請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82306完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳右人 | zh_TW |
| dc.contributor.advisor | Iou-Zen Chen | en |
| dc.contributor.author | 郭創元 | zh_TW |
| dc.contributor.author | Chuang-Yuan Kuo | en |
| dc.date.accessioned | 2022-11-25T07:29:02Z | - |
| dc.date.available | 2023-03-09 | - |
| dc.date.copyright | 2022-02-21 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 行政院農委會. 2021. 農情報告資源網. 農情調查資訊查詢<http://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation aspx>
王進學、葉德銘. 2013. 菊花之細胞膜熱穩定性檢測及其應用於篩選耐熱實生苗. 臺灣園藝 59:153-166. 甘子能(編). 1984. 茶葉化學入門. 行政院農委會茶業改良場林口分場. 臺北 甘子能(編). 1987.製茶原理的生化關. 臺灣省茶業改良場文山分場. 臺北 吳振鐸. 1985. 台灣茶葉的分類。臺灣茶葉研究彙報 4:155-158。 林書妍. 2013. 部分發酵茶茶菁、製程及成茶中可溶性化學成分與揮發性有機化合 物之研究. 國立臺灣大學園藝暨景觀學系博士論文. 臺北. 林真如. 2011. 紫外線對茶樹葉片中兒茶素含量之影響. 國立臺灣大學園藝學系碩士論文. 台北. 林真如、李金龍、陳右人、阮素芬. 2020. 紫外線對茶樹嫩梢兒茶素含量與葉片細胞膜熱穩定性之影響. 臺灣園藝 66(1):37-50. 林馥泉. 1956. 烏龍茶及包種茶製造學. 大同書局. 臺北. 張如華. 1992. 不同萎凋處理對包種茶品質之影響. 國立臺灣大學農業化學研究所碩士論文. 臺北 張如華、阮逸明、蔡永生. 1995. 茶葉主要化學成分於製茶過程中之變化及其對品質之影響. 農業試驗所特刊 56:120-148. 張連發. 1991. 以紅外線萎凋茶菁製造包種茶之研究. 國立中興大學食品科學研究所碩士論文. 臺中. 陳英玲. 1995. 不同茶樹品種多酚酶活性及其在製茶過程中之變化. 農特產品加工研討會專刊 56:111-119. 蔡志賢、王自存、張唯勤. 2002. 包種茶萎凋與攪拌製程中茶菁之乙烯與二氣化碳 生成及多酚氧化酶活性的變化. 中國園藝 48:227-238. 範仕勝、晉秀、楊清、劉東娜、杜曉. 2012. 人工光照萎凋對茶葉主要品質成分與酶活性的影響. 湖北農業科學 51:1152-1155. Ai, Z., B. Zhang, Y. Chen, Z. Yu, H. Chen, and D. Ni. 2017. Impact of light irradiation on black tea quality during withering. J. Food Sci. Technol. 54:1212-1227. Araújo, W.L., T. Tohge, K. Ishizaki, C.J. Leaver, and A.R. Fernie. 2011. Protein degradation and alternative respiratory substrate for stressed plants. Trends Plant Sci 16:489-498. Armstrong, G.A. and J.E. Hearst. 1996. Genetics and molecular biology of carotenoid pigment biosynthesis. The FASEB journal 10:228-237. Ashihara, H. and A. Crozier. 1999. Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv. Bot. Res. 30:117-205. Assumpção, C.F., V.S. Hermes, C. Pagno, A. Castagna, A. Mannucci, C. Sgherri, C. Pinzino, A. Ranieri, S.H. Flôres, and A.D.O. Rios. 2018. Phenolic enrichment in apple skin following post-harvest fruit UV-B treatment. Postharvest Biol. Technol. 138:37-45. Chaturvedula, V.S.P. and I. Prakash. 2011. The aroma, taste, color and bioactive constituents of tea. J. Med. Plants Res. 5(11): 2110-2124. Cho, J.-Y., M. Mizutani, B.I. Shimizu, T. Kinoshita, M. Ogura, K. Tokoro, M.-L. Lin, and K. Sakata. 2007. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “oriental beauty”. Biosci., Biotechnol., Biochem. 71:1476-1486. Fall, R., T. Karl, A. Hansel, A. Jordan, and W. Lindinger. 1999. Volatile organic compounds emitted after leaf wounding: On‐line analysis by proton‐transfer‐reaction mass spectrometry. J. Geophys. Res.: Atmos. 104:15963-15974. Good, A.G. and S.T. Zaplachinski. 1994. The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiol. Plant. 90:9-14. Gui, J., X. Fu, Y. Zhou, T. Katsuno, X. Mei, R. Deng, X. Xu, L. Zhang, F. Dong, N. Watanabe, and Z. Yang. 2015. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacturing process? Journal of J. Agric. Food Chem. 63:6905-6914. Hatanaka, A. 1993. The biogeneration of green odour by green leaves. Phytochemistry 34(5):1201-1218. Hideg, Ù. and I. Vass. 1996. UV-B induced free radical production in plant leaves and isolated thylakoid membranes. Plant Sci. 115:251-260. Hildebrandt, T.M. 2018. Synthesis versus degradation: directions of amino acid metabolism during Arabidopsis abiotic stress response. Plant Mol. Biol. 98:121-135. Ho, C.T., X. Zheng, and S. Li. 2015. Tea aroma formation. Food Science and Human Wellness. 4(1): 9-27. Hollósy, F. 2002. Effects of ultraviolet radiation on plant cells, p. 179-197, Micron. Jang, J., Y.C. Yang, G.H. Zhang, H. Chen, J.L. Lu, Y.Y. Du, J.H. Ye, Q. Ye, D. Borthakur, X.Q. Zheng, and Y.R. Liang. 2010. Effect of ultra-violet B on release of volatiles in tea leaf. Int. J. Food Prop. 13:608-617. Kalidass, S., K.U. Vijaya, and R.R. Kumar. 2019. Biochemical changes during withering process of CTC black tea manufacture. Orient. J. Chem. 35:1313-1319. Kawakami, M. and A. Kobayashi. 2002. Carotenoid-derived aroma compounds in Tea, p. 145-159. American Chemical Society. Kawakami, M., & Kobayashi, A. 2002. Carotenoid-derived aroma compounds in tea. InP. Winterhalter, & R. Rouseff (Eds.),Carotenoid-derived aroma compounds. ACS sym-posium series,802. (pp. 145–161). Washington: American Chemical Socity. Kobayashi, A., K. Tachiyama, M. Kawakami, T. Yamanishi, I.-M. Juan, and W.T.-F. Chiu. 1985. Effects of solar-withering and turn over treatment during indoor-withering on the formation of pouchong tea aroma. Agr. Biol. Chem. 49:1655-1660. Li, D., C.Y. Li, C.J. Hu, Y.S. Yang, C. Lin, D. Zhao, Q.S. Li, J.H. Ye, X.Q. Zheng, Y.R. Liang, and J.L. Lu. 2020. Study on the accumulation mechanism of amino acids during bruising and withering treatment of oolong Tea. J Agric Food Chem 68:14071-14080. Lin, Y.-S., Y.-J. Tsai, J.-S. Tsay, and J.-K. Lin. 2003. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem. 51:1864-1873. Ma, C., J. Li, W. Chen, W. Wang, D. Qi, S. Pang, and A. Miao. 2018. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography–mass spectrometry combined with chemometrics, p.413-422, Food Research International. Elsevier. Mayer, A.M. and E. Harel. 1979. Polyphenol oxidases in plants. Phytochemistry 18:193-215. Niu, Y. and Y. Xiang. 2018. An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci 9. ölmez, H. and A. Yilmaz. 2010. Changes in chemical constituents and polyphenol oxidase activity of tea leaves with shoot maturity and cold storage. J. Food Process. Preserv. 34:653-665. Peterson, J., J. Dwyer, S. Bhagwat, D. Haytowitz, J. Holden, A.L. Eldridge, G. Beecher, and J. Aladesanmi. 2005. Major flavonoids in dry tea. J. Food Compos. Anal. 18:487-501. Qin, J.H., N. Li, P.F. Tu, Z.Z. Ma, and L. Zhang. 2012. Change in tea polyphenol and purine alkaloid Composition during solid-state fungal fermentation of postfermented tea. J. Agric. Food Chem. 60:1213-1217. Ravichandran, R. 2002. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma. Food Chem. 78:23-28. Roberts, G. and G. Sanderson. 1966. Changes undergone by free amino‐acids during the manufacture of black tea. J. Sci. Food Agric. 17:182-188. Sanderson, G.W. 1964. The theory of withering in tea manufacture. Tea Q. 35:146-163. Sanderson, G.W. 1968. Change in cell membrane permeability in tea flush on storage after plucking and its effect on fermentation in tea manufacture. J. Sci. Food Agric. 19:637-639. Sanderson, G.W. 1972. The Chemistry of Tea and Tea Manufacturing. In Recent advances in phytochemistry 5:247-316. Elsevier. Sanderson, G.W. and H.N. Grahamm. 1973. Formation of black tea aroma. J. Agric. Food Chem. 21:576-585. Sari, F. and Y.S. Velioglu. 2013. Changes in theanine and caffeine contents of black tea with different rolling methods and processing stages. Eur. Food Res. Technol. 237:229-236. Selvendran, R. and N. King. 1976. Ultrastructural changes in tea leaves during ‘orthodox’black tea manufacture. Ann. Appl. Biol. 83:463-473. Simon, E. 1974. Phospholipids and plant membrane permeability. New Phytol. 73:377-420. Suzuki, T., N. Yamazaki, Y. Sada, I. Oguni, and Y. Moriyasu. 2003. Tissue distribution and intracellular localization of catechins in tea Leaves. Biosci., Biotechnol., Biochem. 67:2683-2686. Takeo, T. 1966. Tea leaf polyphenol oxidase: part III. studies on the changes of polyphenol oxidase activity during black tea manufacture. Agric. Biol. Chem. 30: 529-535. Takeo, T. and T. Tsushida. 1980. Changes in lipoxygenase activity in relation to lipid degradation in plucked tea shoots. Phytochemistry 19:2521-2522. Tanaka, T., C. Mine, S. Watarumi, T. Fujioka, K. Mihashi, Y.-J. Zhang, and I. Kouno. 2002. Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins. J. Nat. Prod. 65:1582-1587. Tanaka, Y. and K. Matsuo. 2011. Non-thermal effects of near-infrared irradiation on melanoma. Breakthroughs in Melanoma Research. Citeseer. Tomlins, K.I. and A. Mashingaidze. 1997. Influence of withering, including leaf handling, on the manufacturing and quality of black teas - a review. Food Chem. 60:573-580. Vuong, Q.V., M.C. Bowyer, and P.D. Roach. 2011. L‐Theanine: properties, synthesis and isolation from tea. J. Sci. Food Agric. 91:1931-1939. Winterhalter, P. and G.K. Skouroumounis. 1997. Glycoconjugated aroma compounds: occurrence, role and biotechnological transformation. Adv. Biochem. Eng. Biotechnol. 55:73-105. Wright, L.A., T.M. Murphy, and R.L. Travis. 1981. The effect of ultraviolet radiation on wheat root vesicles enriched in plasma membrane. Photochem. Photobiol. 33:343-348. Yang, Z., S. Baldermann, and N. Watanabe. 2013. Recent studies of the volatile compounds in tea. Food Res. Int. 53:585-599. Ye, Y., J. Yan, J. Cui, S. Mao, M. Li, X. Liao, and H. Tong. 2018. Dynamic changes in amino acids, catechins, caffeine and gallic acid in green tea during withering. J. Food Compos. Anal. 66:98-108. Zhu, C., S. Zhang, H. Fu, C. Zhou, L. Chen, X. Li, Y. Lin, Z. Lai, and Y. Guo. 2019. Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea (Camellia sinensis) in solar-withering. Front Plant Sci 10:1638. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82306 | - |
| dc.description.abstract | 臺灣的部分發酵製作,通常在茶菁採摘後會先進行短暫的日光萎凋,此過程在茶業界與許多研究的結果,認為有助於部分發酵茶在香氣與滋味的表現,但在光質部分研究較少。本研究探討日光、紫外線與紅外線三種光源進行照射對茶菁的影響,並探究照光萎凋時相對溼度,是否會影響光源的效果。照光萎凋者再分為正常萎凋與高濕度萎凋,造成茶菁失水之差異。由於不同光源的照射,加上萎凋相對濕度不同,茶菁在處理結束時含水率已有差異,所以透過延長室內萎凋時間,在茶菁相近含水率時取樣比較。萎凋過程分為三階段,Stage 1為萎凋初期,指照光萎凋結束;Stage 2為萎凋中期,指將茶菁正常萎凋降至目標含水率;Stage 3為萎凋結束,茶菁含水率降至殺菁前之目標含水率,最後製成毛茶樣品為Stage 4。
萎凋初期以紫外光處理之茶菁,在Stage 1總多元酚類與兒茶素類含量較低,萎凋三階段 (Stage 1-3)者總多元酚類與兒茶素類平均含量也較低。萎凋初期照光高濕度處理組,茶菁總游離胺基酸含量高於正常萎凋組。在三個階段比較萎凋初期的光源與相對溼度對茶菁內容物之差異,無一致的趨勢;而以萎凋階段為影響因子,較能看出茶菁內容物變動的趨勢。萎凋過程中茶菁總游離胺基酸、咖啡因與沒食子酸含量會隨萎凋延長而提升,總多元酚類與兒茶素類含量則是隨萎凋延長而下降。此外,當茶菁含水率降低,將導致茶菁細胞膜熱穩定性降低。萎凋初期光源與相對溼度處理,造成萎凋溫度不同,在Stage 1多元酚氧化酶活性與萎凋溫度間回歸關係佳 Y = - 0.339(X-35.612)2 + 19.478 (R2 = 0.93, p < 0.001),顯示在36.5℃,會有最高之多元酚氧化酶活性。 萎凋初期照光且高濕度萎凋之茶菁,在Stage 3與Stage 4揮發性化合物總相對豐度皆低於正常萎凋之處理;高濕度萎凋處理組茶菁之個別揮發性化合物相對豐度大多低於正常萎凋組者,而照光處理組茶菁之揮發性化合物相對豐度,大部分皆高於室內萎凋組,顯示不照光與照光時高濕度處理,均可能會降低茶菁揮發性物質之含量。 | zh_TW |
| dc.description.abstract | The semi-fermented tea manufacturing process in Taiwan uasully treat the tea leaves a short period of solar-withering after plucking. This step is believed to be helpful to the aroma and taste. This study explores the effect of three light sources including ultraviolet and infrared and solar radiation on tea leaves, and whether the relative humidity is an important factor during light-withering. Therefore, the experiment of light-withering is divided into normal withering and high-humidity withering. High-humidity withering provides the tea leaves a humid environment to reduce the water loss during light-withering. Due to the different light sources and relative humidity, the water contents of tea leaves at the end of the light-withering are different. By extending the indoor withering time, water content of tea leaves will decrease and it becomes possible to sample the tea leaves at similar water content level. The withering process is thus divided into three stages. Stage 1 (early withering): the end of light-withering, Stage 2 (middle withering): down to the target water content, and Stage 3 (end of withering): water content down to the target water content before panning, and the dry tea considered as Stage 4.
During the initial withering stage, tea leaves exposed to ultraviolet-A light in Stage 1 exhibited lower overall levels of polyphenols and catechins. Across all three withering stages (Stages 1-3), these compounds were consistently lower in the UVA-treated group. In the early withering stage, under high humidity conditions, the total free amino acid content in tea leaves was higher compared to the normal withering group. Comparing the differences in tea leaves content among the three stages with different light sources and relative humidity, no consistent trend emerged based on this two factors. However, considering the withering stage as a factor revealed clearer trends in tea leaves content changes. Throughout the withering process, the total free amino acid, caffeine, and gallic acid contents increased with prolonged withering, while the levels of total polyphenols and catechins decreased. Additionally, as the moisture content of tea leaves decreased during withering, their cell membrane thermal stability (MTS) decreased. In the early withering stage, variations in light source and relative humidity led to different withering temperatures. The regression relationship between polyphenol oxidase activity (PPO) and withering temperature is good (Y = - 0.339(X-35.612)2 + 19.478, R2 = 0.93, p < 0.001) in Stage 1, indicating that the highest PPO activity occurs at around 36.5°C. The total relative abundances of volatile compounds in Stage 3 and Stage 4 of the tea leaves with high-humidity treatment were lower than those with the normal withering treatment on the early stage of light-withering. In the high-humidity withering group, the relative abundance of individual volatile compounds was mostly lower than in the normal withering group, while the light-withering group exhibited higher relative abundance of volatile compounds compared to indoor-withering, suggesting that both non-light and light-withering group under high humidity conditions could potentially decrease the content of volatile compounds in tea leaves. | en |
| dc.description.provenance | Made available in DSpace on 2022-11-25T07:29:02Z (GMT). No. of bitstreams: 1 U0001-1002202220491900.pdf: 5303572 bytes, checksum: 6a4de6267bc6426e0dbe8fe5f88581c9 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄
致謝 i 中文摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 第一章、前言 1 第二章、文獻回顧 6 第一節、茶葉的化學組成 6 第二節、部分發酵茶製程與萎凋過程中茶菁的變化 10 第三章、材料與方法 18 第一節、試驗材料與地點 18 第二節、試驗設計 18 第三節、試驗分析方法 22 第四節、藥品與儀器 26 第四章、結果與討論 31 第一節、萎凋初期照光與高濕度萎凋對茶菁內容物含量之影響 31 第二節、萎凋初期光源、相對溼度與萎凋階段對茶菁之影響 36 第三節、初期照光處理與萎凋茶菁含水率對茶菁細胞膜熱穩定性之影響 45 第四節、萎凋初期光源與相對溼度對茶菁多元酚氧化酶活性之影響 48 第五節、萎凋初期光源與相對溼度對茶菁與毛茶揮發性化合物之影響 50 第五章、結論 57 圖 59 表 78 參考文獻 132 附錄 137 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 茶菁內容物 | zh_TW |
| dc.subject | 多元酚氧化酶活性 | zh_TW |
| dc.subject | 揮發性有機化合物 | zh_TW |
| dc.subject | 茶菁內容物 | zh_TW |
| dc.subject | 日光萎凋 | zh_TW |
| dc.subject | 多元酚氧化酶活性 | zh_TW |
| dc.subject | 揮發性有機化合物 | zh_TW |
| dc.subject | 日光萎凋 | zh_TW |
| dc.subject | membrane thermostability | en |
| dc.subject | volatile organic compounds | en |
| dc.subject | solar withering | en |
| dc.subject | tea content | en |
| dc.subject | polyphenol oxidase activity | en |
| dc.subject | tea content | en |
| dc.subject | solar withering | en |
| dc.subject | volatile organic compounds | en |
| dc.subject | polyphenol oxidase activity | en |
| dc.subject | membrane thermostability | en |
| dc.title | 萎凋初期光源與相對溼度對茶菁之影響 | zh_TW |
| dc.title | Effect of Light Sources and Relative Humidity during Early Withering Stage on Tea Fresh Leaves | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張育森;阮素芬;楊美珠;林書妍 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Sen Chang;Su-Feng Roan;Meei-Ju Yang;Shu-Yen Lin | en |
| dc.subject.keyword | 日光萎凋,茶菁內容物,揮發性有機化合物,多元酚氧化酶活性, | zh_TW |
| dc.subject.keyword | solar withering,tea content,membrane thermostability,polyphenol oxidase activity,volatile organic compounds, | en |
| dc.relation.page | 138 | - |
| dc.identifier.doi | 10.6342/NTU202200546 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-02-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2023-03-09 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-1.pdf | 4.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
