Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82312
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲(Cheng-Che Hsu)
dc.contributor.authorTsung-Shun Koen
dc.contributor.author柯淙舜zh_TW
dc.date.accessioned2022-11-25T07:29:06Z-
dc.date.available2023-08-09
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-08-09
dc.identifier.citation1. B. Jiang, J. T. Zheng, S. Qiu, M. B. Wu, Q. H. Zhang, Z. F. Yan, and Q. Z. Xue, 'Review on electrical discharge plasma technology for wastewater remediation,' Chem. Eng. J., 236, 348-368 (2014). 2. M. A. Malik, A. Ghaffar, and S. A. Malik, 'Water purification by electrical discharges,' Plasma Sources Science Technology, 10 (1), 82 (2001). 3. N. K. Kaushik, B. Ghimire, Y. Li, M. Adhikari, M. Veerana, N. Kaushik, N. Jha, B. Adhikari, S. J. Lee, K. Masur, T. von Woedtke, K. D. Weltmann, and E. H. Choi, 'Biological and medical applications of plasma-activated media, water and solutions,' Biol. Chem., 400 (1), 39-62 (2019). 4. J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, T. von Woedtke, R. Brandenburg, T. von dem Hagen, and K. D. Weltmann, 'Low temperature atmospheric pressure plasma sources for microbial decontamination,' Journal of Physics D-Applied Physics, 44 (1), 18 (2011). 5. E. Stoffels, Y. Sakiyama, and D. B. Graves, 'Cold atmospheric plasma: Charged species and their interactions with cells and tissues,' IEEE Trans. Plasma Sci., 36 (4), 1441-1457 (2008). 6. D. Mariotti and R. M. Sankaran, 'Microplasmas for nanomaterials synthesis,' Journal of Physics D-Applied Physics, 43 (32), 21 (2010). 7. Q. Chen, J. Li, and Y. Li, 'A review of plasma–liquid interactions for nanomaterial synthesis,' Journal of Physics D: Applied Physics, 48 (42), 424005 (2015). 8. M. R. Webb and G. M. Hieftje, 'Spectrochemical Analysis by Using Discharge Devices with Solution Electrodes,' Anal. Chem., 81 (3), 862-867 (2009). 9. M. Smoluch, P. Mielczarek, and J. Silberring, 'Plasma‐based ambient ionization mass spectrometry in bioanalytical sciences,' Mass spectrometry reviews, 35 (1), 22-34 (2016). 10. D. Pappas, 'Status and potential of atmospheric plasma processing of materials,' J. Vac. Sci. Technol. A, 29 (2), 17 (2011). 11. K. Tachibana, 'Current status of microplasma research,' IEEJ Transactions on Electrical and Electronic Engineering, 1 (2), 145-155 (2006). 12. D. Mariotti, 'Nonequilibrium and effect of gas mixtures in an atmospheric microplasma,' Appl. Phys. Lett., 92 (15), 3 (2008). 13. U. Kogelschatz, 'Dielectric-barrier discharges: Their history, discharge physics, and industrial applications,' Plasma Chemistry and Plasma Processing, 23 (1), 1-46 (2003). 14. B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, and J. S. Chang, 'Electrohydraulic discharge and nonthermal plasma for water treatment,' Ind. Eng. Chem. Res., 45 (3), 882-905 (2006). 15. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, 'Characterization of a dc atmospheric pressure normal glow discharge,' Plasma Sources Science Technology, 14 (4), 700-711 (2005). 16. N. Jiang, A. L. Ji, and Z. X. Cao, 'Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism,' J. Appl. Phys., 106 (1), 7 (2009). 17. P. Bruggeman and C. Leys, 'Non-thermal plasmas in and in contact with liquids,' Journal of Physics D-Applied Physics, 42 (5)(2009). 18. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. F. Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. M. Thagard, D. Minakata, E. C. Neyts, J. Pawlat, Z. L. Petrovic, R. Pflieger, S. Reuter, D. C. Schram, S. Schroter, M. Shiraiwa, B. Tarabova, P. A. Tsai, J. R. R. Verlet, T. von Woedtke, K. R. Wilson, K. Yasui, and G. Zvereva, 'Plasma-liquid interactions: a review and roadmap,' Plasma Sources Science Technology, 25 (5), 59 (2016). 19. P. Šunka, 'Pulse electrical discharges in water and their applications,' Phys. Plasmas, 8 (5), 2587-2594 (2001). 20. N. Takeuchi, Y. Ishii, and K. Yasuoka, 'Modelling chemical reactions in dc plasma inside oxygen bubbles in water,' Plasma Sources Science Technology, 21 (1), 8 (2012). 21. K. Tachibana, Y. Takekata, Y. Mizumoto, H. Motomura, and M. Jinno, 'Analysis of a pulsed discharge within single bubbles in water under synchronized conditions,' Plasma Sources Science Technology, 20 (3), 12 (2011). 22. P. Bruggeman and R. Brandenburg, 'Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics,' Journal of Physics D: Applied Physics, 46 (46), 464001 (2013). 23. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J. P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, and N. Mason, 'The 2012 Plasma Roadmap,' Journal of Physics D-Applied Physics, 45 (25), 37 (2012). 24. I. Adamovich, S. D. Baalrud, A. Bogaerts, P. J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J. G. Eden, P. Favia, D. B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I. D. Kaganovich, U. Kortshagen, M. J. Kushner, N. J. Mason, S. Mazouffre, S. M. Thagard, H. R. Metelmann, A. Mizuno, E. Moreau, A. B. Murphy, B. A. Niemira, G. S. Oehrlein, Z. L. Petrovic, L. C. Pitchford, Y. K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M. M. Turner, M. C. M. van de Sanden, and A. Vardelle, 'The 2017 Plasma Roadmap: Low temperature plasma science and technology,' Journal of Physics D-Applied Physics, 50 (32), 46 (2017). 25. P. Baroch, S. Potocky, and N. Saito, 'Generation of plasmas in water: utilization of a high-frequency, low-voltage bipolar pulse power supply with impedance control,' Plasma Sources Science Technology, 20 (3), 6 (2011). 26. M. Simek, M. Clupek, V. Babicky, P. Lukes, and P. Sunka, 'Emission spectra of a pulse needle-to-plane corona-like discharge in conductive aqueous solutions,' Plasma Sources Science Technology, 21 (5), 055031 (2012). 27. Ruma, P. Lukes, N. Aoki, E. Spetlikova, S. H. R. Hosseini, T. Sakugawa, and H. Akiyama, 'Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water,' Journal of Physics D-Applied Physics, 46 (12)(2013). 28. W. An, K. Baumung, and H. Bluhm, 'Underwater streamer propagation analyzed from detailed measurements of pressure release,' J. Appl. Phys., 101 (5)(2007). 29. A. Starikovskiy, Y. Yang, Y. I. Cho, and A. Fridman, 'Non-equilibrium plasma in liquid water: dynamics of generation and quenching,' Plasma Sources Science and Technology, 20 (2), 024003 (2011). 30. N. Shirai, K. Ichinose, S. Uchida, and F. Tochikubo, 'Influence of liquid temperature on the characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow,' Plasma Sources Science Technology, 20 (3), 034013 (2011). 31. N. Shirai, S. Uchida, and F. Tochikubo, 'Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode,' Plasma Sources Science Technology, 23 (5), 10 (2014). 32. P. Bruggeman, J. J. Liu, J. Degroote, M. G. Kong, J. Vierendeels, and C. Leys, 'Dc excited glow discharges in atmospheric pressure air in pin-to-water electrode systems,' Journal of Physics D-Applied Physics, 41 (21)(2008). 33. P. Bruggeman, D. Schram, M. A. Gonzalez, R. Rego, M. G. Kong, and C. Leys, 'Characterization of a direct dc-excited discharge in water by optical emission spectroscopy,' Plasma Sources Science Technology, 18 (2), 025017 (2009). 34. P. Bruggeman, J. Degroote, J. Vierendeels, and C. Leys, 'DC-excited discharges in vapour bubbles in capillaries,' Plasma Sources Science Technology, 17 (2), 7 (2008). 35. P. Bruggeman, T. Verreycken, M. A. Gonzalez, J. L. Walsh, M. G. Kong, C. Leys, and D. C. Schram, 'Optical emission spectroscopy as a diagnostic for plasmas in liquids: opportunities and pitfalls,' Journal of Physics D-Applied Physics, 43 (12)(2010). 36. Y. Hayashi, N. Takada, H. Kanda, and M. Goto, 'Effect of fine bubbles on electric discharge in water,' Plasma Sources Science Technology, 24 (5), 055023 (2015). 37. K. Y. Shih and B. R. Locke, 'Optical and Electrical Diagnostics of the Effects of Conductivity on Liquid Phase Electrical Discharge,' IEEE Trans. Plasma Sci., 39 (3), 883-892 (2011). 38. A. Y. Nikiforov, C. Leys, L. Li, L. Nemcova, and F. Krcma, 'Physical properties and chemical efficiency of an underwater dc discharge generated in He, Ar, N-2 and air bubbles,' Plasma Sources Science Technology, 20 (3), 10 (2011). 39. H. W. Chang and C. C. Hsu, 'Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour,' Journal of Physics D-Applied Physics, 45 (25), 7 (2012). 40. P. Bruggeman, E. Ribezl, A. Maslani, J. Degroote, A. Malesevic, R. Rego, J. Vierendeels, and C. Leys, 'Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode,' Plasma Sources Science Technology, 17 (2)(2008). 41. H. W. Chang and C. C. Hsu, 'Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior,' Plasma Sources Science Technology, 20 (4), 9 (2011). 42. H. W. Chang and C. C. Hsu, 'Plasmas in Saline Solution Sustained Using Bipolar Pulsed Power Source: Tailoring the Discharge Behavior Using the Negative Pulses,' Plasma Chemistry and Plasma Processing, 33 (3), 581-591 (2013). 43. V. Fascio, R. Wüthrich, and H. Bleuler, 'Spark assisted chemical engraving in the light of electrochemistry,' Electrochimica Acta, 49 (22-23), 3997-4003 (2004). 44. S. Kanazawa, H. Kawano, S. Watanabe, T. Furuki, S. Akamine, R. Ichiki, T. Ohkubo, M. Kocik, and J. Mizeraczyk, 'Observation of OH radicals produced by pulsed discharges on the surface of a liquid,' Plasma Sources Science Technology, 20 (3), 8 (2011). 45. P. Bruggeman, F. Iza, D. Lauwers, and Y. A. Gonzalvo, 'Mass spectrometry study of positive and negative ions in a capacitively coupled atmospheric pressure RF excited glow discharge in He–water mixtures,' Journal of Physics D: Applied Physics, 43 (1), 012003 (2009). 46. L. Schaper, W. G. Graham, and K. R. Stalder, 'Vapour layer formation by electrical discharges through electrically conducting liquids-modelling and experiment,' Plasma Sources Science Technology, 20 (3), 11 (2011). 47. P. Bruggeman, J. L. Walsh, D. C. Schram, C. Leys, and M. G. Kong, 'Time dependent optical emission spectroscopy of sub-microsecond pulsed plasmas in air with water cathode,' Plasma Sources Science Technology, 18 (4), 045023 (2009). 48. P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, and M. Cernak, 'Generation of chemically active species by electrical discharges in water,' Plasma Sources Science Technology, 8 (2), 258 (1999). 49. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, 'Deep Neural Networks for Acoustic Modeling in Speech Recognition,' IEEE Signal Process. Mag., 29 (6), 82-97 (2012). 50. A. Krizhevsky, I. Sutskever, and G. E. Hinton, 'ImageNet classification with deep convolutional neural networks,' Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, 1097-1105 (2012). 51. D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K. Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan, V. A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. Li, X. Wang, M. A. Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia, and K. Zhang, 'Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning,' Cell, 172 (5), 1122-1131 e1129 (2018). 52. T. Xie and J. C. Grossman, 'Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties,' Phys. Rev. Lett., 120 (14), 6 (2018). 53. K. Ghosh, A. Stuke, M. Todorovic, P. B. Jorgensen, M. N. Schmidt, A. Vehtari, and P. Rinke, 'Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra,' Adv. Sci., 6 (9), 1801367 (2019). 54. N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and J. C. Gerdes, 'Neural network vehicle models for high-performance automated driving,' Science Robotics, 4 (28), 13 (2019). 55. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, 'Mastering the game of Go with deep neural networks and tree search,' Nature, 529 (7587), 484-489 (2016). 56. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, 'Human-level control through deep reinforcement learning,' Nature, 518 (7540), 529-533 (2015). 57. J. Lever, M. Krzywinski, and N. Atman, 'POINTS OF SIGNIFICANCE Principal component analysis,' Nat. Methods, 14 (7), 641-642 (2017). 58. D. P. Kingma and M. Welling, 'Auto-Encoding Variational Bayes,' arXiv e-prints, arXiv:1312.6114 (2013). 59. A. Likas, N. Vlassis, and J. J. Verbeek, 'The global k-means clustering algorithm,' Pattern Recognition, 36 (2), 451-461 (2003). 60. L. van der Maaten and G. Hinton, 'Visualizing Data using t-SNE,' J. Mach. Learn. Res., 9, 2579-2605 (2008). 61. A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, 'Generative Adversarial Networks An overview,' IEEE Signal Process. Mag., 35 (1), 53-65 (2018). 62. S. Hochreiter and J. Schmidhuber, 'Long short-term memory,' Neural Comput., 9 (8), 1735-1780 (1997). 63. J. Friedman, T. Hastie, and R. Tibshirani, 'Regularization Paths for Generalized Linear Models via Coordinate Descent,' J. Stat. Softw., 33 (1), 1-22 (2010). 64. A. M. Martinez and A. C. Kak, 'PCA versus LDA,' IEEE Trans. Pattern Anal. Mach. Intell., 23 (2), 228-233 (2001). 65. J. Vincent, H. Wang, O. Nibouche, and P. Maguire, 'Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning,' Plasma Sources Science Technology, 29 (8), 085018 (2020). 66. C. C. Chang and C. J. Lin, 'LIBSVM: A Library for Support Vector Machines,' ACM Trans. Intell. Syst. Technol., 2 (3), 27 (2011). 67. Y. LeCun, Y. Bengio, and G. Hinton, 'Deep learning,' Nature, 521 (7553), 436-444 (2015). 68. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, 'Gradient-based learning applied to document recognition,' Proc. IEEE, 86 (11), 2278-2324 (1998). 69. N. S. Altman, 'AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION,' Am. Stat., 46 (3), 175-185 (1992). 70. L. Breiman, 'Random forests,' Mach. Learn., 45 (1), 5-32 (2001). 71. J. H. Friedman, 'Greedy function approximation: A gradient boosting machine,' Ann. Stat., 29 (5), 1189-1232 (2001). 72. Y. Roh, G. Heo, and S. Euijong Whang, 'A Survey on Data Collection for Machine Learning: a Big Data -- AI Integration Perspective,' arXiv e-prints, arXiv:1811.03402 (2018). 73. W. Viechtbauer and M. W. L. Cheung, 'Outlier and influence diagnostics for meta-analysis,' Res. Synth. Methods, 1 (2), 112-125 (2010). 74. S. Ioffe and C. Szegedy, 'Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,' arXiv e-prints, arXiv:1502.03167 (2015). 75. T. Salimans and D. P. Kingma, 'Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks,' arXiv e-prints, arXiv:1602.07868 (2016). 76. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, 'Improving neural networks by preventing co-adaptation of feature detectors,' arXiv e-prints, arXiv:1207.0580 (2012). 77. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, 'Learning Representations by Back-Propagating Errors,' Nature, 323 (6088), 533-536 (1986). 78. D. P. Kingma and J. Ba, 'Adam: A Method for Stochastic Optimization,' arXiv e-prints, arXiv:1412.6980 (2014). 79. S. Kaufman, S. Rosset, and C. Perlich, 'Leakage in data mining: formulation, detection, and avoidance,' Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 556–563 (2011). 80. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 'Dropout: A Simple Way to Prevent Neural Networks from Overfitting,' J. Mach. Learn. Res., 15, 1929-1958 (2014). 81. L. Prechelt, 'Early Stopping — But When?,' Neural Networks: Tricks of the Trade: Second Edition, 53-67 (2012). 82. K. He, X. Zhang, S. Ren, and J. Sun, 'Deep Residual Learning for Image Recognition,' arXiv e-prints, arXiv:1512.03385 (2015). 83. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, 'ImageNet Large Scale Visual Recognition Challenge,' International Journal of Computer Vision, 115 (3), 211-252 (2015). 84. M. Ferguson, R. Ak, Y.-T. T. Lee, and K. H. Law, 'Automatic localization of casting defects with convolutional neural networks,' 2017 IEEE international conference on big data, 1726-1735 (2017). 85. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, 'Going Deeper with Convolutions,' arXiv e-prints, arXiv:1409.4842 (2014). 86. B. Xu, N. Wang, T. Chen, and M. Li, 'Empirical Evaluation of Rectified Activations in Convolutional Network,' arXiv e-prints, arXiv:1505.00853 (2015). 87. A. L. Maas, A. Y. Hannun, and A. Y. Ng, 'Rectifier nonlinearities improve neural network acoustic models,' Proc. icml, 30 (1), 3 (2013). 88. A. Y. Ng, 'Feature selection, L1 vs. L2 regularization, and rotational invariance,' Proceedings of the twenty-first international conference on Machine learning, 78 (2004). 89. S. Kawaguchi, K. Takahashi, H. Ohkama, and K. Satoh, 'Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma,' Plasma Sources Science Technology, 29 (2), 025021 (2020). 90. M. Lin, Q. Chen, and S. Yan, 'Network In Network,' arXiv e-prints, arXiv:1312.4400 (2013). 91. I. Shafkat, 'Intuitively Understanding Variational Autoencoders,' towards data science, (2018). 92. T. White, 'Sampling Generative Networks,' arXiv e-prints, arXiv:1609.04468 (2016). 93. G. E. Hinton and R. R. Salakhutdinov, 'Reducing the dimensionality of data with neural networks,' Science, 313 (5786), 504-507 (2006). 94. P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, 'Extracting and composing robust features with denoising autoencoders,' Proceedings of the 25th international conference on Machine learning, 1096–1103 (2008). 95. R. R. Griffiths and J. M. Hernandez-Lobato, 'Constrained Bayesian optimization for automatic chemical design using variational autoencoders,' Chem. Sci., 11 (2), 577-586 (2020). 96. A. Mall, A. Patil, D. Tamboli, A. Sethi, and A. Kumar, 'Fast design of plasmonic metasurfaces enabled by deep learning,' Journal of Physics D-Applied Physics, 53 (49), 10 (2020). 97. G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis, 'Single-cell RNA-seq denoising using a deep count autoencoder,' Nat. Commun., 10(2019). 98. J. D. Rodriguez, A. Perez, and J. A. Lozano, 'Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation,' IEEE Trans. Pattern Anal. Mach. Intell., 32 (3), 569-575 (2010). 99. R. Gencay and M. Qi, 'Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging,' IEEE Trans. Neural Netw., 12 (4), 726-734 (2001). 100. G. James, D. Witten, T. Hastie, and R. Tibshirani, 'An introduction to statistical learning,' Springer, 112(2013). 101. A. Mesbah and D. B. Graves, 'Machine learning for modeling, diagnostics, and control of non-equilibrium plasmas,' Journal of Physics D-Applied Physics, 52 (30), 9 (2019). 102. I. Bürger, M. Scharpf, J. Hennenlotter, D. Nüßle, D. Spether, A. Neugebauer, N. Bibinov, A. Stenzl, F. Fend, M. Enderle, and P. Awakowicz, 'Tissue differentiation by means of high resolution optical emission spectroscopy during electrosurgical intervention,' Journal of Physics D-Applied Physics, 50 (3), 035401 (2016). 103. D. Spether, M. Scharpf, J. Hennenlotter, C. Schwentner, A. Neugebauer, D. Nüßle, K. Fischer, H. Zappe, A. Stenzl, F. Fend, A. Seifert, and M. Enderle, 'Real-time tissue differentiation based on optical emission spectroscopy for guided electrosurgical tumor resection,' Biomed. Opt. Express, 6 (4), 1419-1428 (2015). 104. D. Gidon, X. K. Pei, A. D. Bonzanini, D. B. Graves, and A. Mesbah, 'Machine Learning for Real-Time Diagnostics of Cold Atmospheric Plasma Sources,' Ieee Transactions on Radiation and Plasma Medical Sciences, 3 (5), 597-605 (2019). 105. J. Vincent, H. Wang, O. Nibouche, and P. Maguire, 'Detecting trace methane levels with plasma optical emission spectroscopy and supervised machine learning,' Plasma Sources Science and Technology, 29 (8), 085018 (2020). 106. M. Witman, D. Gidon, D. B. Graves, B. Smit, and A. Mesbah, 'Sim-to-real transfer reinforcement learning for control of thermal effects of an atmospheric pressure plasma jet,' Plasma Sources Science Technology, 28 (9)(2019). 107. D. Gidon, B. Curtis, J. A. Paulson, D. B. Graves, and A. Mesbah, 'Model-Based Feedback Control of a kHz-Excited Atmospheric Pressure Plasma Jet,' Ieee Transactions on Radiation and Plasma Medical Sciences, 2 (2), 129-137 (2018). 108. T. A. Choudhury, C. C. Berndt, and Z. H. Man, 'Modular implementation of artificial neural network in predicting in-flight particle characteristics of an atmospheric plasma spray process,' Eng. Appl. Artif. Intell., 45, 57-70 (2015). 109. F. Kruger, T. Gergs, and J. Trieschmann, 'Machine learning plasma-surface interface for coupling sputtering and gas-phase transport simulations,' Plasma Sources Science Technology, 28 (3), 12 (2019). 110. K. Han, E. S. Yoon, J. Lee, H. Chae, K. H. Han, and K. J. Park, 'Real-time end-point detection using modified principal component analysis for small open area SiO(2) plasma etching,' Ind. Eng. Chem. Res., 47 (11), 3907-3911 (2008). 111. B. Kim and D. Kim, 'Use of neural network to in situ conditioning of semiconductor plasma processing equipment,' Applied Soft Computing, 12 (2), 826-831 (2012). 112. S. J. Hong and G. S. May, 'Neural-network-based sensor fusion of optical emission and mass spectroscopy data for real-time fault detection in reactive ion etching,' IEEE Trans. Ind. Electron., 52 (4), 1063-1072 (2005). 113. S. Guessasma, G. Montavon, and C. Coddet, 'Modeling of the APS plasma spray process using artificial neural networks: basis, requirements and an example,' Comput. Mater. Sci., 29 (3), 315-333 (2004). 114. S. J. Hong, G. S. May, and D. C. Park, 'Neural network modeling of reactive ion etching using optical emission spectroscopy data,' IEEE Trans. Semicond. Manuf., 16 (4), 598-608 (2003). 115. B. Kim and M. Kwon, 'Prediction of plasma etch process by using actinometry-based optical emission spectroscopy data and neural network,' J. Mater. Process. Technol., 209 (5), 2620-2626 (2009). 116. T. A. Choudhury, N. Hosseinzadeh, and C. C. Berndt, 'Artificial Neural Network application for predicting in-flight particle characteristics of an atmospheric plasma spray process,' Surf. Coat. Technol., 205 (21), 4886-4895 (2011). 117. S. Das, D. P. Das, C. K. Sarangi, and B. Bhoi, 'Estimation of hydrogen flow rate in atmospheric Ar:H2 plasma by using artificial neural network,' Neural Computing and Applications, 32 (5), 1357-1365 (2020). 118. R. A. Jelil, X. Zeng, L. Koehl, and A. Perwuelz, 'Modeling plasma surface modification of textile fabrics using artificial neural networks,' Eng. Appl. Artif. Intell., 26 (8), 1854-1864 (2013). 119. E. S. Dalvand, M. Ebrahimi, and S. G. Pouryoussefi, 'Experimental investigation, modeling and prediction of transition from uniform discharge to filamentary discharge in DBD plasma actuators using artificial neural network,' Appl. Therm. Eng., 129, 50-61 (2018). 120. C. Y. Wang and C. C. Hsu, 'Development and testing of an efficient data acquisition platform for machine learning of optical emission spectroscopy of plasmas in aqueous solution,' Plasma Sources Science Technology, 28 (10), 105013 (2019). 121. J. Yang, J. F. Xu, X. L. Zhang, C. Y. Wu, T. Lin, and Y. B. Ying, 'Deep learning for vibrational spectral analysis: Recent progress and a practical guide,' Anal. Chim. Acta, 1081, 6-17 (2019). 122. J. Acquarelli, T. van Laarhoven, J. Gerretzen, T. N. Tran, L. M. C. Buydens, and E. Marchiori, 'Convolutional neural networks for vibrational spectroscopic data analysis,' Anal. Chim. Acta, 954, 22-31 (2017). 123. X. L. Zhang, T. Lin, J. F. Xu, X. Luo, and Y. B. Ying, 'DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis,' Anal. Chim. Acta, 1058, 48-57 (2019). 124. C. Ni, D. Y. Wang, and Y. Tao, 'Variable weighted convolutional neural network for the nitrogen content quantization of Masson pine seedling leaves with near-infrared spectroscopy,' Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 209, 32-39 (2019). 125. E. Jannik Bjerrum, M. Glahder, and T. Skov, 'Data Augmentation of Spectral Data for Convolutional Neural Network (CNN) Based Deep Chemometrics,' arXiv e-prints, arXiv:1710.01927 (2017). 126. J. Liu, M. Osadchy, L. Ashton, M. Foster, C. J. Solomon, and S. J. Gibson, 'Deep convolutional neural networks for Raman spectrum recognition: a unified solution,' Analyst, 142 (21), 4067-4074 (2017). 127. X. Fan, W. Ming, H. Zeng, Z. Zhang, and H. Lu, 'Deep learning-based component identification for the Raman spectra of mixtures,' Analyst, 144 (5), 1789-1798 (2019). 128. Y. Y. Liu, J. J. Xu, Y. Tao, T. Fang, W. B. Du, and A. P. Ye, 'Rapid and accurate identification of marine microbes with single-cell Raman spectroscopy,' Analyst, 145 (9), 3297-3305 (2020). 129. C. S. Ho, N. Jean, C. A. Hogan, L. Blackmon, S. S. Jeffrey, M. Holodniy, N. Banaei, A. A. E. Saleh, S. Ermon, and J. Dionne, 'Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning,' Nat. Commun., 10, 8 (2019). 130. W. Lu, X. Chen, L. Wang, H. Li, and Y. V. Fu, 'Combination of an Artificial Intelligence Approach and Laser Tweezers Raman Spectroscopy for Microbial Identification,' Anal Chem, 92 (9), 6288-6296 (2020). 131. T. Kirchberger-Tolstik, P. Pradhan, M. Vieth, P. Grunert, J. Popp, T. W. Bocklitz, and A. Stallmach, 'Towards an Interpretable Classifier for Characterization of Endoscopic Mayo Scores in Ulcerative Colitis Using Raman Spectroscopy,' Anal Chem, 92 (20), 13776-13784 (2020). 132. F. Lussier, D. Missirlis, J. P. Spatz, and J. F. Masson, 'Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells,' ACS Nano, 13 (2), 1403-1411 (2019). 133. W. J. Thrift and R. Ragan, 'Quantification of Analyte Concentration in the Single Molecule Regime Using Convolutional Neural Networks,' Anal Chem, 91 (21), 13337-13342 (2019). 134. S. S. Gurbani, E. Schreibmann, A. A. Maudsley, J. S. Cordova, B. J. Soher, H. Poptani, G. Verma, P. B. Barker, H. Shim, and L. A. D. Cooper, 'A convolutional neural network to filter artifacts in spectroscopic MRI,' Magnetic Resonance in Medicine, 80 (5), 1765-1775 (2018). 135. H. H. Lee and H. Kim, 'Intact metabolite spectrum mining by deep learning in proton magnetic resonance spectroscopy of the brain,' Magnetic Resonance in Medicine, 82 (1), 33-48 (2019). 136. V. B. D. M. M. Arens, 'Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey,' arXiv e-prints, (2019). 137. M. T. Ribeiro, S. Singh, and C. Guestrin, ''Why Should I Trust You?': Explaining the Predictions of Any Classifier,' Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135-1144 (2016). 138. S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, 'On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation,' PloS one, 10 (7), e0130140 (2015). 139. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (unpublished). 140. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, 'Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,' International Journal of Computer Vision, 128 (2), 336-359 (2020). 141. H. Lee, S. Yune, M. Mansouri, M. Kim, S. H. Tajmir, C. E. Guerrier, S. A. Ebert, S. R. Pomerantz, J. M. Romero, S. Kamalian, R. G. Gonzalez, M. H. Lev, and S. Do, 'An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets,' Nat Biomed Eng, 3 (3), 173-182 (2019). 142. K. S. Lee, S. K. Jung, J. J. Ryu, S. W. Shin, and J. Choi, 'Evaluation of Transfer Learning with Deep Convolutional Neural Networks for Screening Osteoporosis in Dental Panoramic Radiographs,' Journal of Clinical Medicine, 9 (2)(2020). 143. Y. Gao and K. M. Mosalam, 'Deep Transfer Learning for Image-Based Structural Damage Recognition,' Computer-Aided Civil and Infrastructure Engineering, 33 (9), 748-768 (2018). 144. X. L. Zhang, J. F. Xu, J. Yang, L. Chen, H. B. Zhou, X. J. Liu, H. F. Li, T. Lin, and Y. B. Ying, 'Understanding the learning mechanism of convolutional neural networks in spectral analysis,' Anal. Chim. Acta, 1119, 41-51 (2020). 145. D. Mishra, 'Demystifying Convolutional Neural Networks using GradCam,' towards data science, (2019). 146. A. Dertat, 'Applied Deep Learning - Part 4: Convolutional Neural Networks,' towards data science, (2017). 147. N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and L. Jianming, 'Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?,' IEEE Trans Med Imaging, 35 (5), 1299-1312 (2016). 148. A. Naseer, M. Rani, S. Naz, M. I. Razzak, M. Imran, and G. Xu, 'Refining Parkinson’s neurological disorder identification through deep transfer learning,' Neural Computing and Applications, 32 (3), 839-854 (2019). 149. K. Simonyan and A. Zisserman, 'Very Deep Convolutional Networks for Large-Scale Image Recognition,' arXiv e-prints, arXiv:1409.1556 (2014). 150. S. Shao, S. McAleer, R. Yan, and P. Baldi, 'Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning,' Expert Syst. Appl., 15 (4), 2446-2455 (2019). 151. A. Creswell, K. Arulkumaran, and A. A. Bharath, 'On denoising autoencoders trained to minimise binary cross-entropy,' arXiv e-prints, arXiv:1708.08487 (2017). "………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82312-
dc.description.abstract"本研究利用直流高壓脈衝電源來連續驅動pH值範圍為2.23~5.67的水溶液電漿,並使用光譜儀收集80.1k的電漿放射光譜,以建立深度學習所需的資料庫。研究的主題包含三個部分,我們分別將人工神經網路(ANN)、卷積神經網路(CNN)、卷積自編碼機(CAE)等深度學習模型應用於電漿放射光譜之分析,並且對電漿放射光譜的收集、深度學習模型的建立、深度學習在水溶液電漿領域的應用加以探討,藉此提供一個新穎的檢測方法並且對水溶液電漿系統有更深入的了解。 在第一部分中,我們建立ANN的迴歸模型,並且比較使用不同的資料標記方式與加入常規化技術Dropout,對於模型的訓練及普適性產生的影響。由於水溶液的酸度可以用[H+]或pH值來表示,我們分別使用[H+]或pH做為資料的標籤來訓練模型,結果顯示,兩個模型預測6種不同酸度的9.6k張光譜的平均絕對百分比誤差(Mean absolute percentage error, MAPE)的平均值為788%和0.17%,因此當我們以均方誤差來評估迴歸模型的訓練情況時,採用相同數量級的標籤可以得到較準確的預測結果。此外,我們發現使用不適當的資料劃分方式會產生資料洩漏的情形,導致模型在預測相同資料庫的光譜的MAPE均小於1%,然而在預測不同資料庫的光譜的2種不同pH值的光譜的MAPE卻上升至2.58%、11.3%。為了解決資料洩漏所造成的過擬合問題,我們在模型中加入Dropout,結果顯示,預測的MAPE降為原來的三分之一,因此Dropout可以有效地提升ANN的普適性。為了解釋此現象,我們比較隱含層中被激活的神經元比例,結果發現加入Dropout可以透過抑制神經元間的協同效應,來減緩過擬合的問題。 在第二部分中,我們建立ANN與CNN的迴歸模型,來測試兩種模型即時監測pH值變化的能力。我們利用模型預測混合不同種pH值的溶液收集到的2.1k張光譜,結果顯示,ANN模型的預測值隨時間的變化呈階梯狀的趨勢,暗示模型無法適應光譜在不同pH值間的連續變化;CNN模型的預測值隨時間的變化則是呈連續的圓滑曲線,與實際量測到的pH值的變化趨勢相符,因此CNN較適合用於監測pH值的即時變化。此外,我們發現在挑選合適的訓練光譜的pH值範圍下,預測pH值的標準差由可以從0.18降至0.05,更加符合我們在實務上對於量測pH值的要求。我們將CNN有較好的預測表現歸功於卷積層與池化層的幫助,為了進一步的驗證並展示CNN模型的透明性與可解釋性,我們藉由視覺化卷積層與池化層輸出的特徵圖來理解模型的運作方式,結果顯示,卷積層在進行特徵萃取時會考慮緊鄰維度的放光強度的關係,因此能夠觀察到特徵峰形狀的變化。我們接續使用CNN的分類模型,解釋模型進行預測的依據並測試將遷移學習應用於電將放射光譜的可能性。我們透過類別激活熱圖來判別模型是否存在偏差,並發現模型關注的區域會隨著溶液酸度提升而變化,由Hα、O777 nm、O814 nm逐漸轉為OH。最後我們透過遷移學習來訓練不同維度的電漿放射光譜,並在有限的資料量下,達到更快的收斂速度與更高的預測準確率。 在第三部分中,我們建立卷積自編碼器,進行光譜的異常偵測。為了評估光譜的還原情形,我們使用平均絕對誤差(Mean absolute error, MAE)做為衡量正常光譜與異常光譜的標準,並將MAE的閥值設為0.0043,以觀在200秒內收集到的光譜是否出現異常。結果顯示,在75~80秒附近的MAE分布出現明顯的斷層,經過光譜的比對,模型確實能夠偵測到異常的光譜,且經過統計異常光譜佔該次實驗的3.4%。未來我們可以將異常偵測應用於資料的篩選,透過自動且大量地過濾資料庫中的異常資料,來增進模型的預測能力與實用性。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T07:29:06Z (GMT). No. of bitstreams: 1
U0001-0508202113311500.pdf: 8883167 bytes, checksum: 1abc3e376314367d44cb0cade528676c (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 I 中文摘要 III ABSTRACT V 目錄 VIII 圖目錄 XI 表目錄 XVII 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 2 第 2 章 文獻回顧 3 2.1 電漿之簡介 3 2.2 水溶液電漿之簡介 6 2.2.1 水溶液電漿之系統 8 2.2.2 水溶液電漿之檢測方法 13 2.3 機器學習 (Machine Learning, ML) 18 2.3.1 機器學習之簡介 18 2.4 深度學習 (Deep Learning, DL) 22 2.4.1 深度學習之簡介 22 2.4.2 人工神經網路 (Artificial neural network, ANN) 26 2.4.3 卷積神經網路 (Convolutional neural network, CNN) 29 2.4.4 自編碼機 (AutoEncoder, AE) 32 2.4.5 過擬合 (Overfitting) 34 2.5 深度學習之應用 38 2.5.1 人工神經網路於非平衡電漿之應用 38 2.5.2 卷積神經網路於光譜之應用 43 2.5.3 可解釋人工智慧 (Explainable AI, XAI) 48 2.5.4 遷移學習 (Transfer Learning, TL) 52 第 3 章 實驗設備與深度學習模型 55 3.1 水溶液電漿光譜平台 55 3.1.1 水溶液電漿系統 55 3.2 實驗設備 58 3.2.1 電性檢測 58 3.2.2 光學檢測 58 3.2.3 水溶液檢測 58 3.2.4 電腦軟硬體設備 59 3.3 水溶液成分 60 3.4 水溶液電漿光譜資料庫 61 3.5 深度學習網路架構 64 3.5.1 人工神經網路 65 3.5.2 卷積神經網路 70 3.5.3 卷積自編碼器 75 第 4 章 實驗結果與討論 79 4.1 高壓直流脈衝電源驅動之水溶液電漿系統 79 4.1.1 水溶液電漿光譜 79 4.1.2 收光位置 81 4.1.3 單一特徵峰放光之分佈 83 4.2 人工神經網路 (Artificial Neural Network, ANN) 85 4.2.1 合適的標籤 85 4.2.2 資料洩漏與過擬合 88 4.2.3 黑盒子 91 4.3 卷積神經網路 (Convolutional Neural Network, CNN) 94 4.3.1 即時監測 94 4.3.2 卷積層與池化層輸出的特徵圖 97 4.3.3 類別激活熱圖 101 4.3.4 遷移學習 106 4.4 卷積自編碼器 (Convolutional AutoEncoder, CAE) 110 4.4.1 異常偵測 110 第 5 章 結論 115 第 6 章 未來展望 117 第 7 章 參考文獻 119 "
dc.language.isozh-TW
dc.title以深度學習分析水溶液電漿光譜之研究zh_TW
dc.titleAnalysis of Optical Emission Spectroscopy of Plasma in Solution Using Deep Learningen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-7925-8837
dc.contributor.oralexamcommittee林立強(Hsin-Tsai Liu),李奕霈(Chih-Yang Tseng),李明蒼
dc.subject.keyword水溶液電漿,放射光譜,機器學習,深度學習,人工神經網路,卷積神經網路,卷積自編碼機,資料洩漏,即時監測,類別激活熱圖,遷移學習,異常偵測,zh_TW
dc.subject.keywordSolution plasma,optical emission spectroscopy,machine learning,deep learning,artificial neural network,convolutional neural network,convolutional autoencoder,data leakage,real-time monitoring,Grad-CAM,transfer learning,anomaly detection,en
dc.relation.page132
dc.identifier.doi10.6342/NTU202102107
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2023-08-09-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0508202113311500.pdf8.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved