., 106 (1), 7 (2009). 28. P. R. Cabarrocas, P. Gay, and A. Hadjadj, 'Experimental evidence for nanoparticle deposition in continuous argon-silane plasmas: Effects of silicon nanoparticles on film properties,' J. Vac. Sci. Technol. A-Vac. Surf. Films, 14 (2), 655-659 (1996). 29. R. M. Sankaran, D. Holunga, R. C. Flagan, and K. P. Giapis, 'Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges,' Nano Letters, 5 (3), 537-541 (2005). 30. D. Mariotti, V. Svrcek, and D. G. Kim, 'Self-organized nanostructures on atmospheric microplasma exposed surfaces,' Appl. Phys. Lett., 91 (18), 3 (2007). 31. G. Arnoult, T. Belmonte, and G. Henrion, 'Self-organization of SiO2 nanodots deposited by chemical vapor deposition using an atmospheric pressure remote microplasma,' Appl. Phys. Lett., 96 (10), 3 (2010). 32. F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, 'Microplasmas: Sources, particle kinetics, and biomedical applications,' Plasma Process. Polym., 5 (4), 322-344 (2008). 33. M. Keidar, 'Plasma for cancer treatment,' Plasma Sources Sci. Technol., 24 (3), 20 (2015). 34. G. Isbary, J. Heinlin, T. Shimizu, J. L. Zimmermann, G. Morfill, H. U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li, T. Klaempfl, S. Karrer, M. Landthaler, and W. Stolz, 'Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial,' Br. J. Dermatol., 167 (2), 404-410 (2012). 35. H. J. Lee, C. H. Shon, Y. S. Kim, S. Kim, G. C. Kim, and M. G. Kong, 'Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma,' New J. Phys., 11, 13 (2009). 36. K. S. Siow, L. Britcher, S. Kumar, and H. J. Griesser, 'Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization - A review,' Plasma Process. Polym., 3 (6-7), 392-418 (2006). 37. Y. J. Yang, M. Y. Tsai, W. C. Liang, H. Y. Chen, and C. C. Hsu, 'Ultra-Low-Cost and Flexible Paper-Based Microplasma Generation Devices for Maskless Patterning of Poly(ethylene oxide)-like Films,' ACS Appl. Mater. Interfaces, 6 (15), 12550-12555 (2014). 38. W. Li, C. B. Zheng, G. Y. Fan, L. Tang, K. L. Xu, Y. Lv, and X. D. Hou, 'Dielectric Barrier Discharge Molecular Emission Spectrometer as Multichannel GC Detector for Halohydrocarbons,' Anal. Chem., 83 (13), 5050-5055 (2011). 39. B. Mitra and Y. B. Gianchandani, 'The detection of chemical vapors in air using optical emission spectroscopy of pulsed microdischarges from two- and three-electrode microstructures,' IEEE Sens. J., 8 (7-8), 1445-1454 (2008). 40. J. M. Symonds, A. S. Galhena, F. M. Fernandez, and T. M. Orlando, 'Microplasma Discharge Ionization Source for Ambient Mass Spectrometry,' Anal. Chem., 82 (2), 621-627 (2010). 41. J. C. T. Eijkel, H. Stoeri, and A. Manz, 'A molecular emission detector on a chip employing a direct current microplasma,' Anal. Chem., 71 (14), 2600-2606 (1999). 42. D. B. Luo, D. C. Ma, Y. He, X. S. Li, S. Wang, and Y. X. Duan, 'Needle electrode-based microplasma formed in a cavity chamber for optical emission spectrometric detection of volatile organic compounds through a filter paper sampling,' Microchem J., 130, 33-39 (2017). 43. P. D. I. Hertel, (2001/02). 44. L. Spinelle, M. Gerboles, G. Kok, S. Persijn, and T. Sauerwald, 'Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds,' Sensors, 17 (7), 30 (2017). 45. B. Szulczynski and J. Gebicki, 'Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air,' Environments, 4 (1), 15 (2017). 46. 'HNU Portable Analyzer Technology Specifications. Available online: http://www.hnu.com/pdf/PortableAnalyzerTechnology_Specs514.pdf,' 47. 'CUB® Instrument User Manual V1.9. Available online: http://www.geotechenv.com/pdf/air_quality/ion_science_cub.pdf,' 48. F. M. Peng, P. H. Xie, Y. G. Shi, J. D. Wang, W. Q. Liu, and H. Y. Liu, 'Photoionization detector for portable rapid GC,' Chromatographia, 65 (5-6), 331-336 (2007). 49. 'What is Photoionization Detector? Available online: https://instrumentationtools.com/photoionization-detector/,' 50. G. C. Rezende, S. Le Calve, J. J. Brandner, and D. Newport, 'Micro photoionization detectors,' Sens. Actuator B-Chem., 287, 86-94 (2019). 51. M. Mori and Y. Sadaoka, 'Potentiometric VOC detection at sub-ppm levels based on YSZ electrolyte and platinum electrode covered with gold,' Sens. Actuator B-Chem., 146 (1), 46-52 (2010). 52. 'ETO-A1 Ethylene Oxide Sensor. Available online: http://www.alphasense.com/WEB1213/wp-content/uploads/2016/06/ETO-A1.pdf ', 53. 'Detecting and Identifying Clandestine Drug Laboratories: Sensing Technology Assessment - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Schematic-of-a-typical-electrochemical-gas-sensor-17_fig7_255660220,' 54. G. Korotcenkov, S. Do Han, and J. R. Stetter, 'Review of Electrochemical Hydrogen Sensors,' Chem. Rev., 109 (3), 1402-1433 (2009). 55. R. J. Katulski, J. Namiesnik, J. Stefanski, J. Sadowski, W. Wardencki, and K. Szymanska, 'MOBILE MONITORING SYSTEM FOR GASEOUS AIR POLLUTION,' Metrol. Meas. Syst., 16 (4), 677-682 (2009). 56. 'FIS Inc. FIS GAS SENSOR SP3-AQ2 for AIR QUALITY CONTROLS (VOCs). Available online: http://www.fisinc.co.jp/en/common/pdf/SP3SAQ201E_P.pdf,' 57. V. Amiri, H. Roshan, A. Mirzaei, G. Neri, and A. I. Ayesh, 'Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review,' Sensors, 20 (11), 25 (2020). 58. E. Pargoletti and G. Cappelletti, 'Breakthroughs in the Design of Novel Carbon-Based Metal Oxides Nanocomposites for VOCs Gas Sensing,' Nanomaterials, 10 (8), 31 (2020). 59. D. Z. Zhang, Z. M. Yang, S. J. Yu, Q. Mi, and Q. N. Pan, 'Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects,' Coord. Chem. Rev., 413, 26 (2020). 60. S. Kulinyi, D. Brandszajsz, H. Amine, M. Adam, P. Furjes, I. Barsony, and C. Ducso, 'Olfactory detection of methane, propane, butane and hexane using conventional transmitter norms,' Sens. Actuator B-Chem., 111, 286-292 (2005). 61. P. Tardy, J. R. Coulon, C. Lucat, and F. Menil, 'Dynamic thermal conductivity sensor for gas detection,' Sens. Actuator B-Chem., 98 (1), 63-68 (2004). 62. A. Allouch, S. Le Calve, and C. A. Serra, 'Portable, miniature, fast and high sensitive real-time analyzers: BTEX detection,' Sens. Actuator B-Chem., 182, 446-452 (2013). 63. L. F. Capitan-Vallvey and A. J. Palma, 'Recent developments in handheld and portable optosensing-A review,' Anal. Chim. Acta, 696 (1-2), 27-46 (2011). 64. X. Liu, S. T. Cheng, H. Liu, S. Hu, D. Q. Zhang, and H. S. Ning, 'A Survey on Gas Sensing Technology,' Sensors, 12 (7), 9635-9665 (2012). 65. A. J. McCormack, S. C. Tong, and W. D. Cooke, 'SENSITIVE SELECTIVE GAS CHROMATOGRAPHY DETECTOR BASED ON EMISSION SPECTROMETRY OF ORGANIC COMPOUNDS,' Anal. Chem., 37 (12), 1470-+ (1965). 66. B. Mitra, B. Levey, and Y. B. Gianchandani, 'Hybrid arc/glow microdischarges at atmospheric pressure and their use in portable systems for liquid and gas sensing,' IEEE Trans. Plasma Sci., 36 (4), 1913-1924 (2008). 67. Y. Duan, Y. Su, and Z. Jin, 'Capillary-discharge-based portable detector for chemical vapor monitoring,' Rev. Sci. Instrum., 74 (5), 2811-2816 (2003). 68. R. L. Vander Wal, C. K. Gaddam, and M. J. Kulis, 'An Investigation of Micro-Hollow Cathode Glow Discharge Generated Optical Emission Spectroscopy for Hydrocarbon Detection and Differentiation,' Appl. Spectrosc., 68 (6), 649-656 (2014). 69. R. L. V. Wal, J. H. Fujiyama-Novak, C. K. Gaddam, D. Das, A. Hariharan, and B. Ward, 'Atmospheric Microplasma Jet: Spectroscopic Database Development and Analytical Results,' Appl. Spectrosc., 65 (9), 1073-1082 (2011). 70. F. Y. Meng and Y. X. Duan, 'Nitrogen Microplasma Generated in Chip-Based Ingroove Glow Discharge Device for Detection of Organic Fragments by Optical Emission Spectrometry,' Anal. Chem., 87 (3), 1882-1888 (2015). 71. X. Jiang, Z. Hu, H. He, J. Luo, Y. Tian, and X. Hou, 'A two-dimensional sensor based on dielectric barrier discharge molecular optical emission and chemiluminescence for discrimination analysis of volatile halohydrocarbons,' Microchem J., 129, 16-22 (2016). 72. X. Jiang, C. H. Li, Z. Long, and X. D. Hou, 'Selectively enhanced molecular emission spectra of benzene, toluene and xylene with nano-MnO2 in atmospheric ambient temperature dielectric barrier discharge,' Anal. Methods, 7 (2), 400-404 (2015). 73. C. H. Li, X. Jiang, and X. D. Hou, 'Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines,' Microchem J., 119, 108-113 (2015). 74. B. Han, X. Jiang, X. Hou, and C. Zheng, 'Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds,' Anal Chem, 86 (1), 936-942 (2014). 75. W. Li, C. Zheng, G. Fan, L. Tang, K. Xu, Y. Lv, and X. Hou, 'Dielectric barrier discharge molecular emission spectrometer as multichannel GC detector for halohydrocarbons,' Anal Chem, 83 (13), 5050-5055 (2011). 76. R. Guchardi and P. C. Hauser, 'A capacitively coupled microplasma in a fused silica capillary,' J. Anal. At. Spectrom., 18 (9), 1056-1059 (2003). 77. D. B. Luo, Y. X. Duan, Y. He, and B. Gao, 'A Novel DC Microplasma Sensor Constructed in a Cavity PDMS Chamber with Needle Electrodes for Fast Detection of Methanol-containing Spirit,' Sci Rep, 4, 9 (2014). 78. F. Meng, X. Li, and Y. Duan, 'Chip-based ingroove microplasma with orthogonal signal collection: new approach for carbon-containing species detection through open air reaction for performance enhancement,' Sci Rep, 4, 4803 (2014). 79. B. Wang, W. Cao, and Y. Duan, 'Selective detection of organophosphate nerve agents using microplasma device,' Anal. Methods, 6 (6), 1848-1854 (2014). 80. J. H. Fujiyama-Novak, C. K. Gaddam, D. Das, R. L. Vander Wal, and B. Ward, 'Detection of explosives by plasma optical emission spectroscopy,' Sens. Actuator B-Chem., 176, 985-993 (2013). 81. R. S. Braman and A. Dynako, 'DIRECT CURRENT DISCHARGE SPECTRAL EMISSION-TYPE DETECTOR,' Anal. Chem., 40 (1), 95- (1968). 82. T. Yang, D. X. Gao, Y. L. Yu, M. L. Chen, and J. H. Wang, 'Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath,' Talanta, 146, 603-608 (2016). 83. Z. Jin, Y. X. Su, and Y. X. Duan, 'A low power, atmospheric pressure, pulsed plasma source for molecular emission spectrometry,' Anal. Chem., 73 (2), 360-365 (2001). 84. R. Guchardi and P. C. Hauser, 'Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector,' Analyst, 129 (4), 347-351 (2004). 85. A. R. Hoskinson, J. Hopwood, N. W. Bostrom, J. A. Crank, and C. Harrison, 'Low-power microwave-generated helium microplasma for molecular and atomic spectrometry,' J. Anal. At. Spectrom., 26 (6), 1258-1264 (2011). 86. J. C. T. Eijkel, H. Stoeri, and A. Manz, 'A dc microplasma on a chip employed as an optical emission detector for gas chromatography,' Anal. Chem., 72 (11), 2547-2552 (2000). 87. X. Liu, Z. L. Zhu, H. L. Li, D. He, Y. T. Li, H. T. Zheng, Y. Q. Gan, Y. X. Li, N. S. Belshaw, and S. H. Hu, 'Liquid Spray Dielectric Barrier Discharge Induced Plasma-Chemical Vapor Generation for the Determination of Lead by ICPMS,' Anal. Chem., 89 (12), 6827-6833 (2017). 88. Y. J. Luo, Y. Yang, Y. Lin, Y. F. Tian, L. Wu, L. Yang, X. D. Hou, and C. B. Zheng, 'Low-Temperature and Atmospheric Pressure Sample Digestion Using Dielectric Barrier Discharge,' Anal. Chem., 90 (3), 1547-1553 (2018). 89. Y. H. He, Y. Lv, Y. M. Li, H. R. Tang, L. Tang, X. Wu, and X. D. Hou, 'Dielectric barrier discharge-induced chemiluminescence: Potential application as GC detector,' Anal. Chem., 79 (12), 4674-4680 (2007). 90. S. Hagenhoff, J. Franzke, and H. Hayen, 'Determination of Peroxide Explosive TATP and Related Compounds by Dielectric Barrier Discharge Ionization-Mass Spectrometry (DBDI-MS),' Anal. Chem., 89 (7), 4210-4215 (2017). 91. U. Kogelschatz, 'Dielectric-barrier discharges: Their history, discharge physics, and industrial applications,' Plasma Chem. Plasma Process., 23 (1), 1-46 (2003). 92. T. C. Manley, 'The Electric Characteristics of the Ozonator Discharge,' Transactions of The Electrochemical Society, 84, 83 (1943). 93. Z. Falkenstein and J. J. Coogan, 'Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures,' J. Phys. D-Appl. Phys., 30 (5), 817-825 (1997). 94. Laux C O 2002 Radiation and nonequilibrium collisional-radiative models Physico-Chemical Modeling of High Enthalpy and Plasma Flows (von Karman Institute Lecture Series 2002–07) ed D Fletcher et al (Rhode-Saint-Gen`ese, Belgium) www.specair-radiation.net
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82313-
dc.description.abstract微電漿是任一維度在毫米尺度以下的電漿系統,常壓下的微電漿具不需真空設備、體積小、低耗能、高反應性、常溫下運作等優點,微電漿種類眾多,本文所使用的自製微電漿裝置屬於介電質微電漿系統,介電質微電漿於分析化學的應用廣泛,在質譜儀、樣品分解、放光光譜等領域都有它的蹤跡,然而,在其中的放光光譜領域,鮮少有團隊發展在空氣環境中檢測揮發性有機物的技術,其其挑戰有二,一是空氣電漿中氧氣會和有機物反應生成水氣、二氧化碳等較為安定的物種,減少產生有機物特徵放光的來源;二是大氣電漿的放光光譜被氮氣所主宰,與揮發性有機物相關的訊號可能因此被屏蔽於氮氣的放光底下而無法被觀測到。本研究透過適當調控電漿行為成功在大氣環境下測得揮發性有機物的訊號並將偵測極限自104 ppm等級推進到102 ppm等級,從微電漿裝置消耗功率的量測結果提出CN特徵放光訊號與消耗功率之間的關聯和趨勢,接著探討本研究自製的微電漿裝置在連續多個週期的放電行為與浮動電極的設計。 為了暫時排除複雜有機物含有多種官能基與元素的影響,於實際應用層面的測試,本研究使用乙醇做為被感測的揮發性有機物,藉由實驗設計說明本感測系統在空氣環境中的檢測能力與穩定性,此外,從回歸的結果得知本系統在200 ~ 3000 ppm具有良好的線性響應。氣體感測器的最終目標是能達到即時即地的監測目標環境,本研究使用自行組裝的升壓模組取代體積龐大的放大器,能夠於空氣環境下穩定的感測到3000 ppm的乙醇蒸氣。 未來本系統除了可以往更低濃度的偵測極限努力外,尚可以往探討空氣中水氣含量對於放光光譜的影響以及在檢測的揮發性有機物中添加干擾物,讓實驗室中模擬的感測環境更合乎現實的需求。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:29:06Z (GMT). No. of bitstreams: 1
U0001-0508202113102400.pdf: 3457996 bytes, checksum: 1b98384e1dfbfa94beb4209e3e849fc4 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xiii 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 2 第 2 章 文獻回顧 3 2.1 電漿簡介 3 2.1.1 電漿產生機制與反應 3 2.1.2 崩潰電壓與帕刑定律 5 2.1.3 低壓與常壓電漿系統 6 2.2 微電漿系統 8 2.2.1 微電漿系統簡介 8 2.2.2 微電漿系統種類 10 2.2.3 微電漿系統應用 14 2.2.4 電漿放光光譜 16 2.3 常見氣體檢測技術 18 2.3.1 常見氣體檢測裝置及原理 18 2.3.2 常壓電漿有機物放射光譜 23 2.4 介電質微電漿裝置及其應用 28 2.4.1 介電質微電漿裝置 28 2.4.2 介電質微電漿應用 30 第 3 章 實驗設備與架構 33 3.1 大氣微電漿揮發性有機物感測系統 33 3.1.1 可撓式微電漿裝置製備 33 3.1.2 微電漿裝置:浮動電極設計 35 3.1.3 微電漿裝置驅動電源 38 3.1.4 揮發性有機物感測系統 40 3.2 電漿檢測方法 42 3.2.1 電性檢測 42 3.2.2 光學檢測 45 3.2.3 電漿模擬軟體 46 第 4 章 實驗結果與討論 47 4.1 空氣環境揮發性有機物光譜特性分析 47 4.1.1 基本參數 47 4.1.2 浮動電極設計 50 4.1.3 電漿放射光譜 54 4.1.4 揮發性有機物光譜 56 4.1.5 電漿電性檢測 61 4.2 自製微電漿裝置揮發性有機物感測表現 64 4.2.1 升壓模組感測表現 64 4.2.2 放大器感測表現 69 第 5 章 結論與未來展望 75 第 6 章 參考文獻 77 第 7 章 附錄 83 7.1 自製微電漿產生裝置穩定性研究 83 7.2 交流電脈衝 86
dc.language.isozh-TW
dc.title以微電漿產生裝置結合放射光譜偵測空氣中揮發性有機物之研究zh_TW
dc.titleDetection of Volatile Organic Compounds in Air by Microplasma Generation Device Using Optical Emission Spectroscopyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明蒼(Hsin-Tsai Liu),盧彥文(Chih-Yang Tseng),陳嘉晉
dc.subject.keyword微電漿,分子放光光譜,揮發性有機物,空氣氣氛,zh_TW
dc.subject.keywordmicroplasma,molecular emission spectrum,volatile organic compound,air environment,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202102106
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2023-08-09-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0508202113102400.pdf3.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved