Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82305
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峻永(Chun-Yeon Lin)
dc.contributor.authorYi-Chin Wuen
dc.contributor.author吳易秦zh_TW
dc.date.accessioned2022-11-25T06:35:23Z-
dc.date.copyright2021-11-11
dc.date.issued2021
dc.date.submitted2021-08-25
dc.identifier.citation[1] David S Holder, Griffiths H. “Electrical impedance tomography: Methods, History and Applications, Chapter 8, Magnetic induction tomography.” IOP Publishing, 2005. [2] M. R. Nabavi, S. N. Nihtianov, “Design strategies for eddy-current displacement sensor systems: review and recommendations, ” IEEE Trans. on Sensors, vol. 12, No. 12, pp. 3346–3355. Dec. 2012. [3] T. Yamaguchi, Y. Iwai, S. Inagak, M. Ueda, “A method for detecting bearing wear in a drain pump utilizing an eddy-current displacement sensor, “ Measurement, vol. 33, No. 3, pp. 205–211. Apr., 2003. [4] H. B. Wang, W. Li, and Z. H. Feng, “Noncontact thickness measurement of metal films using eddy-current sensors immune to distance variation, ” IEEE Trans. on Instrumentation and measurement, vol. 64, No. 9, pp. 2557–2564, Sep. 2015. [5] X. Ma, A. J. Peyton, and Y. Y. Zhao, “Measurement of electrical conductivity of open-celled Aluminum foam using non-contact eddy current techniques,” NDT E International, vol. 38, No.5, pp. 359-367, Jul. 2005. [6] K. –M. Lee, C.-Y. Lin, B.J. Hao, and M. Li, “Coupled parametric effects on magnetic fields of eddy-current induced in non-ferrous metal plate for simultaneous estimation of geometrical parameters and electrical conductivity,” IEEE Trans. Magnetics, vol. 53, No. 10, Oct. 2017. [7] N. Orcutt, and O. P. Gandhi, “A 3-D impedance method to calculate power deposition in biological bodies subjected to time varying magnetic fields,” IEEE. Trans. Biomedical Eng., vol. 35, No. 8, pp. 577-583, Aug., 1988. [8] N. D. Geeter, G. Crevecoeur, and L. Dupre, “Eddy-current simulations using an independent impedance method in anisotropic biological tissues,” IEEE Trans. on Magnetics, vol. 47, No. 10, pp. 3845-3848, Oct., 2011. [9] C.-Y. Lin, K. M. Lee, Y.-L. Chen, and S. -C. Huang, “Distributed Current Source Method for Magnetic and Eddy-Current Fields Formulation of Biological Objects” in Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2019, pp.1522-1527. [10] C. V. Dodd and W. E. Deeds, “Analytical solutions to eddy-current probe-coil problems,” J. Appl. Phys., vol. 39, pp. 2829-2838, May, 1968. [11] C.-Y. Lin, K.-M. Lee, and B.J. Hao, “Distributed current source method for modeling magnetic and eddy-current fields induced in nonferrous metallic objects,” IEEE/ASME Trans. on Mechatronics, vol. 23, no. 3, pp.1038-1049, 2018. [12] D. Haemmerich, S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster, “In vivo electrical conductivity of hepatic tumours, ” Physiol Meas., vol. 24, pp. 251-260. May. 2003. [13] D. Haemmerich, D. J. Schutt, A. W. Wright, J. G. Webster, and D. M. Mahvi, “Electrical conductivity measurement of excised human metastatic liver tumors before and after thermal ablation, ” Physiol Meas., vol. 30, no. 5, pp. 459-466, May,. 2009. [14] L. Ma, and M. Soleimani, “Magnetic induction tomography methods and applications: a review,” Measurement Science and Technology, vol. 28, no. 7, Jun. 2017. [15] Z. L. Xiao, C. Tan, and F. Dong, “3-D Hemorrhage Imaging by Cambered Magnetic Induction Tomography,” IEEE Trans. Instrumentation and Measurement, vol. 68, No. 7, July, 2019. [16] L. Ke, W. Zu, Q. Du, J. Chen and X. D. Ding, “A bio-impedance quantitative method based on magnetic induction tomography for intracranial hematoma,” Medical Biological Engineering Computing, Feb., 2020. [17] S. Zhao, G. Li, S. Gu, J. Ren, J. Chen, L. Xu, et al., 'An experimental study of relationship between magnetic induction phase shift and brain parenchyma volume with brain edema in traumatic brain injury', IEEE Access, vol. 7, pp. 20974-20983, Feb. 2019. [18] J. X. Xiang, Y. G. Dong, M. M. Zhang, and Y. Li, “Design of a Magnetic Induction Tomography System by Gradiometer Coils for Conductive Fluid Imaging,” IEEE Access, vol.7, pp. 56733-56744, May, 2019. [19] S. Al-Zeibak and N. H. Saunders, “A feasibility study of in vivo electromagnetic imaging,” Phys. Med. Biol., vol. 38, pp. 151-160, 1993. [20] H. Grifttths, W. R. Stewart, and W. Gough, “Magnetic induction tomography: A measurement system for biological tissues,” Ann. N Y Acad. Sci., vol. 873, pp. 335-345, 1999. [21] Y. Zhou, Q. Ma, G. Guo, J. Tu and D. Zhang, 'Magneto-acousto-electrical measurement based electrical conductivity reconstruction for tissues', IEEE Trans. Biomed. Eng., vol. 65, no. 5, pp. 1086-1094, May 2018. [22] A. Korjenevsky, V. Cherepenin, and S. Sapetsky, “Magnetic induction tomography: experimental realization,” Physiol. Meas., vol. 21, pp. 89-94, 2000. [23] J. Netz, E. Forner, and S. Haggemann, “Contactless impedance measurement by magnetic induction—a possible method for investigation of brain impedance,” Physiol. Meas., vol. 14, pp. 463-471, 1993. [24] B. Karbeyaz and N. Gener, “Electrical conductivity imaging via contactless measurements: An experimental study”, IEEE Trans. Med. Imag., vol. 22, no. 5, pp. 627-635, May 2003. [25] Tsai, Y. T., Huang, C. N., Chung, H. Y., “The Design of Contactless Conductivity Sensor for Biological Tissues”, In IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2187-2190, November 2007. [26] Abrantes, R., Rosado, L. S., Ramos, P. M., Piedade, M., “Embedded measurement system for non-destructive testing using new eddy currents planar array probe”, In 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pp. 583-589, May 2014. [27] N. G. Gençer and M. N. Tek, “Forward problem solution for electrical conductivity imaging via contactless measurements,” Phys. Med. Biol., vol. 44, no. 4, pp. 927-940, Apr. 1999. [28] J.Y. Jeon, W.M. Chung, and H.S. Son “Magnetic induction tomography using magnetic dipole and lumped parameter model,” IEEE Access, vol. 7, 2019. [29] M. D. O’Toole, N. Karimian, and A. J. Peyton, “Classification of nonferrous metals using magnetic induction spectroscopy,” IEEE Trans. on Industrial informatics, vol. 14, No. 8, Aug., 2018. [30] Y. Du., Z.J. Zhang, W.L. Yin, S. Zhu, Z.Q. Chen, and H.Y. Xu, “Conductivity classification of non-magnetic tilting metals by eddy current sensors,” Sensors, vol. 20, 2068, May 2020. [31] Y. Du., Z.J. Zhang, W.L. Yin, S. Zhu, H.Y. Xu, and Z.Q. Chen, “A novel conductivity classification technique for non-magnetic tilting metals by eddy current sensors,” IEEE Access, vol.8, 151125-151132, 2020. [32] I. Muttakin, M. Soleimani, “ Noninvasive conductivity and temperature sensing using magnetic induction spectorscopy imaging,” IEEE Trans. on Instrumentation and measurement, vol. 70, 2021. [33] Z. W. Zeng, Y. F. Laio, X. H. Liu, J. M. Lin, and Y.H. Dai, “ Detection of fiber fracture in unidirectional CFRP by remote field eddy-current testing,” IEEE Trans. on Instrumentation and measurement, , vol. 69, No. 8, Aug., 2020. [34] S. Bensaid, D. Trichet, and J. Fouladgar, “Optimal design of a rotating eddy-current probe-application to characterization of anisotropic conductive materials,” IEEE Trans. on Magnetics, Vol. 51, No. 3, Mar., 2015. [35] H. Tesfalem, A. J. Peyton, A. D. Fletcher, M. Brown, and B. Chapman, “Conductivity profiling of graphite moderator bricks from multifrequency eddy current measurements,” IEEE Sensors Jorunal, Vol. 20, No. 9, May 1, 2020. [36] F. Loete, Y. Le Bihan, and D. Mencaraglia, “Novel wideband eddy current device for the conductivity measurement of semiconductors,” IEEE Sensors Journal, Vol. 16, No. 11, Jun. 1, 2016. [37] H. B. Wang, W. Li, Z. H. Feng, “Noncontact thickness measurement of metal films using eddy-current sensors immune to distance variation,” IEEE Trans. on Instrumentation and Measurement, Vol. 64, No. 9, Sep., 2015. [38] W.L.Yin, K. Xu, “A novel triple-coil electromagnetic sensor for thickness measurement immune to lift-off variations,” IEEE Trans. on Instrumentation and Measurement, Vol. 65, No. 1, Jan., 2016. [39] X. B. Meng, M. Y. Lu, W. L. Yin, A. Bennecer, and K. J. Kirk, “Inversion of lift-off distance and thickness for nonmagnetic metal using eddy current testing,” IEEE Trans. on Instrumentation and Measurement, Vol. 70, 2021. [40] W. Y. Cheng, “Thickness measurement of metal plate using swept-frequency eddy current testing and impedance normalization,” IEEE Sensor Journal, Vol. 17, No. 14, Jul., 2017. [41] Y.J. Gotoh, A. Matsyoka, and N. Takahashi, “Electromagnetic Inspection Technique of Thickness of Nickel-layer on Steel Plate without Influence of Lift-off between Steel and Inspection Probe,” IEEE Trans. on Mag., Vol. 47, No. 5, May, 2011. [42] W. L. Yin, A. J. Peyton, and S. J. Dickinson, “Simultaneous measurement of distance and thickness of a thin metal plate with an electromagnetic sensor using a simplified model,” IEEE Trans. on Instrumentation and Meausrement., Vol. 53, No. 4, Aug., 2004. [43] K. Tsukada, T. Kiwa, T. Kawata and Y. Ishihara, “Low-frequency eddy current imaging using MR sensor detecting tangential magnetic field components for nondestructive evaluation”, IEEE Trans. Magn., vol. 42, no. 10, pp. 3315-3317, Oct. 2006. [44] T. Griesbach, M. C. Wurz and L. Rissing, “Modular eddy current micro sensor”, IEEE Trans. Magn., vol. 47, no. 10, pp. 3760-3763, Oct. 2011. [45] Ribeiro, A. L., Pasadas, D. J., Ramos, H. G., Rocha, T., “Measurement of one field component to assess the eddy current surface current density”, In 2016 IEEE Metrology for Aerospace (MetroAeroSpace), pp. 276-279, June 2016. [46] Huang, G. W., Jeng, J. T., “Implementation of 16-Channel AMR Sensor Array for Quantitative Mapping of Two-Dimension Current Distribution”, IEEE Transactions on Magnetics, 2018. [47] K Tsukada, M Hayashi, Y Nakamura, K Sakai and T Kiwa, “Small eddy current testing sensor probe using a tunneling magnetoresistance sensor to detect cracks in steel structures”, IEEE Trans. Magn., vol. 54, 2018. [48] K.-M. Lee, B.J. Hao, M. Li, and K. Bai, “Multiparameter Eddy-current sensor design for conductivity estimation and simultaneous distance and thickness measurements,” IEEE Trans. on Industrial Informatics, Vol. 15, No. 3, Mar., 2019. [49] T. Theodoulidis and E. Kriezis, “Series Expansions in Eddy Current Nondestructive Evaluation Models,” J. of Materials Processing Technology, vol. 161, pp. 343-347, 2005. [50] K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics: Alternating current characteristics,” Journal Chemical Physics, vol. 9, pp. 341-351, 1941. [51] S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues-Part III: Parametric models for the dielectric spectrum of tissues,” Physics in Medicine and Biology, vol. 41, pp. 2271-2293, 1996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82305-
dc.description.abstract本論文研究單點式磁電渦流感測系統開發,根據待測物種類分為生物磁電渦流感測系統及改良非導磁金屬磁電渦流感測系統,應用於生物異質物辨識及非導磁金屬導電率、厚度量測。磁電渦流感測器的原理為通入時變的電流於激勵線圈,量測產生之電渦流於被測物產生磁場之變化。依據待測物材料的種類,而有相對應的感測方法,如生物組織導電率較低,需要使用感應線圈量測磁通量變化產生的感應電動勢,而非導磁金屬導電率較高,可用量測磁通量密度的異相性磁阻感測器測量。 磁電渦流感測系統以分散式磁電渦流模型計算待測物產生的電渦流場及其產生的二次感應磁場做頻率響應分析,建立模擬的響應圖並且和實驗數據比對。生物磁電渦流感測器的用途為辨識生物組織的異質物,由一個激勵線圈和一對感應線圈組成的差動線圈系統構成,有效消除自身激勵線圈產生的磁場,進而量測生物體所感應的磁通量密度,放大生物組織導電率資訊。此論文亦改良非導磁金屬磁電渦流感測系統,硬體部份對於電流放大器的晶片進行更改,使電流放大倍率更大、更穩定;於異相性磁阻感測器的輸出端,加入儀表放大器,提高放大的精準度;並且加入磁感測器的重啟電路,使磁阻元件復位保持原本的性能,讓每一次量測都能更可靠,並將所有量測系統放置於同一機盒內,減少電磁干擾的誤差。軟體部分除了模型運算速度的優化,也對於實驗結果透過模型進行導電率與厚度量測的優化,而實驗量測端改進了掃頻量測的效率。 本論文提出之生物磁電渦流感測系統用於生物組織辨識,由掃頻的方法已經可以辨識豬肉和豬骨頭,未來期望能應用於生物組織的分類以及腫瘤檢測。而非導磁金屬磁電渦流感測系統,開發出一套量測非導磁金屬導電率、厚度量測儀,能夠透過模型讓誤差率低於15%,未來期望能配合硬體和軟體優化更精準量測。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T06:35:23Z (GMT). No. of bitstreams: 1
U0001-2508202113554700.pdf: 3276512 bytes, checksum: 7a18864c9bea0f508fa698297f75e7e1 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 中文摘要 ii ABSTRACT iii 表目錄 viii 圖目錄 ix 符號與縮寫解釋表 xi 第一章 前言 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 生物磁電渦流 2 1.2.2 金屬磁電渦流 3 1.3 問題描述 4 1.4 論文架構 4 第二章 磁電渦流感測器設計 5 2.1. 生物磁電渦流感測系統 6 2.1.1 感測器系統模型 6 2.1.2 感測器系統設計 11 2.2. 金屬磁電渦流感測系統 11 2.2.1. 感測器系統模型 11 2.2.2. 感測器系統設計 15 2.2.3. 導電率與厚度量測 15 2.2.4. 網格映射 17 2.2.5. 網格於集膚深度的處理 18 第三章 數值模擬驗證 20 3.1. 生物磁電渦流感測系統 20 3.1.1. DCS模型驗證 20 3.1.2. 頻域響應模擬分析 23 3.1.3. 腫瘤檢測的感測器設計分析 23 3.1.4. 模擬與實驗校正 25 3.2. 金屬磁電渦流感測系統 26 3.2.1. DCS模型驗證 26 3.2.2. 頻率響應模擬分析 27 3.2.3. 導電率與厚度同時量測的數值驗證 30 第四章 實驗架構與結果 32 4.1. 生物磁電渦流感測系統 32 4.2. 金屬磁電渦流感測系統 34 4.2.1. 實驗架設 34 4.2.2. 實驗模板於非導磁金屬量測 36 4.2.3. DCS模型用於實驗映射 40 4.2.4. 金屬磁感測器重複性 45 第五章 結論與未來展望 46 5.1. 結論 46 5.1.1. 生物磁電渦流感測系統 46 5.1.2. 金屬磁電渦流感測系統 47 5.2. 未來展望 48 5.2.1. 生物磁電渦流感測系統 48 5.2.2. 金屬磁電渦流感測系統 48 參考文獻 49
dc.language.isozh-TW
dc.subject導電率zh_TW
dc.subject電渦流zh_TW
dc.subject磁感測器zh_TW
dc.subjectelectrical conductivityen
dc.subjectEddy currenten
dc.subjectmagnetic sensoren
dc.title幾何及材料特性估測之單點式磁電渦流感測器開發zh_TW
dc.titleDevelopment of Point Magnetic/Eddy-Current Sensing Systems for Estimation of Geometrical Parameters and Material Propertiesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃漢邦(Hsin-Tsai Liu),陳亮嘉(Chih-Yang Tseng),楊鏡堂,陳永耀
dc.subject.keyword電渦流,磁感測器,導電率,zh_TW
dc.subject.keywordEddy current,magnetic sensor,electrical conductivity,en
dc.relation.page52
dc.identifier.doi10.6342/NTU202102714
dc.rights.note未授權
dc.date.accepted2021-08-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2026-08-20-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2508202113554700.pdf
  未授權公開取用
3.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved